
COMP-533 - Midterm 2010 Solutions © 2010 Jörg Kienzle

COMP-533

Solutions Midterm 2010
Jörg Kienzle

COMP-533 - Midterm 2010 Solutions © 2010 Jörg Kienzle

Car Insurance Domain Model Question (1)
Problem Description
An insurance company wants to automate its functions. The company
sells several kinds of insurance policies, including life insurance and car
insurance, and has plans to expand its services. Customers can purchase
insurance policies, pay insurance fees accordingly, and receive
compensation. Each insurance purchase activity is overseen by a sales
man and results in a contract, in which the form of payment (e.g. yearly,
monthly, ...) is specified. Claim agents are in charge of handling claims.
They study the claims received against the insurance plans and decide
on how much compensation the client is entitled to. All claims, even
those that are not compensated, have to be archived in case of future
reclamations.

2

COMP-533 - Midterm 2010 Solutions © 2010 Jörg Kienzle

Car Insurance Domain Model Question (2)
Life insurance policies
When purchasing a life insurance, the customer has to nominate at least one
beneficiary (who will receive the compensation in case of death of the
customer). For life insurance policies, the yearly fee is based on the persons
age and the date the contract was signed.
Car insurance policies
The fee for a car insurance is based on the price of the car and the year in
which the car was built. The base car insurance covers accidents for the
primary driver only (i.e. the customer himself/herself). It is however
possible to add a maximum of 5 secondary drivers to the contract. Each
secondary driver costs $10 extra per year. This total (base fee + secondary
drivers) is then further adjusted based on the claim history. For each
accident that has been compensated in the past, the fee is increased by 20%.

3

COMP-533 - Midterm 2010 Solutions © 2010 Jörg Kienzle

Car Insurance Domain Model Question (3)
1. Devise a domain model that models the concepts of a (single) insurance

company. Before you start, read also task 2 and the description of the OCL
constraints that you’ll have to write in task 3. They might require additional
concepts / associations / attributes that you need to add to your domain model.

2. Explain how, if ever the company decides to add new insurance policies (like a
house insurance) to their portfolio, your model would have to be updated.

3. Write the following constraints and functions in OCL (if your model already
models that constraint, then just write: “Is covered by model”)

1. Every car has to be covered by exactly one insurance policy.
2. A car insurance has to be bought by the owner of the car.
3. A customer’s spouse has to be declared as a secondary driver.
4. Write an OCL function that, given a base fee, calculates the adjusted fee for a car insurance

policy.
5. Sales agents and claim agents should not be handling policies of their relatives, or policies in

which they are involved as beneficiaries or secondary drivers. (You can either write one
invariant, or multiple invariants to answer this question.)

4

COMP-533 - Midterm 2010 Solutions © 2010 Jörg Kienzle

Insurance Company Domain Model

5

monthly
yearly

<<enumeration>>
PaymentKind

CarInsuranceContract

buildIn: Integer
price: Integer

Car

SalesAgentClaimAgent

signer
1

0..*
signedContracts

compensation: Integer
ClaimhandledClaims

0..*

handledBy 1

appliedTo 1

claimHistory
0..*

established: Date
payment: PaymentKind

InsuranceContract

1 seller

0..*
overseenContracts

beneficiary
1..*

0..* beneficiaryOf
LifeInsuranceContract

coveredBy 1

covers 1

0..*
owns

1 ownersecondary 0..5

0..* secondaryOf

0..1
spouse name: String

age: Integer

Person
0..1

relatives 0..*
0..*

New insurance policies can be added by adding
new subclasses to the Insurance Contract Class

4
4

43

1 1 1 1
1

1
1

1

1
1

1

1
1

1

2

2 2

35 points total + 5 bonuscontext p: Person:
inv: p.relatives→includesAll(p.spouse)

COMP-533 - Midterm 2010 Solutions © 2010 Jörg Kienzle

Insurance Domain Model OCL
Write the following OCL constraints:

1. Every car has to be covered by exactly one insurance policy.
Covered by model

2. A car insurance has to be bought by the owner of the car.
context c: CarInsuranceContract
inv: c.covers.owner = c.signer

3. A customer’s spouse has to be declared as a secondary driver.
context c: CarInsuranceContract
inv: c.signer.spouse→notEmpty() implies
 c.secondary→includes(c.signer.spouse)

6

1

2

3

COMP-533 - Midterm 2010 Solutions © 2010 Jörg Kienzle

Insurance Domain Model OCL
4. Write an OCL function that, given a base fee, calculates the adjusted fee for a car

insurance policy.
context c: CarInsuranceContract
def: adjustedFee(baseFee: Integer) : Integer =
 (baseFee + c.secondary→size() * 10) *
 (1 + c.claimHistory→select(compensation > 0)→size() * 0.2)

5. Sales agents and claim agents should not be handling policies of their relatives, or
policies in which they are involved as beneficiaries or secondary drivers.
context s: SalesAgent:
inv: s.overseenContracts.signer→excludesAll(s.relatives→including(s)) and
s.overseenContracts→excludesAll(s.beneficiaryOf→union(s.secondaryOf))
context c: ClaimAgent:
inv : c.handledClaims.appliedTo.signer→excludesAll(s.relatives→including(s)) and
c.handledClaims.appliedTo→excludesAll(c. beneficiaryOf→union(c.secondaryOf))

7

4

5

15 points total

COMP-533 - Midterm 2010 Solutions © 2010 Jörg Kienzle

Recycling Machine Use Case
Use Case: RecycleItems
Scope: RecyclingMachine
Level: User-Goal
Intention in Context: The User wants to recycle bottles and cans in exchange for money.
Multiplicity: Only one User can recycle items at a given time.
Primary Actor: User
Secondary Actors: Recognizer, Display, (FinishedButton), Printer
Main Success Scenario:
Step 1, 2 and 3 are repeated for each item the User wishes to recycle.
1. User inserts a can or a bottle into the recognizer.
2. Recognizer informs System about the item that was recognized.
3. System acknowledges recognition to User by updating the refund total on the Display.
4. User informs System that s/he has no more items to process (using the FinishedButton).
5. System prints receipt using Printer.
Extensions:
2a. System rejects the inserted item (because it does not recognize it, or because the store
does not accept that kind of item). Use case continues with next item at step 1.

8

1

2

1
1
1
1
1
3

1

2
2
2
2

20 points total

COMP-533 - Midterm 2010 Solutions © 2010 Jörg Kienzle

:Selector
Button

:Terminal

:Display

done
login
setPrice
setQuantity
resetBox

selectDrink

unavailable

coinReceived

abort

dispensed

dispense

displayPrice
updateRemainingPrice
displayNoChange
invalidLogin
displayWelcome

ejectChange
collectChange
giveChange

1..*

1

1

:Shelf

1..*

:Sensor

1

:Cancel
Button

1

:Coin
Slot

1

:Drink
Light

1..*

:MoneyBox

1

1

1

1

1

1

1

1

1

1

: Drink Vending
Machine

DrinkVendingMachine Environment Model

9

1 for each actor
+ multiplicities

3 for system

total of 1 for syntax

COMP-533 - Midterm 2010 Solutions © 2010 Jörg Kienzle

Drink Vending Messages (1)
• Input (grouped by use case)

selectDrink (no parameter needed since sender encodes drink)
dispensed
coinReceived(c: Coin)
abort

login(username: String, password: EncryptedString)
setPrice(d: Drink, amount: Integer)
setQuantity(d: Drink, quantity: Integer)
resetBox (no parameter needed, or else change amounts)
done

10

1

1

1

1

1

1

1

1

1

COMP-533 - Midterm 2010 Solutions © 2010 Jörg Kienzle

Drink Vending Messages (2)
• Output (grouped by use case)

displayPrice(amount: Integer)
(updateRemainingPrice(amount: Integer))
dispenseDrink
displayNoChange
ejectChange
giveChange(amount: Integer)
(collectChange)
unavailable

displayWelcome (or acknowledgment)
invalidLogin

11

1

1

1
1
1

1

1
1 30 points total

