
COMP-533 OCL and Concept Model

OCL and
Concept Model

Jörg Kienzle & Alfred Strohmeier

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Overview
• OCL

• History and Goal
• Constraints
• OCL Types
• Base Types & Operations
• Collection Types & Operations
• Navigating UML Diagrams
• Conformance Rules

• Concept Model
• Building the Concept Model
• Actors and the Concept Model

2

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

OCL History and Goal
• First version developed at IBM in 1995
• Standardized by OMG in November 1997 as part

of the UML 1.1 standard
• Current version: OCL 2.4 (as part of UML 2.4)
• Language for specifying invariants,

preconditions, postconditions and other
constraints

• Easy to learn, easy to use, easy to understand
• Formal language for UML users

3

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Constraint Definition

4

• A constraint is a restriction on one or more
values of (part of) an object-oriented model or
system.

• Assertion on a model
• Static

• Invariant
• Dynamic

• Pre- / postconditions

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Constraint Advantages
• Better Documentation

• Constraints add to visual models information about the model
elements and their relationships

• Improved Precision
• Constraints can be more detailed than visual models
• Constraints can be verified for coherence or

type-checked
• Communication without Misunderstanding

• Constraints are unambiguous

5

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Declarative Language
• OCL constraints are declarative

• Predicates / Assertions / Truths
• Constraints have no side effects

• The system state does not change due to the evaluation of a
constraint!

• Advantages
• The modeller does not have to decide what happens when a

constraint is broken (to be addressed in a later phase)
• Constraint evaluations are atomic
• Constraints can be evaluated as many times as necessary

6

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

OCL Types
• Predefined standard types

• Boolean
• Integer
• Real
• String

• Predefined collection types
• Collection
• Set
• Bag
• Sequence

• User-defined types
• All types from a UML model (the one that defines the context) can also

be used.

7

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Value Types and Object Types

• Value Types
• Their instances never change value
• The value is the instance
• Example: Integer “1”
• All pre-defined OCL types are value types

• Object Types
• Instances of classes
• Instances are object, can change the value of their attributes
• Example: the person “Jörg”
• User-defined types are object types

8

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Boolean
• Predefined operations (order of precedence)

• not
• if … then … else … endif
• =, <>
• or, and, xor
• implies

9

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Integer and Real
• Predefined operations (order of precedence)

• .abs, .max, .min
• For Integers: .div, .mod
• For Reals: .floor, .round
• - (unary minus)
• *, /
• +, -
• <, >, <=, >=
• =, <>

• Mathematical definition
• Integer is a subtype of real
• There are no maximum integer / real values

10

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

• Sequence of characters
• Literals written in single quotes

• ‘apple’, ‘macintosh’
• Predefined operations

• toUpper
• toLower
• size
• substring(int, int)
• concat(String)
• =, <>

String

11

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

OCL Constraints
• An OCL constraint is a valid OCL expression of type Boolean
• OCL expressions can refer to types, classes, association

classes, interfaces, and datatypes, and to properties of
objects.

• A property is one of the following
• an Attribute
• an Operation with isQuery being true

• isQuery is true for Observers (read-only operations)
• This rule guarantees that OCL expressions have no side-effects

• an AssociationEnd

• Properties can be accessed via the dot operator.
• OCL expressions are evaluated / read from left to right

12

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

EmploymentAgency

Example UML Class Diagram

13

Person Company
0..*1..*

Job
salary

name
budget

name
gender

income()

employee employer

0..1

0..1

wife

husband

* *

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Context and self
• OCL allows a developer to “navigate” through a

UML diagram and express constraints.
• Each expression is written in the context of an

instance of a specific type. The reserved word self
refers to this instance.

• Example
context Company
! inv: self.budget > 50
context c: Company
! inv: c.budget > 50

14

Company
name
budget

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Using Operations without Side-Effects

• You can use operations of classes in OCL
expressions, provided that they have no side-
effects

• Example
context CreditCard
! inv: self.validFrom.isBefore(self.goodUntil)

15

CreditCard Date
1

validFrom

Boolean isBefore(Date)
1

goodUntil

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Enumeration Type

16

• Defined by UML class with stereotype
<<enumeration>>
• Literals: class::value

• Predefined operations
• =, <>

• Example
context Customer
! inv: self.myGender = Gender::male
 implies self.title = ‘Mr.’

<<enumeration>>
Gender

female
male

Customer
myGender: Gender
name: String
title: String

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

OCL Collections
• Collection is the abstract supertype of all collection

types in OCL: Set, Bag and Sequence.
• A Set is a mathematical set. It does not contain

duplicate elements.
• A Bag is like a set, but may contain duplicates (i.e., the

same element may be in a bag twice or more).
• A Sequence is like a bag in which the elements are

ordered. Both bags and sets have no order defined on
them.

• Operations on collections are applied using the “→”
operator

17

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Collection Examples
• Sets

• Set {1, 2, 5, 88}
• Set {‘apple’, ‘orange’, ‘strawberry’}

• Sequences
• Sequence {1, 3, 45, 2, 3}
• Sequence {1..10}

• Two identical bags
• Bag {1, 3, 45, 2, 3}
• Bag {1, 2, 3, 3, 45}

18

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Navigating UML Diagrams (1)
• It is possible to navigate over associations by using the

association role name, if it exists, or the corresponding
class name in lowercase letters

• If the multiplicity of the association end is 0..1 then the
expression results in an object (or oclVoid). However,
such an expression can be treated like it results in a set
as well.

• Example
context Person
! inv: self.wife→notEmpty() implies
 self.wife.gender = Gender::female

19

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Operations on Collections
• A collection operation never changes the collection

• but results in a new one!
• Operations

• Integer size()
• Boolean isEmpty()
• Boolean notEmpty()
• Integer count(Object o) : the number of occurrences of object o in the collection
• Boolean includes(Object o) : true if object o is an element of the collection
• Boolean includesAll(Collection c) :

• true if collection c is a subset of the current collection
• OCLAny any(boolean expression e):

• selects one object that satisfies the expression e at random
• SummableType sum() :

• calculates the sum of all elements (integer / real) in the collection
• Sequence sortedBy(expression) :

• produces a sorted sequence containing the elements of the original set

20

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Collection Operation Examples (1)

• context Person
inv: self.wife→notEmpty() implies
! ! self.wife.age ≥ 18
! and self.husband→notEmpty() implies
! ! self.husband.age ≥ 18

• context Company
inv: self.employee→size() ≤ 50

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Operations with Variant Meaning

• =
• True if all elements in the two collections are the same
• For two bags, the number of times an element is present must also be the same
• For two sequences, the order of elements must also be the same

• Collection union(Collection)
• Works also for combining bags and sequences

• Collection intersection(Collection)
• Works also for intersecting bags and sequences

• including(Object o)
• Returns new collection including object o
• For sets, the object is only added if it is not present in the set already
• For sequences, the object is added at the end

• excluding(Object o)
• Returns new collection where all occurrences of object o were removed

22

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Operations on Sets
• Set minus(Set s)

• The resulting set contains all elements that are in the current, but
not in the set s

• Set symmetricDifference(Set s)
• The resulting set contains all elements that are in the current or

the set s, but not in both

23

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Operations on Sequences
• Object first(), Object last()

• Returns the first, rsp. last element of the sequence
• Object at(Integer)

• Returns the element at the desired position
• Sequence append(Object o),

Sequence prepend(Object o)
• Return a new sequence where object o was added as the last, rsp.

first element of the sequence

24

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Iterate Over Collections
• Boolean exists(boolean expression) :

! true if expression is true for at least one element of the collection
• Boolean one(boolean expression) :

! true if expression is true for exactly one element of the collection
• Set select(boolean expression) :

! pick all objects for which the expression evaluates to true
• Set reject(boolean expression) :

! exclude all objects for which the expression evaluates to true
• Bag/Sequence collect(expression) :

! computes expression for each element, and puts all results in a bag
! (or in a sequence, if applied to a sequence)

• Boolean isUnique(expression) :
! true if expression is unique for each element

• Boolean forAll(boolean expression) :
! true if for all elements in the collection, expression is true

• OCLAny iterate(expression) :
! expression is evaluated for every element of the collection. The result
! depends on the expression

25

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Collection Operation Examples (2)

• context: EmploymentAgency
• self.person→collect(name)

• (shorthand: self.person.name)
• self.company→select(c: Company | c.budget > 100,000);
• self.person→select
! (p: Person ѣ p.name = ‘Jörg’ and
! p.employer.name = ‘McGill’);

26

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Automatic Flattening

• Collections are automatically flattened
• A collection never contains collections, only simple objects

• Example of identical sets
• Set { Set {1, 2}, Set {3, 4}, Set {5, 6} } =
• Set {1, 2, 3, 4, 5, 6}

• Converting between collections
• asSet() : transforms the collection into a set
• asBag() : transforms the collection into a bag
• asSequence() : transforms the collection into a sequence

27

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Navigating UML Diagrams (2)

• Single navigation results in a Set, combined
navigations in a Bag, and navigation over
associations annotated with {ordered} results in a
Sequence.

• Example
context EmploymentAgency
 inv : self.person.employer→size() self.company→size()

28

EmploymentAgency

Person Company
0..*1..*

employee employer
* *

What goes here?
=, <>, <, >?

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Navigating Association Classes

• Navigation from an object to association class
instances also uses the dot-operator
• p.job
• The above expression evaluates to all the jobs a person p has with the

companies that are his/her employer. Note that the name of the
association class, in lowercase, is used to show the role for navigation.

• It is also possible to start navigating from the
association class to linked objects:
context Job
! self.employer.budget ...
! self.employee.age ...

29

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Operations on Every OCL Type
• OclAny is the supertype of all OCL types
• Predefined operations

• =
• <>
• oclType() : get the OclType of the object

• It is then possible to access the meta-level of OCL, e.g. query the name, attributes,
associationEnds, operations, supertypes, instances of the type

• oclIsKindOf(OclType t) :
• true if the object is of type t or a subclass

• oclIsTypeOf(OclType t) :
• true if the object is of type t

• oclAsType(OclType t) :
• typecast the object to OclType t

• oclIsUndefined() :
• returns true if the argument is undefined

• Operations on (user-defined) classes
• .allInstances() : get the set of all the objects of a given class

30

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

IsKindOf Example

31

0..*
ingredientPie

ApplePie PeachPie

Fruit

Apple Peach

context ApplePie
 inv: self.ingredient→forAll(oclIsKindOf(Apple))

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

OCL Operator Precedence
• @pre
• dot and arrow operations: ‘.’ and ‘→’
• unary not and unary ‘-’
• ‘*’ and ‘/’
• ‘+’ and binary‘-’
• if ... then ... else ... endif
• ‘<’, ‘>’, ‘≤’, ‘≥’
• ‘=’, ‘<>’
• and, or and xor
• implies

32

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

• OCL is a typed language
• OclAny is the supertype of all OCL types

• Conformance rule
• Type1 conforms to Type2 if an instance of Type1 can be substituted at each

place where an instance of Type2 is expected.
• Works for identical types, subtypes

• Integer is a subtype of Real

• Collection(Type1) conforms to Collection(Type2),
iff Type1 conforms to Type2

• Sequences, Bags, and Sets do not conform to each other
• Example

• Set(ApplePie) conforms to Collection(ApplePie)
• Bag(ApplePie) does not conform to Set(ApplePie)

Conformance Rules

33

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

• If the type matching rules are not satisfied, an
OCL expression is erroneous, e.g. the parser will
output a conformance error

• Even if the type matching rules are satisfied,
there can be problems in the following cases
• There is a contradiction

e.g. the a constraint states self.age = 33 and self.age < 18
• An expression can yield an undefined value

Errors

34

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

• Some expressions, when evaluated, have an undefined value
• Examples

• Getting the first element of an empty collection
• An expression that dereferences an empty set and the expected result is not a set.

This case also includes dereferencing after navigation to an association end of
multiplicity 0..1 when there is no object having the role.

• There is an implicit “undefined value” for all types
• oclIsUndefined() is an operation on clanky that returns true if the argument is

undefined

• An expression where one of the parts is undefined is undefined
• Exceptions

• True or undefined
• False and undefined
• False implies undefined
• Undefined implies True

Undefined Expressions

35

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Let Expression

36

• Sometimes a sub-expression is used more than
once in an expression
• Declare a typed “Variable”

context Person
inv : let income : Integer = self.job.salary→sum() in
! if self.isUnemployed() then
! income < 100
! else
! income >= 100
! endif

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

OCL Functions
• A function may be used to encapsulate a

calculation.
• Functions have no side effects

“context” Class:: FunctionName
“(“ [ParameterList] “)” “:” TypeName
“post:” result = Expression “;”

• or
“context” Classname
“def:” FunctionName “(“ [ParameterList] “)” “:” TypeName = Expression “;”

• The expression must evaluate to a value of type
TypeName

37

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

OCL Function Example (1)
• A function that counts the number of female

employees for a given company

context Company::countFemEmployees() : Integer
post:
 result = self.employee→select
! (p | p.gender = Gender::female)→size()

38

Reserved word to refer to the
result of the operation

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

OCL Function Example (2)
• A function that calculates the sum of all the

salaries paid to employees

context EmploymentAgency
def sumOfSalaries(c : Company) : Real
 = c.job→collect(salary)→sum()

39

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Re Specification Phase Reminder

• Purpose
• To produce a complete, consistent, and unambiguous description of

• the problem domain and
• the functional requirements of the system.

• Models are produced, which describe
• Structural Properties

• Environment Model
• Defines the system’s interface, i.e. the boundaries of the system and the

operations that can be performed on the system.
• Concept Model

• Defines the static structure of the information in the system, i.e. the
concepts hat exist in the system, and the relationships between them

• Behavioural Properties (see next lecture)
• The models concentrate on describing what a system does, rather

than how it does it.

40

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Fondue Models: Requirements Spec.

41

Requirements Specification and Analysis Models

Environment Model

Protocol ModelOperation Model

Concept Model

UML Class Diagram,
describing the conceptual

state of the system

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Requirements Specification Process

42

• From Requirements Elicitation:
• Use Case Model
• Domain Model

1. Develop the Environment Model
• Identify actors, messages and system operations

2. Produce the Concept Model
• By adding the system boundary to the Domain Model

3. Develop the Protocol Model (next lecture)
4. Develop the Operation Model (next lecture)

• Update Concept Model if needed
5. Check the requirements models for consistency and

completeness

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Concept Model (1)
• The Concept Model contains the set of classes and

associations modelling the system’s conceptual state
• Classes and relationships from the Domain Model can specify concepts

belonging to the system itself, as well as to its environment.
• The Concept Model only contains the classes and relationships of the

Domain Model that relate to the system to be built.

• The Concept Model is built by delimiting in the Domain
Model what is inside of the system from what is
outside of it. The Concept Model is therefore formed
by excluding all the objects, classes and relationships
that belong exclusively to the environment.

43

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Concept Model (2)
• Actors, for example, belong to the environment.

Associations connecting them to the system correspond
to communication paths between actors and the system.
• When a class is outside of the system boundary, and if its instances interact

with the system, then these instances are in fact actors.

• If an association is in the Concept Model, then all
connected classes must also be in the model (well-
formed class model)
• Hence actors that interact with the system directly are included in the

Concept Model
• If everything is in the system, then the system is a

simulation model (no interaction with the environment).

44

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Concept Model (3)
• The Concept Model is a class diagram, where the

system is shown explicitly as a composite class
(stereotyped <<system>>) with a single instance, using
graphical nesting of all the entities belonging to the
system. As a consequence, all classes in the system get
an explicit multiplicity that shows the number of
instances within the system.

• Actors are modelled like classes belonging to the
environment, together with their multiplicity in the
environment, as viewed by the system.
• Associations (often unnamed) depict the flows of messages between the

system and the actors.

45

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Concept Model (4)
• Actors may be mirrored in the system by classes; this

happens especially when the system needs to record
state information about the actor.
• In order to send a message to an actor, for example, it is often necessary

to identify the actor using its representation in the system. Fondue defines
an association stereotype <<id>> that can be used, and only used, to
connect a class instance to an actor instance for this purpose. The
multiplicity of an <<id>> association is exactly 1 for the role of the actor.

46

<<system>>
Bank

Customer * 1

Client

*
1

<<id>>
Represents

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Concept Model (5)
• The Concept Model must contain all conceptual

system state needed in order to provide the
required system functionality
• Often, new concepts need to be added to the Concept Model once

the behavioural specification models (Operation Model) are being
developed

• The Concept Model should not contain state that is not needed to
provide the required system functionality

47

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Concept Model Example (1)

48

Employee

Manager Clerk

Bank
0..*
employee

Account Client

Transaction ATM

Owns
0..* 1

Manages TalksTo

Uses
0..* history
1..2

System Boundary

1

We’re developing the
software for one bank,
hence we don’t need to

include this concept

We want to store information
about clients, but clients also

interact with the system, hence
we need to split clients into two

separate concepts

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

<<system>>
Bank

Concept Model Example (2)

49

Account Customer

Transaction

Owns
0..* 1

0..* history
1..2

1

Client

*
1<<id>>

Clerk

*

Manager

*

ATM

*

**

* Calendar 1

We need to keep track of the
current date in order to

correctly initialize the date
fields of the Transaction class

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Concept Model Example (3)

50

Transaction
date: DateType
amount: Integer

Account
number: String
balance: Integer
interestRate: Integer

Customer
name: String
address: String

+ OCL Constraints, if needed

Calendar
currentDate: DateType

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Questions?

51

? ??
?

??

? ?
?

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

References
• [1] Jos Warmer and Anneke Kleppe:

The Object Constraint Language - Precise
Modeling with UML. Object Technology Series,
Addison Wesley, 1999.
ISBN 0-201-37940-6

• [2] Jos Warmer and Anneke Kleppe: The Object
Constraint Language, Second Edition - Getting
Your Models Ready for MDA. Object Technology
Series, Addison Wesley, 2003.
ISBN 0-321-17936-6

52

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Train Depot Questions (1)
• Develop a Domain Model that models the

following situation:
• A train is composed of train engines and cars.
• Train engines and cars have a certain weight (measured in steps

of 1 kg).
• A car has a current load and a maximum carrying capacity (also

measured in steps of 1 kg).
• Train engines can pull up to a certain amount of kg (traction).

53

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Train Depot Questions (2)
• Write the following constaints and functions in OCL:

(if your model already models that constraint, then just
write: “Is covered by model”)
1. The current load of a car cannot exceed its capacity.
2. The length of a train should not exceed 25 train units, i.e. cars or train engines.
3. Every train must have at least one train engine.
4. Write an OCL function that computes the total weight of an empty train (You do

not have to check that the train is empty).
5. Write an OCL function that computes the total traction strength of a train.
6. The total weight of a train plus the load in the cars cannot exceed the total

traction strength of the locomotives of the train. (You are allowed to use the
functions declared above.)

7. Write an OCL function that computes the available load of a train, respecting all
invariants mentioned above (i.e. enough room, engines are strong enough).
(You are allowed to use the functions declared above.)

54

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Library Domain Model

62

barcode
onReserve

BookCopy
name
email

Member

startDate
endDate

Loan

description
BookCategory

description
maxNumberBooks

MemberCategory

duration
LoanPeriod

bookOnHold
0..*

0..*
{ordered} requester

0..*
borrowedBook

0..1
currentHolder

0..*

1

1

0..*

0..* 0..*

title
Book

0..*

1

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Library OCL Question (1)
• Write the following constraints and functions in OCL:

(if your model already models that constraint, then just write: “Is
covered by model”)

1. A book cannot be borrowed by more than one member.
2. The number of books on loan for a given member does not exceed

the maximum number of books on loan allowed for his category.
3. A given member cannot be twice on the waiting list for the same

book.
4. A member is not allowed to place holds on more than 5 books in

each category.
5. Every book category must have a maximum length of loan period

defined for every member category.
6. A book that is on reserve can not be on loan.

63

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Library OCL Question (2)
1.Write a function that calculates, for a given member,

how long he is allowed to borrow a given book.
2.Write a function that calculates, for a given member,

when (date) he has to go to the library the next time
(because one of his books on loan has to be returned).

64

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Elevator Environment and Concept Model

• You are to devise the Environment Model and the
Concept Model for the Elevator system based on the Use
Case Model. Remember that:
• There is only one elevator cabin, which travels between the floors.
• There is a single button on each floor to call the lift.
• Inside the elevator cabin, there is a series of buttons, one for each floor.
• Requests are definitive, i.e., they cannot be cancelled, and they persist; thus

they should eventually be serviced.
• The arrival of the cabin at a floor is detected by a sensor.
• The system may ask the elevator to go up, go down or stop. In this example,

we assume that the elevator's braking distance is negligible.
• The system may ask the elevator to open its door. The system will receive a

notification when the door is closed. This simulates the activity of letting
people on and off at each floor.

• The door closes automatically after a predefined amount of time. However,
neither this function of the elevator nor the protection associated with the door
closing (stopping it from squashing people) are part of the system to realize.

69

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Take Lift Use Case (1)
Use Case: Take Lift
Scope: Elevator Control System
Level: User Goal
Intention in Context: The User intents to go from one floor to another.
Multiplicity: The System has a single lift cabin that may service many

users at any one time.
Primary Actor: User
Main Success Scenario:
1. User enters lift.
2. User exits lift at destination floor.
Extensions:
1a. User fails to enter lift; use case ends in failure.

70

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Enter Life Use Case (1)
Use Case: Enter Lift
Scope: Elevator Control System
Level: Subfunction
Intention in Context: The User intends to enter the cabin at a certain floor.
Primary Actor: User
Secondary Actors: Floor Sensor, Motor, Door
Main Success Scenario:
1. User requests System for lift;
2. System acknowledges request to User.
3. System requests Motor to go to source floor.
Step 4 is repeated until System determines that the source floor of the User has been reached
4. Floor Sensor informs System that lift has reached a certain floor.
5. System requests Motor to stop;
6. Motor informs System that lift is stopped.
7. System requests Door to open;
User enters lift at source floor.

71

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Enter Life Use Case (2)
Extensions:
3a. System determines that another request has priority:
 3a.1. System schedules the request; use case continues at

step 2.
3b. System determines that the cabin is already at the

requested floor. 3b.1a System determines that the door is
open; use case ends in success.

 3b.1b System determines that the door is closed; use case
continues at step 7.

72

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Exit Life Use Case (1)
Use Case: Enter Lift
Scope: Elevator Control System
Level: Subfunction
Intention in Context: The User intends to leave the cabin at a certain floor.
Primary Actor: User
Secondary Actors: Floor Sensor, Motor, Door
Main Success Scenario:
Steps 1 and 2 can happen in any order.
1. User requests System to go to a floor.
2. System acknowledges request to User.
3. Door informs System that it is closed.
4. System requests Motor to go to destination floor.
Step 5 is repeated until System determines that the destination floor of the User has been reached.
5. Floor Sensor informs System that lift has reached a certain floor.
6. System requests Motor to stop.
7. Motor informs System that lift is stopped.
8. System requests Door to open.
9. User exits lift at destination floor.

73

COMP-533 OCL and Concept Model © 2013 Jörg Kienzle

Extensions:
(3-5)||a. User requests System to go to a different floor;
 (3-5)||a.1 System schedules the request; use case continues

at the same step.
4a. System determines that another request has priority.
 4a.1. System schedules the request; use case continues at

step 4.
9a. System determines that there are additional requests

pending; use case continues at step 3.

Exit Lift Use Case (2)

74

