
COMP-533 Object-Orientation and Aspect-Orientation

Object-Orientation
and

Aspect-Orientation
Jörg Kienzle & Alfred Strohmeier

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Overview
• Object-Orientation

• Object
• Identity, State, Behaviour, Operations, Attributes
• Object Life Cycle
• Object Interface and Implementation

• Object Interactions
• Object System
• Class
• Type
• Generalization / Specialization (subtyping)
• Polymorphism

• Aspect-Orientation
• Shortcomings of Object-Orientation
• Aspect-Oriented Terminology
• Aspect-Oriented Programming Example: AspectJ

2

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Foundations of Object-Orientation

• Abstraction
• Extraction of essential properties while omitting inessential details.

• Information hiding (encapsulation)
• Separation of the external view from the internal details.
• Aspects that should not affect other parts of the system are made

inaccessible.
• Modularity

• Decomposition into a set of cohesive and loosely coupled units; i.e.
purposeful structuring.

• Classification
• Ability to group objects according to common properties.
• Ability for an object to belong to more than one classification.

3

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Object
• An object represents an individual, identifiable item,

unit, or entity, either real or conceptual, with a well-
defined role in the problem domain or in a system.

• In a computer-based system, an object may stand for
itself, e.g. a window or a menu item, or it may
represent, be a surrogate of, a real-world object, like a
person or a car.
• This distinction is not always clear-cut, see e.g. a bank account.

• When an object models a real-world entity, it is an
abstraction of this entity. What is essential and what is
accidental will depend on the application and system.

• A property is an inherent or distinctive characteristic,
trait, quality, or feature of an object.

4

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Object Examples
• The printer Neo, of type Phaser 4400N, made by

Xerox, located in room McConnell 322...
• Mr. Rich, business man, 42 years old, living in

Lausanne, Switzerland, married to Mrs.
Dufour, ...

• The bank account of Mr. Rich with the Swiss
Union Bank...

5

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Graphical Representation in UML

7

object name [: Class name]

paul : Person

: Person

lower case

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Properties of an Object

8

Object = Identity + State + Behaviour

identity

state
input message

output message

output message

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Object Identity
• Identity is the property that distinguishes an

object from all others
• It is always possible to distinguish

two objects, even if they have the
same state

• The identity of an object cannot be
changed
• The name or a reference should not be

confused with an object’s identity
• In a computer system, the identity of an object

may be implemented by its storage address, or a
special attribute

9

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

State and Behaviour
• The state of an object is its memory. Since an object

has a state, it takes up some amount of space, be it
in the physical world or in computer memory.

• The behaviour is how an object acts on its own
initiative and how it reacts to external stimuli, i.e.
events or messages, in terms of its state changes
and output messages.
• The behaviour of an object usually depends on its history; this time-

dependent behaviour is due to the existence of state within the object.
• State and behaviour are abstract concepts.

10

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Describing State and Behaviour

• An object
• is denoted by a name or a reference,
• has attributes,
• provides a set of operations.

• Data (state, attributes, structure) and operations
(services, functions, subprograms) are gathered
together in an object.

11

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Operations on Objects
• An operation is an action that an object

performs on its own initiative or upon request.
• The operations describe dynamic properties of

the object; they are part of its behaviour.
• Object operations are ultimately responsible

for providing the expected behaviour.
• The set of operations an object is able to

perform is called its protocol or, in UML, it’s
called its interface.

12

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Kind of Operations
• Constructors

• Create, build, and initialize an object

• Observers
• Retrieve information about the state of an object

• Modifiers
• Alter the state of an object

• Destructors
• Destroy an object

• Iterators (for objects that encapsulate a collection of
other objects)
• Access all parts of a composite object, and apply some action to each

of the parts

13

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Object Attributes
• Attributes describe static properties of an object; they

retrieve or hold information about the state of the object;
the information may be a data value or a link to another
object.

• A value is a characteristic that can be measured, or is
defined by agreement, and that has no existence by its
own, and therefore no identity.

• A value exists only when attached to an object, a
property of which it describes.

• The attributes of an object remain the same, but their
values may change.

14

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Attribute and Operation Examples

• Neo has already printed 5614 b/w pages. The
toner has to be replaced soon.

• Mr. Rich, business man, 42 years old, living in
Lausanne, Switzerland, married to Mrs.
Dufour, ...

• Mr. Rich has 36,880 CHF in his checking
account. It is time to transfer part of it to his
savings account.

15

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Computer-based Implementation

• The state of an object is implemented by data
fields or a data structure encapsulated in the
object.

• The operations are implemented by methods
(sometimes called subprograms, operation
bodies, etc.).

17

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Object Life Cycle
• An object has a life cycle:

• It is created,
• It lives and evolves,
• It is destroyed.

• The object keeps its identity during its whole life
cycle.

• During its life cycle, the state of the object may
change, the values of its attributes may change,
the effects of its operations may change, but the
set of operations it provides remain the same.

18

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Objects as Machines
• The existence of state within an object means

that the order in which operations are invoked is
important.

• Each object is like a tiny, independent machine.
• The behaviour of an object can be modelled in

terms of an equivalent finite state machine.

19

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Interface and Implementation (1)

• The interface of an object provides its outside
view. It comprises all methods applicable to the
object and may include fields as well. It
emphasizes the abstraction while hiding its
internal structure and the secrets of its internal
working.

• Abstraction allows us to write complex software
without having to know how parts of it actually
work.

20

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Interface and Implementation (2)

21

Interface

Possible
Implementations

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Object Interactions
• An object (client) may ask another object (server)

to provide a service by sending a message to it.
The message specifies:
• A destination: a reference to the server object
• A selector: the name of the service, operation or method to be

performed
• Parameters: additional information needed for specifying the

request or for performing the service, including returning results.

22

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Object Interaction Examples

• Mr. Rich withdraws one million dollars from his
account with the Swiss Union Bank

• A car driver may:
• Speed up,
• Consult the speedometer,
• Turn right by 30 degrees, etc.

23

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

UML Communication Diagram

24

client server

subscriber

postman

mailbox

: Customer : Grocer

interpreter keyboard

interpreter keyboard

message() 1. buy

2. pay

2. letter := pickup()

1. drop(letter)

character := read()

insert(character)

synchronous

asynchronous

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Object System (1)
• An object system or an object-oriented model is

composed of:
• a set of objects,
• interactions between these objects.

• The dynamics of the object system is determined
by its behaviour at run-time: the operations
performed by the objects, the ordering of these
operations, the interactions between objects, etc.

• The structure of communication between objects
is flat, i.e. a network.

25

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Object System (2)

26

o1

o3

o2

o4

o5

m1() 1. m2()

2. m4()

1.1 m3()

m5() 1. m6()

1.1 m7() 1.2 m3()

identity

state
input message

output message

output message

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Class (1)
• A class groups objects in such a way that:

• the similarities can be promoted,
• and the differences ignored.

• Whereas an object is a concrete entity that exists in time
and space, a class represents only an abstraction, the
“essence” of an object, as it were.

• A class can be made of all the objects having the same
internal structure, or a similar internal structure, and the
same behaviour, or a similar behaviour.

• A class can be made of all the objects having the same
attributes and providing the same operations, or having
similar attributes and providing a similar set of operations.

27

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Class (2)
• The concept of a class has an economic interest

• During analysis and design, instead of describing each object
individually, it suffice to describe their classes.

• During implementation, the implementation of a class can be
shared by all its objects.

• A class is a template from which objects can be
instantiated, i.e. created. We also say that an
object is an instance of a class.

• Notice that the identity and the state belong to
each individual object.

28

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Class Examples (1)
• Despite differences between individual objects,

all are trees

29

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Class Examples (2)
• The printer Neo, of type Phaser 4400N,

made by Xerox, located in room McConnell
322 …

• Mr. Rich, business man, 42 years old,
living in Zug, Switzerland, married with
Mrs. Dufour, ...

• The bank account of Mr. Rich with the
Swiss Union Bank...

30

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

UML Representation of a Class

32

Class name
attributes

operations

Person
firstname
lastname
birthdate
askQuestion(q)
hire()

upper case

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Intension and Extension (1)
• There are two distinct possible views of a class:

• Intension of a class
• The set of properties shared by all objects defines the meaning of the

grouping. The class is a template from which objects can be created
(instantiated).

• Extension of a class
• The set of all objects belonging to a class denotes a population. The

class is a collection of objects (instances).

33

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Intension and Extension (2)

34

Person
firstname
lastname
birthdate
askQuestion(q)
hire()

julie : Person
laura : Person
isabelle : Person

mira : Person
enya : Person

fox : Person

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Class Instances
• The instances of a class can be shown in a table,

the columns correspond to attribute values

35

Professor
name
subject

Class notation,
showing its intension

Class table,
showing a possible extension

ProfessorProfessor
name subject

Martin Robillard
Doina Precup
Luc Devroye
Bruce Reed

Software Evolution
Machine Learning
Algorithms
Percolation

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Class Interface
• The interface of a class is the same as the interface of

its instances.
• The interface of a class captures its outside view,

encompassing the abstraction of the behaviour
common to all instances of the class, while hiding their
internal structure and the secrets of their internal
working.

• The interface of a class comprises all operations
applicable to its instances; it may also include object
attributes, and other entities needed to complete the
abstraction.

36

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Class Implementation
• The implementation of a class is its inside view, which

encompasses the secrets of its behaviour.
• The implementation of a class comprises the mechanisms used

to store the state of an instance, as well as the mechanisms
used to achieve the behaviour of an instance.

• The implementation of a class primarily consists of the definition
of the internal data structure of its instances and of the
implementation of all of the operations defined in the interface of
the class.

• Each instance has its identity and carries its state, conforming to
the data structure defined by its class. When asked to perform
an operation, the implementation provided by the class is used.

37

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Class Interface and Implementation

38

Person
firstname
lastname
birthdate
askQuestion(String)
hire()

void hire() {
 ...
}

attributes

operations

interface implementation

code

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Typical Execution Environment

39

Person
firstname
lastname
birthdate
askQuestion(String)
hire()

void hire() {
 ...
}

hire()

enya : Person

“Enya”
“Kienzle”
2.3.2010

fox : Person

“Fox”
“Kienzle”
2.3.2010

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Interface of a Bank Account
class Account is

! operation Create (Money initial)
! ! precondition: initial > 0.0
! ! postcondition: balance = initial

! operation Deposit (Money amount)
! ! precondition: amount > 0.0
! ! postcondition: balance = old balance + amount

! operation Withdraw (Money amount)
! ! precondition: balance >= amount
! ! postcondition: balance = old balance - amount

private

attribute Money balance

invariant

balance > 0.0

end class Account

40

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Classes As Objects
• A class can be considered itself as an object.
• A class has sometimes a state; the

corresponding attributes are called “class
variables” in contrast to “instance variables.”
• For example, a class can keep track of the number of times it is

instantiated using a class variable
• A class may also provide “book-keeping”

operations for handling its instances, e.g. for
creating and destroying an instance.

41

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Type
• A type is a precise characterization of structural and

behavioral properties which a collection of entities all share.
• Notice that following this definition, events, methods,

subprograms and modules, e.g., may have a type.
• If the entities are objects, then a type and a class are very

similar.
• The concept of a type places a different emphasis upon the

meaning of abstraction.
• Typing is the enforcement of the rule that entities of different

types may not be interchanged, or at the most, may be
interchanged only in very restricted ways.

42

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Generalization (1)
• There may be a partial ordering between

classes:
• All objects in class S have all the properties of class T
• S may have additional properties

• The class S is then said to be a subclass of class
T, which is its parent class or superclass

• The relationship between the two classes is
called generalization-specialization, subtyping, or
inheritance

43

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Generalization Examples
• The printer Neo, of type Phaser 4400N, made by

Xerox, located in room McConnell 322...
• Printer has the subclasses: laser printer, ink-jet printer, daisy printer,

etc.

• Mr. Rich, business man, 42 years old, living in
Lausanne, Switzerland, married with Mrs. Dufour, ...
• Person has the subclasses man and woman.

• The bank account of Mr. Rich with the Swiss Union
Bank...
• Bank account has the subclasses: checking account, savings account,

fixed term deposit, etc.

44

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Generalization-Specialization in UML

46

Clock
currentTime

Watch
shortHand
longHand

Chronograph
startTime
stopTime

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Generalization Comments
• As defined, generalization-specialization is a concept

too general to be operational. Here are some more
concrete possible definitions:
• Principle of substitutability: S is a subclass of T, if and only if any instance of

T can be substituted by an instance of S, without any visible effect
• The objects of the subclass have all the attributes and operations of the

superclass (and perhaps others)

• Substitutability is important for reasoning.
• Inheritance in object-oriented programming languages

does not always enforce this property. Generalization
therefore corresponds to a restricted use of inheritance.

47

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Generalization Partitioning
• The subclasses may partition the superclass: an

object belongs to exactly one of the subclasses.
• The subclasses may also overlap, and some

superclass objects may not belong to any of the
subclasses.

48

Person

Woman Man

Athlete

Swimmer Skater

{complete, disjoint} {incomplete, overlapping}

UML default is incomplete, disjoint

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Generalization vs. Constraints

• A parallelogram is a quadrilateral having parallel
opposite sides of equal length. A parallelogram with
a right angle is a rectangle. A parallelogram having
the four sides of equal length is a rhombus. A
square is a rhombus with a right angle, or a
rectangle having all sides of equal length.

• These statements express constraints!
• The subclasses don’t really have additional properties (features), but

rather satisfy additional constraints.
• Becomes clear when thinking about operations: e.g., a rectangle can be

stretched, but not a square (without making it a rectangle).
• Don’t use generalization / specialization to model constraints like

these!

49

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Multiple Specialization (1)
• Multiple specialization allows a subclass to be

defined as a specialization of several immediate
superclasses.

• The subclass inherits the attributes, operations
and associations of all its superclasses.

• Multiple specialization becomes a problem when
two or several superclasses have a common
ancestor class (diamond-shaped inheritance).

50

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

• A trainee is both a staff member and a student.
• As a staff member, a trainee gets a salary, and as a

student, s/he gets a grade.
• A trainee has two

IDs, a staff ID and
student ID.
Correct?

Multiple Specialization (2)

51

Staff
id
salary

Professor
researchArea

Trainee

Student
id

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Multiple Specialization (3)
• Are the attributes inherited

from the common ancestor
duplicated, i.e. does the
stopwatch have two
time attributes?

52

Clock
currentTime

Watch
shortHand
longHand

Chronograph
startTime
stopTime

StopWatch

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Polymorphism (1)
• Polymorphism is the ability of several classes of

objects to respond to the same message in a
similar way.

• The message sender does not need to know the
specific class of the receiver - only that the
semantics of the message will remain the same
across many similar classes.
• Again, OO languages typically do not enforce preservation of

semantics for overridden methods.

53

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Polymorphism Example (1)
• A payroll system typically will process all employees one after

another.
• Suppose there are two kinds of employee: regular or hourly. Each

has its own way of computing its pay.
• The payroll system simply sends the computePay message to

each employee in turn, and the employee takes care of
computing its own pay according to the implementation of the
operation.

• If a new kind of employees comes along, such as a contract
worker, it would have its own way of computing its pay. This new
employee could be mixed in with all other employees, and the
payroll system will not have to be modified to account for this new
employee type.

54

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Polymorphism Example (2)

55

Employee

RegularEmployee HourlyEmployee

computePay

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Polymorphism (3)

56

Employee

computePay()
1* s := e*.computePay()

e2 : HourlyEmployee

e1 : RegularEmployee e3 : RegularEmployee e4 : RegularEmployee

e5 : HourlyEmployee

RegularEmployee

computePay() float computePay() {
 ...
}

HourlyEmployee

computePay() float computePay() {
 ...
}

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

O-O Summary (1)
• Object-orientation is based on old principles

• Abstraction
• Information hiding and encapsulation
• Modularity
• Classification

• Object-orientation is based on a few concepts
• Object

• Groups together state and behaviour
• Class
• Inheritance
• Polymorphism

57

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Traditional (non-OO) Systems

• Conventional approaches distinguish between
operations and data, and generally emphasize one
or the other in their decomposition of the problem.

• Structured Analysis & Design
• Focuses on operations (functions) first, deriving the data structures as

a secondary activity. The value is in the functionality. The data are
prepared in a form suitable for processing.

• Information Engineering
• Places a higher priority on data, and drives the development from the

perspective of the data to be managed. The data are the main value.
Algorithms are trivial as long as all data are available.

• Global data structures shared among modules

58

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

OO Summary (2)
• An object system or object-oriented model is

composed of:
• a set of objects,
• interactions between these objects.

• An object combines both operations and data.
• The object implementations are hidden behind

stable interfaces.
• Any change to a data structure only affects the

object that encapsulates it.

59

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Why Object-Orientation?
• Software development is a complex task.
• There is a gap between the problem domain and

its computerized support system.
• Humans naturally apply an object-oriented view

to the world. Objects are more natural than
functions or data.

• An object-oriented model bridges the gap
between a problem domain and its software
solution.

60

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Object-Orientation and SE
• Object-Orientation stems from object-oriented

programming, but can be applied within the whole
software development life cycle
• Requirements Elicitation and Specification
• Design
• Implementation
• Testing

• Object-Orientation is a way of thinking about problems
using models organized by real-world entities

• Object-Orientation is an engineering method used to
create a representation of the problem domain and
map it into a software solution

61

Experience has
shown that OO

alone is not enough!

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Introduction to Aspect-Orientation

• Object-Orientated Software Development
• Decompose problem into a set of abstractions / objects
• Objects encapsulate state and behavior
• Are assigned responsibilities

• “Tyranny of the dominant decomposition” [T+99]
• Result:

• Similar / identical code-fragments,
all implementing some common
functionality, are often scattered
through the code

• Within a class, and even within a
method, code implementing
different concerns is tangled

62

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Object-Oriented Decomposition

63

3 Crosscutting Concerns
(Aspect 1, Aspect 2, Aspect 3)

Concern A Concern B Concern C

Scattering

Tangling

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Object-Oriented Bank Application
class Bank {

 void transfer(Account a, Account b) {
 a.withdraw(100);
 b.deposit(100);
 }
}

class Account {

 int balance;

 void withdraw(int amount) {
 balance -= amount;
 }

 void deposit(int amount) {
 balance += amount;
 }
}

64

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

O-O Bank with Security
class Bank {

 void transfer(Account a, Account b) {
 a.authorize();
 a.withdraw(100);
 b.authorize();
 b.deposit(100);
 }
}

class Account {

 int balance;
 boolean authorized = false;
 int PIN = ...;

 public void withdraw(int amount) {
 if (!authorized)
 throw new SecurityException();
 else
 balance -= amount;
 authorized = false;
 }

 public void deposit(int amount) {
 if (!authorized)
 throw new SecurityException();
 else
 balance += amount;
 authorized = false;
 }

 public void authorize() {
 p = GUI.askForPIN();
 if (p == PIN) authorized = true;
 }
}

65

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

O-O Bank with Security
class Bank {

 void transfer(Account a, Account b) {
 a.authorize();
 a.withdraw(100);
 b.authorize();
 b.deposit(100);
 }
}

class Account {

 int balance;
 boolean authorized = false;
 int PIN = ...;

 public void withdraw(int amount) {
 if (!authorized)
 throw new SecurityException();
 else
 balance -= amount;
 authorized = false;
 }

 public void deposit(int amount) {
 if (!authorized)
 throw new SecurityException();
 else
 balance += amount;
 authorized = false;
 }

 public void authorize() {
 p = GUI.askForPIN();
 if (p == PIN) authorize = true;
 }
}

66

The security concern
crosscuts the modules
created by the object-

oriented decomposition

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Aspect-Orientation
• Aspect-oriented software development (AOSD)

techniques aim to provide systematic means for
the identification, separation, representation and
composition of crosscutting concerns

67

Source

Target Module A Module B Module C Module D

Aspect X Aspect Y Aspect Z

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Essence of Aspect-Orientation

68

(each aspect contains a composition rule that
defines how it is combined with other concerns)

Without Aspects With Aspects

3 Crosscutting Concerns
(Aspect 1, Aspect 2, Aspect 3)

Concern A Concern B Concern C

Scattering

Tangling

Concern A

Concern B

Concern C

Aspect 1

Aspect 2

Aspect 3

Aspectual
Properties

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

AO Terminology: Weaving
• Mapping (transformation) from a source

representation to a target representation

69

Source

Target Module A Module B Module C Module D

Aspect X Aspect Y Aspect Z

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

AO Terminology: Scattering

• A source module is scattered in a target
representation if part of it ends up in many target
modules

70

Source

Target Module A Module B Module C Module D

Aspect X Aspect Y Aspect Z

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

AO Terminology: Tangling
• A target module is tangled if it is composed of

parts of several source modules

71

Source

Target Module A Module B Module C Module D

Aspect X Aspect Y Aspect Z

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Crosscutting
• X crosscuts Y iff X is scattered in the target

representation, and there exists a module in the
target within which X and Y are tangled

72

Source

Target Module A Module B Module C Module D

Aspect X Aspect Y Aspect Z

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Asymmetric AO
• Well-identified base elements do not (and are not

allowed to) crosscut

73

Source

Aspects

Target

Aspect X Aspect Y Module A Module B
Source

Base
Module C

Module A Module B Module C

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Aspect-Orientation History
• Initial Paper in 1997 by Kiczales et al. at ECOOP on

aspect-oriented programming (AOP)
• First International Conference on Aspect-Oriented

Software Development (AOSD) in 2002
• Today Researchers work on Aspects at all phases of

software development
• “Early Aspects” (Aspects in Requirements)
• Aspect-Oriented Modeling
• Aspect-Oriented Programming
• SPLAT, FOAL, AOM, ADI Workshops

• Industry Adoption
• Siemens / Motorolla / IBM

74

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Aspect-Oriented Programming

• Provide new modularization features at the programming
language level that allow to modularize crosscutting concerns

• Modules implementing crosscutting functionality are
called aspects
• Aspects encapsulate crosscutting state and behavior

• Aspects are woven together to create final executed code
• Weaving happens at so-called joinpoints
• Benefits:

• Simpler structure, improve readability, customizability and reuse
• Current main-stream aspect languages:

• AspectJ (www.eclipse.org/aspectj), AspectC#, AspectC++,
AspectC

75

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

AspectJ
• Aspect-Oriented extension of Java
• Pointcuts

• Make it possible to name a set of joinpoints, e.g. method calls,
setting or getting field values, etc.

• Advice
• Specify behavior at joinpoints

• Introduction
• Add fields / methods to classes

• Aspects
• Group together pointcuts, advice and introductions

76

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

AspectJ Joinpoints (1)
• Joinpoints are identified using pointcut designators
• Methods and constructors

• call(Signature), execution(Signature), initialization(Signature)
• Example:

call(public * Account.get*(..))
• Exeption handling

• handler(TypePattern)
• Example: handler(TransactionException+)

• Field accesses
• get(Signature), set(Signature)
• Example: get(private * Account+.*)

77

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

AspectJ Joinpoints (2)
• Objects

• this(TypePattern), target(TypePattern), args(TypePattern, …)
• Example:

call(public * Account.get*(..)) && this(AccountManager)

• Lexical extent
• within(TypePattern), withincode(Signature)
• Example:

call(public * Account.get*(..)) &&
withincode(public void AccountManager.transfer())

• Based on control flow
• cflow(Pointcut), cflowbelow(Pointcut)
• Example:
• cflow(public void AccountManager.transfer()) && call(public * Account.get*(..))

78

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

AspectJ Joinpoints (3)
• Conditional

• if(Expression)
• Example:

if(debugEnabled) &&
call (public * Account.*(..))

• Combination
• !, &&, || and ()

79

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

AspectJ Pointcuts
• Pointcuts group together a set of joinpoints, and

can pass on values from the execution context
• Examples:

pointcut PublicCallsToAccount(Account a) :
call(public * Account.*(..)) && target(a);

pointcut SettingIntegerFields(int
newValue) :
set(* int Account.*) && args(newValue);

80

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

AspectJ Advice
• Add behavior before, after or around a joinpoint
• Example:

around PublicCallsToAccount(Account a) {
 if (a.blocked) {
 throw new AccountBlockedException();
 } else {
 proceed();
 }
}

81

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

AspectJ Introduction
• Even the account class does not provide the “block”

functionality, we can add it through introduction
• Example:
private boolean Account.blocked = false;
public void Account.block() {
 blocked = true;
}
public void Account.unblock() {
 blocked = false;
}

82

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

AspectJ Aspects
• Aspects group everything relevant for implementing a particular

concern

83

public aspect BlockableAccounts {
! pointcut PublicCallsToAccount (Account a) :
! call(public * Account.*(..)) && target(a);
! private boolean Account.blocked = false;
! public void Account.block() {
 !blocked = true;
! }
around PublicCallsToAccount(Account a) {
 if (a.blocked) {
 throw new AccountBlockedException();
 } else {
 proceed();
 }
}

}

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Aspect-Oriented Bank with Security

class Bank {

 void transfer(Account a, Account b) {
 a.withdraw(100);
 b.deposit(100);
 }
}

class Account {

 int balance;

 public void withdraw(int amount) {
 balance -= amount;
 }

 public void deposit(int amount) {
 balance += amount;
 }
}

aspect AccountSecurity {
 boolean Account.authorized = false;

 int Account.PIN = ...;

 void Account.authorize() {
 p = GUI.askForPIN();
 if (p == PIN) authorize = true;
 }

 before (call public * Account+.*(..)
 && target(currentAccount)) {

 if (!currentAccount.authorized)
 throw new SecurityException();

 }

 after (call public * Account+.*(..)
 && target(currentAccount)) {

 currentAccount.authorized = false;
}

84

The security concern is nicely modularized
within the AccountSecurity aspect

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Advanced AspectJ
• Abstract aspects and pointcuts
• Implementing interfaces / inheritance

• declare parents : Account implements Blockable;
• declare parents : Point extends GeometricObject;

• Compile-time checking, e.g. for verifying
programming conventions
• declare error : Pointcut : String;
• declare warning : Pointcut : String;

• Reflective access to run-time information through
the static thisJoinPoint variable

85

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

AspectJ: How to Get Started

• http://www.eclipse.org/aspectj/
or http://www.aspectbench.org

• AspectJ plug-ins exist for
• Eclipse
• Emacs
• Sun Forte
• JBuilder

• Version 1.0: Compile-time weaving
Version 1.1: Byte-code weaving
Current version: AspectJ 1.7.3 supports Java 1.7

86

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Questions?

87

? ??
?

??

? ?
?

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Homework
• Savings Account Interface
• Extension or Intension
• Professors and Students
• ETR 407
• Reflection on Aspects

88

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Interface Question
• Find interface attributes for a savings account.

• Find interface operations for a savings account.

89

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Extension or Intension Question

• For each statement, say if it is about the
“intension” or the “extension” of a class, attribute
or operation.
• A professor has a name and teaches a subject.
• Jörg is a professor.
• He teaches software engineering.
• Yesterday, he asked John, a junior student, to explain the

difference between the extension and the intension of a class.
• Since John is a clever student, he was able to answer the

question.

91

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Professors and Students Question

• Professors can ask students questions.
1. What are the consequences for the interfaces of the classes

Professor and Student? Sketch these interfaces using your
favourite object-oriented programming language.

2. Show on an example how professor Jörg can ask the student
John a question.

93

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

ETR Question
Find classes, objects and attributes in the following description:

The 407 Express Toll Route is a highway that runs east-west
just north of Toronto, and was one of the largest road
construction projects in the history of Canada. The road uses
a highly modern Electronic Toll Collection (ETC) system
constructed by Raytheon.
The ETR technology allows motorists to pass through toll routes without stopping or
even opening a window. To make this happen, each highway entry and exit point is
equipped with a gantry.

The most cost-efficient way to pay for highway use is to open an
account with the 407 ETR system. Registered vehicles require a
small electronic tag, called a transponder, to be attached to the
windshield behind the rear-view mirror. Transponders are leased
for a small monthly fee. The registration includes the owner's
personal data, and vehicle details.

95

COMP-533 Object-Orientation and Aspect-Orientation © 2013 Jörg Kienzle

Reflection on Aspects
• Among the following concerns relevant in the

context of an on-line store, determine which ones
are likely to be aspects
• Placing an order
• Security
• Keeping inventory
• Sending receipts by email
• Finding the cheapest way to ship the goods to the customer
• Error handling
• Web interface
• Fault tolerance
• Notifying a customer that the goods have shipped

97

