
COMP-533 Behavioural Design

Behavioural Design

Jörg Kienzle & Alfred Strohmeier

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Behavioural Design Overview

• Purpose and Process of Design!
• Interaction Model!

• Communication Diagrams!
• Sequence Diagrams!
• Messages!
• Multi-objects!
• Object Lifetime!
• Process

�2

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Design Purpose
• Develop a system architecture that satisfies the

requirements defined in the requirements
specification phase!

• The designer chooses how the system operations
are to be implemented by interacting objects at run-
time!
• Different ways of breaking up a system operation into interactions can/

should be tried!

• The operations are attached to classes!
• Provide the foundation for implementation, testing,

and maintenance

�3

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Design Models

Interaction Model

Design Class Model Inheritance Model

Dependency Model

Fondue Models: Design

�4

UML Communication Diagram or UML
Sequence Diagram, describing how objects
interact to implement system functionality

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Design Models
• Interaction Model!

• The Interaction Model shows how objects interact at run-time to support
the functionality specified in the Operation Model.!

• Dependency Model!
• The Dependency Model describes dependencies between classes and

communication paths between interacting objects.!

• Inheritance Model!
• The Inheritance Model describes the superclass/subclass inheritance

design structure.!

• Design Class Model!
• The Design Class Model is composed of the contents of all design

classes, i.e. their (value) attributes and methods, all the navigable
associations between design classes, and the inheritance structure.

�5

Describes the Complete System Behaviour

Describes the Complete System Structure

COMP-533 Behavioural Design © 2013 Jörg Kienzle

The Design Process in a Nutshell

5.Develop the Interaction Model!
1.Develop communication diagrams for all System Operations!
2.Derive a consistent architecture assigning responsibilities to classes!
3.Revise the communication diagrams, yielding the Interaction Model!

6.Develop the Dependency Model based on the Interaction Model!
1.All communication designed in the Interaction Model result in

dependencies!
7.Develop the Design Class Model!

1.Develop a first version of the Design Class Model based on the
Interaction Model!

2.Factor out common properties of classes and build the Inheritance
Model!

3.Update and build the final Design Class Model

�6

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Interaction Model (1)
• An operation schema declaratively specifies the

behaviour of an operation by defining its effect in
terms of the change in conceptual system state and
the output messages.!

• The purpose of design is to build the object
messaging structures that realize the abstract
definition of behaviour as stated in the operation
schema.!

• A communication diagram (or sequence diagram) is
constructed for each system operation.!
• The communication diagram shows what objects are involved in the

computation and how these objects communicate to satisfy the functional
specification.!

• All communication diagrams together form the Interaction Model.

�7

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Interaction Model (2)
• Communication diagrams are developed

incrementally for each system operation.!
• The goal is to distribute the functional behaviour

across classes in the system.!
• Recall that requirements specification classes do not have a

method interface, whereas design classes do.!
• As design develops, the interface of classes in

the system evolves. !
• During design, responsibilities are assigned to classes, which

determines what operations a class should provide.!
• Hierarchical decomposition may be applied to operations.

�8

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Communication Diagram (1)
• A communication diagram is a collection of boxes that are linked

by lines and message arrows.!
• A box represents a design object, or more precisely a role

played by a design object.!
• An arrow represents an operation invocation. A message is sent

by a sender or client to a receiver or server.!
• Only one arrow has no sender. It corresponds to the system operation or method whose

realization is shown by the communication diagram.!
• The design object associated with the system operation is called

the controller object.!
• The other boxes are collaborators.!
• The graph is connected: all boxes can be reached by traversing

a path starting at the controller.

�9

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Roles
• A role is not an individual object, but a

description of an object that may play a part in a
collaboration instance!
• Each time the collaboration is instantiated, a different set of objects

play the roles!
• The same object may play different roles in different collaborations!
• A role can be unnamed

�10

: Company seller : Company

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Messages (1)
• A message conveys information from one object, the

sender, to another, the receiver, to trigger some activity.!
• All messages represent synchronous operation

invocations, i.e. the sender object waits until the
operation execution on the receiver object is complete!

• Because it is a call, actual parameters are shown!
• Except for the operation realized by the communication diagram, for which

formal parameters are shown. 
 
 
 

�11

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Messages (2)
call ::= label decor [“*”] [return-value-list “:=“] 
! messagename “(“ argument-list “)”!
label ::= integer {“.” integer} [name]!

• A Dewey number shows ordering and nesting. !
• A name is used to show concurrent threads.!

decor ::= “ ’ ” one or several ticks to show a choice!
“*” ::= the message is sent repeatedly.!
return-value-list ::= name {“,” name}!

• The names are actuals for returned entities.!

argument-list ::= expression {“,” expression}!
• The expressions in the argument list are actual parameters. An expression may

use return values of previous messages and attributes of “known” objects.!
!

�12

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Message Syntax
• Messages can be labeled by Dewey decimal numbers to

show sequencing: 1, 1.1, 1.2, 1.2.1, 1.2.2, 1.3, 2, 3, etc.!
• All method calls at a lower level have to complete before

the control is returned to the enclosing method: 1.1, 1.2,
1.3, etc. must complete before control is returned from 1. !

• The same number for two messages means that there is
no imposed order, or that the order is not shown.!

• Ticks or other decorations show exclusive choices: either 3
or 3’ or 3’’. Note that the choice condition is not shown.!

• Names show concurrent threads; 4ta concurrently with 4tb.!
• A star shows repetition: 3*

�13

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Message Examples
• 2: display (x, y)! ! -- simple message!
• 1.3.1: p := find (pName)! -- nested call with return value!
• 3.1*: update()! ! ! -- iteration!
• 2.1: printReceipt (amount)! -- same Dewey number!
• 2.1: deliverCash (amount)! -- means “in any order”.!
• 2.1ta: printReceipt (amount) -- it is also possible to show!
• 2.1tb: deliverCash (amount)! -- “in any order” by threads.!
• 2.1’: insufficientFunds ! -- either one,!
• 2.1’’: deliverCash (amount)! -- shown by a décor. 
 
 
 
 

�14

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Communication Diagram Example (1)

• Communication diagram for system operation secure!
• The controller of the operation is a Directory object.!
• The File object f collaborates to perform the operation secure.!
• The Directory object may send a message changeMode to the file, with the actual

parameter noRead.

�15

: Directory f : File
secure(fn : FileName)

1. f := find(fn)

2’. changeMode(noRead)

• The Directory class has an operation
• find(name: FileName) : File

• The File class has an operation
• changeMode(Mode), where Mode is an enum that includes the value noRead

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Pseudo Code
• It is often useful to complement a communication diagram with

pseudo-code, showing not only message passing, but also
internal processing and the conditions controlling conditional
message passing and iterations.!
 
operation Directory::secure(fn: FileName) : File 
! f: File;  
begin  
! f := find(fn); 
! if f /= null then 
! ! f.changeMode(noRead); 
! end if; 
end secure;

�16

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Message Sequencing Example

�17

myArea : DrawingArea

horizontal : Scrollbar

vertical : Scrollbar

myBorder: Border

myTitle: TitleBar

: View
resize(scale: Float)

1: resizeArea(scale)
2: h, w := getDimensions()

3: setDimensions(w,h)

3.1: setWidth(w)

3.1: setHeight(h)

3.1: setWidth(w)

COMP-533 Behavioural Design © 2013 Jörg Kienzle

“Many” Role
• It is possible to have a named role with multiplicity

many, denoted by a star.!
• The role then denotes a collection of objects, but the message is sent

to the collection members, rather than to the collection as a unity!
• The method is therefore part of the interface of the member class!

• Note that the collection can change with every instantiation of the
collaboration.

�18

: Directory
secureAll() 1*: changeMode(noRead)

 : File *

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Multiobjects (1)
• A role which denotes a collection of objects, rather than

a single object, is called a multiobject.!
• A multiobject is used within a collaboration to show

operations that address the entire collection of objects
as a unit.!
• The name of the role is that of the collection, but the class name is that of the

elements.!
• The message is part of the interface of the collection, and not of the interface of its

members.

�19

socsStaff: ProfessorsocsStaff: Professor

COMP-533 Behavioural Design © 2013 Jörg Kienzle

contents : File

Multiobject Examples

�20

: Directory contents : File
list() 1: sort()

contents : File: Directory contents : File
addFile(f: File) 1: addElement(f)

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Multiobjects and Role Many
• A multiobject may in turn send a message. Such a message

is sent by the collection.!
• Every object in a role of multiplicity many can in turn send a

message.

�21

: Directory
1: remove(fn: FileName)

contents : File

1.1’: print(fn + “not found”)

: Displaycontents : File

: Directory
1*: printName()

f : File : Printer*
1.1: print(f.name)

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Multiobjects (2)
• To perform an operation on each object in a

collection of objects requires two messages: an
iteration on the multiobject to extract links to the
individual objects, then a message sent to each
object using the temporary link. !

• This process is elided on a diagram by combining
the messages into one that includes an iteration
and an application on each object. The target role
name takes a many indicator “*” to show that
many links are implied.

�22

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Multiobjects (3)

�23

: Directory
3*: changeMode(noRead)

f : File *

3*: current := next()
contents : Filecontents : File

3*: changeMode(noRead)
current : File

: Directory

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Multiobjects (4)

�24

: Directory
3*: changeMode(noRead)

f : File *

: Directory

3: iterate(changeMode(noRead))

contents : Filecontents : File

3.1*: changeMode(noRead)

current : File

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Lifetime of Objects
• Objects without a keyword exist when the

operation begins and still exist when it completes!
• Objects created during execution are designated

as {new}, those destroyed as {destroyed}, and
those created and then destroyed as {transient}

�25

: Queue s: Slot {new}
addSlot(v: Value) 1: s := create(v)

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Process: Identify Relevant Objects

• The operation schema is used as a starting point.!
• The parameter list, the Scope and New clauses provide

objects and classes “used” by the system operation.!
• For each output message, a mechanism must be

devised that implements the communication with the
environment.!
• At least one object must be introduced to deal with the interface to the

receiving actor.!

• It is often necessary to introduce new objects to
represent abstractions of computational mechanisms
not identified in the concept model.

�26

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Interaction Model Example (1)
Operation: ! Bank::openAccount (c: Customer);!
Description:! A clerk opens an account for a client;!
Scope: Account, Customer, Owns;!
Messages: Clerk::{AccountNumber;};!
New: ! newAccount: Account;!
Pre:! true;!
Post: ! newAccount.oclIsNew() & 
! ! newAccount.balance = 0 & 
! ! self.account.number@pre→excludes 
! ! ! (newAccount.number) & 
! ! c.account→includes(newAccount) & 
! ! sender^accountNumber(newAccount.number);

�27

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Interaction Model Example (2)

• Relevant Objects!
• bank, account, customer!

• Which one could be the controller?!
• the account does not exist yet,!
• it’s not the job of the Customer class to open accounts!
• the bank seems to be the only choice,...!

• but beware...!
• In a banking system, don’t make “the bank”, i.e., a single global

object, the controller of all system operations. “invent” a new class
if needed!

�28

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Interaction Model Example (3)

• Think about a possible implementation of the system
operation, e.g., by decomposition into other methods  
!

• To open an account, it must first be created.!
• An account has a unique number. Who will deliver this? The

Account class may have this knowledge, or there may be
some Registrar object.!

• How can the AccountNumber (nb: Number) message be sent
to the clerk? We will suppose that the clerk is sitting in front
of a terminal, and that it is enough to display a message on
his/her terminal’s screen. We therefore add a Terminal class
to the system.

�29

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Interaction Model Example (4)

• Make decisions, with examples!
• If needed, ask for more information about the application

domain / context, e.g., about technical details on how to
communicate with the environment!

• Assess the different designs. 
!

• We decide that we will implement delivery of unique account
numbers by means of a central registrar.!

• We will have to ask how we can identify the terminal
associated with the clerk.!

• Let’s suppose we are told that the terminals can be
referenced, and that the reference is supplied as a parameter
to the operation. Note this implements the “sender”, supplied
implicitly with the input message triggering the operation.

�30

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Interaction Model Example (5)

�31

: Registrar

a : Account {new}

t: Terminal

: AccountManager

openAccount
 (c: Customer, t: Terminal) 1: n := getNewNumber()

2: a := create(n, ...)

3: display(n)

No explicit use is made of customer c. Can we remove it?

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Interaction Model Example (6)

�32

: Customer

findAccounts
 (t: Terminal)

1*: displayNumber(t)
a : Account*

1.1: display(a.number)
t: Terminal

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Interaction Model Example (7)

• Check for Consistency! 
!

• How can a customer know about his/her accounts?!
• Possible solution: At creation of an account, the

customer who will own the account is notified.!
➡ The openAccount communication diagram needs to be revisited. See

next slide.!

• Note: It is generally impossible to complete
communication diagrams and even parameter lists
for “create” operations before all services required
from the class are known.

�33

COMP-533 Behavioural Design © 2013 Jörg Kienzle

myAccs: Account

Interaction Model Example (8)

�34

: Registrar

a : Account {new}

t: Terminal

: AccountManager

openAccount
 (c: Customer, t: Terminal) 1: n := getNewNumber()

2: a := create(n, ...)

4: display(n)

c: Customer
3. insert(a) 3.1: insert(a)

myAccs: Account

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Check Assets (1)
type LineItem = TupleType !
 {name: String, number: AccNumber, amount: Money}!
message type CurrentAssets (contents: Sequence (LineItem)); 
!
Operation: Bank :: checkAssets ();!
Description: Request issued by a manager. Lists the balances of all accounts,
together with the owner’s names;!
Scope: ! Account; Customer; Owns;!
Messages: ! Manager :: {CurrentAssets;}; !
Pre:! true;!
Post:! let seq: Sequence (LineItem) in self.account→forAll (a | seq→includes  
 (Tuple {name = a.customer.name, number = a.number, 
 amount = a.balance})) and 
! ! sender^currentAssets(seq))!
! ! endlet;

�35

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Check Assets (2)

�36

owner: Customer

t: Terminal

: AccountManager

checkAssets(t: Terminal)

1*: name := getName()

1*: display(name, n, b)

In this example, it is impossible to show the exact control structure
by sequence numbers. It can be shown using sequence diagrams or

by pseudocode.
Does this design have an influence on the design of openAccount?

: Account *

1*: n := getNumber()
1*: b := getBalance()

1*: owner := getOwner()

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Alternative Notation: Sequence Diagrams

• A sequence diagram focuses on the sequence of
messages interchanges between lifelines (objects
that exist that play a role)!

• It consists of:!
• Several (at least 2) lifelines!
• Messages!

• Asynchronous!
• Synchronous!

• Optionally with reply!
• Fragments!

• Hierarchy is achieved by referencing other fragments!
• In Fondue, sequence diagrams can be used for !

• Specifying the Protocol Model (instead of URN or State Diagrams)!
• Specifying the Interaction Model (instead of communication

diagrams)

�37

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Protocol Model Sequence Diagram Example

�38

T
I

M
E

: User

: Elevator
Control System

CallElevator

: Motor

MoveDown

: FloorSensor

FloorReached

Stop

Lifeline

Asynchronous	

Message

Execution

Roles

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Interaction Model Sequence Diagram Example

�39

Return
from Call

previous: Accountcurrent: AccountmyState: AuctionState currentBid: Bida: Auction

placeBid()
 keepOpen()

succ := checkAndUpdate(bidAmount)

isGuaranteed(bidAmount)

releaseOpen()

releaseBid(lastBidAmount)

 releaseBid(bidAmount)

alt
[succ]

[else]

alt
fragment

Synchronous	

Call

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Different Fragments
• ref: references some other fragment!
• alt: alternatives with different conditions!
• opt: executed if condition holds!
• loop: iteration, either a fixed number of times or as long

as a boolean expression is true!
• break: interrupt the enclosing fragment if the condition

holds!
• neg: sequence that should never happen!
• critical: a critical section that is never interleaved with

other operations!
• seq, strict, par, ignore, consider, assert

�40

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Other Features
• Object creation!
!

• Object destruction!
!

!

• Time constraints!
• State invariants!
• Continuations

�41

myB: B

a: A

 create()

destroy()

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Check Assets Sequence Diagram

�42

: AccountManager

a : Account

checkAssets(t: Terminal)

loop [a within myAccounts]

n := getNumber()
owner : Customer

name := getName()

t: Terminal

display(name, n, b)

b := getBalance()

owner := getOwner()

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Interaction Model Process Summary

• Identify relevant objects involved in the
computation.!

• Establish the role of each object:!
• Identify the controller, i.e. the object responsible for the system

operation!
• Identify the collaborators!

• Assign responsibilities to objects!
• Decide on messages between objects!

• Record how the identified objects interact on a communication
diagram / sequence diagram!

• Check consistency between communication
diagrams / sequence diagrams!
• Responsibilities are key

�43

COMP-533 Behavioural Design © 2013 Jörg Kienzle

• All communication links between the environment
and the system must be designed!
• Input messages / output message!

• Network: Network messages, or!
• GUI: mouse / keyboard input, graphical output!
• Device drivers: interface with hardware!

• Conceptual parameters need to be realized!
• Network: serializable objects, or parameters are encoded using IDs / Strings!
• GUI: selection from a list / text, graphics!

• “sender” parameter!
• Network: network ID, IP address, port!
• GUI: window / frame / widget!
• Device drivers: device ID!

• Each class that has an <<id>> association with an actor in the concept
model!
• Provides communication interface!
• Stores state to initiate communication, if needed

�44

Communication Design (1)

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Communication Design (2)
• A good way of decoupling output communication (for

example using a GUI) is to use the Observer design
pattern!

• A good way to send and receive communication that
triggers functionality over the network is to use the
Remote Command pattern!
!

• Decide how to identify object parameters (i.e. instances
of classes of the Concept Model) in messages!
• During design, a class will need to be developed that is responsible of

mapping from the identification means to the design class implementing the
concept and vice versa.!

• For example: the AccountManager maps an account id to an Account
instance

�45

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Persistence
• Is persistence of (domain/business) data

important?!
• Include loading / saving functionality!

• System startup loads data!
• System shutdown saves data!

• Is persistence and fault tolerance important?!
• Use a database!
• Classes can still be used to encapsulate domain/business data!

• Classes additionally provide operations that read from / write to the
database!
•Use a framework such as Enterprise Java Beans

�46

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Questions?

�47

? ??
?

??

? ?
?

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Bank Question (1)
• The (partial) Environment Model and Concept

Model of the Bank System are given below

�48

: Bank!

<<time-triggered>>"
endOfMonth!

: Client!

*!

: Teller!

*!
warning!

monthlyReport!

openAccount!
closeAccount!

transfer!
retrieveHoldings!

balance!

: ATM!

*!
retrieveBalance!

withdraw!

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Bank Question (2)

�49

Client!

*!

<<system>> Bank!

Customer!*! <<id>!
1!1!

Account!

Teller!

*!

*! Owns!
1..*! 1!

name: String!
address: String!

Savings! Checking!

Transaction! Calendar!1!
0..* credit!debit 0..*!

from 0..1! 0..1 to!

0..*!

ATM!

*!
0..*!

context t: Transaction:
inv: t.to→size() = 1 or t.from→size() = 1

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Bank Question (3)

�50

number: String!
balance: Real!

Customer!Account!
name: String!
address: String!

Savings! Checking!
interestRate: Real! creditLimit: Real!

Calendar!
current: Date!

Transaction!
when: Date!
amount: Real!

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Bank Question (4)
• Retrieve Holdings!

• Let’s consider the system operation which retrieves the holdings of
a customer’s accounts from the Bank system, i.e. the sum of all the
balances of her/his accounts. The main effect of the operation is to
notify the amount of the holdings to the teller of the bank.!

• Provide an operation schema for this system operation.!
• Develop a communication diagram for the operation.!

• Monthly Verification!
• When monthly verification is performed, the owners of all accounts

having a negative balance are warned.!
• Provide an operation schema for the monthly verification operation.!
• Develop a communication diagram for the operation

�51

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Transfer Operation Schema (1)
Operation: Bank::transfer (source: Account, dest: Account, amount:
Money);!
Description: Moves an amount of money from one account to another one.
Money is transferred only if the debited account is not overrun: a savings
account must have sufficient funds, and for a checking account the credit
limit must not be exceeded;!
Scope: ! Account; Transaction; Calendar; Customer;!
Messages: Teller::{Receipt; Overrun_e;}; Client::{Receipt;};!
New: ! trans: Transaction;!
Aliases: ! sourceHasSufficientFunds: Boolean =!
! ! (source.oclIsTypeOf(Savings) and source.balance ≥ amount) !
! ! or (source.oclIsTypeOf(Checking) and!
! ! ! source.balance + source.creditLimit ≥ amount);!

�58

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Transfer Operation Schema (2)
Post: ! if sourceHasSufficientFunds then !
! ! ! source.balance = source.balance@pre - amount &!
! ! ! dest.balance = dest.balance@pre + amount &!
! ! ! trans.oclIsNew() &!
! ! ! trans.date = self.calendar.current &!
! ! ! trans.amount = amount &!
! ! ! trans.from = source & trans.to = dest &!
! ! ! sender^receipt (source, Direction:: debit, amount) &!
! ! ! dest.customer.client^receipt (dest, Direction::credit, amount)!
! ! else!
! ! ! sender^overrun_e (source, amount)!
! ! endif;!
!

�59

COMP-533 Behavioural Design © 2013 Jörg KienzleCOMP-533 Operation Model © 2013 Jörg Kienzle

GenerateMonthly Operation Schema

type Direction is enum {debit, credit};!
type Transaction is TupleType!
! {acc: AccountNumber, trAmount: Money, 
 trTimestamp: Date, trDir: Direction, balance: Money};!
message (type) declaration!
! MonthlyStatement(contents: Sequence(Transaction));!
!
Operation: !Bank :: generateMonthly();!
Description: At the end of the month, each customer receives a monthly statement that all
the transactions and the balances of all his accounts.!
Scope: Account; Customer; Transaction;!
Messages: Customer :: {MonthlyStatement}; !
Post: self.customer→forAll(c | 
 let trList: Set(Transaction) in !
! ! c.myAccounts→forAll (a | a.credit→forAll(t | trList→includes  
! (Tuple {acc = a.number, trTimeStamp = t.when, trDir = Direction::credit, balance =
a.balance})) and a.debit→forAll(t | trList→includes  
! (Tuple {acc = a.number, trTimeStamp = t.when, trDir = Direction::debit, balance =
a.balance}))) and"
 sender^monthlyStatement(trList→sortedBy(trTimestamp))!
 endlet;)

�60

COMP-533 Behavioural Design © 2013 Jörg Kienzle

Bank Design Question
1.Design a collaboration diagram or sequence diagram for the
Transfer operation. Don’t forget that all transactions have to be
recorded somehow, since at the end of each month statements
are sent by postal mail to all clients showing the transactions
performed for their accounts during the last period.!

2.Propose a collaboration diagram for GenerateMonthlyReports.
We propose you to implement the communication with the
client by sending him/her a letter by postal mail. Make sure that
each statement is complete: !
• a. It can be sent by postal mail.!
• b. It can be understood by the client: for each transaction, the statement provides its

date, the involved account, the amount and the direction of the movement (credit or
debit).

�61

