
COMP-533 Protocol Model

Protocol Model

Jörg Kienzle & Alfred Strohmeier

COMP-533 Protocol Model © 2013 Jörg Kienzle

Behavioural Requirements Overview

• Protocol Model!
• User Requirements Notation!
• State diagrams!
• Sequence diagrams!

• Checking Consistency of Requirements Models

�2

COMP-533 Protocol Model © 2013 Jörg Kienzle

Fondue Models: Requirements Spec.

�3

Requirements Specification and Analysis Models

Environment Model

Protocol ModelOperation Model

Concept Model

UCM model with Input/Output
message annotations (or UML State

or Sequence Diagram),	

describing the allowed sequencing of

system operations

COMP-533 Protocol Model © 2013 Jörg Kienzle

Requirements Specification Phase

• Purpose!
• To produce a complete, consistent, and unambiguous description of !

• the problem domain and!
• the functional requirements of the system.!

• Models are produced, which describe!
• Structural Models (see previous lecture)!
• Behaviour Models!

• Operation Model!
•Defines for each system operation the desired effect of its execution on the

conceptual state!
• Protocol Model!

•Defines the system protocol, i.e. describes the allowed sequencing of system
operations!

• The models concentrate on describing what a system does, rather than
how it does it.

�4

COMP-533 Protocol Model © 2013 Jörg Kienzle

Protocol Model (1)
• The Protocol Model defines the allowable sequences of

interactions that the system may have with its environment over
its lifetime!

• If at any point the system receives an event, either time-
triggered or triggered by a message, that is not allowed
according to the Protocol Model, then the system ignores the
event and leaves the state of the system unchanged.!
• Note: A dependable system, instead of ignoring the message, should inform the

environment about the “interaction error”!
• The Protocol Model is depicted by one of the following diagrams!

• A UCM model with annotations that clearly identify when input messages occur in the
flow!

• Output messages can optionally be shown as well !
• A state diagram (also called a statechart)!
• A sequence diagram (not explained in this lecture)

�5

COMP-533 Protocol Model © 2013 Jörg Kienzle

Protocol Model with UCMs
• The use case model already describes the

interaction scenarios that the system needs to
support!

• Use case maps (UCMs) are a workflow notation
that can depict any kind of workflow!
• Supports conditional and parallel execution, synchronization and

timed synchronization!
• Hierarchical decomposition!
• Dynamic stubs!

• We just need a way to designate which
responsibilities correspond to input messages!
• Stereotypes can be used for that purposes

�6

COMP-533 Protocol Model © 2013 Jörg Kienzle

UCM Model with Annotations

• Responsibilities that represent input interactions
are annotated with stereotype «in»!
• In jUCMNav, click on responsibility, then in the properties window

on tab “metadata”, then “add”!
• Name: ST_Protocol, Value: in!

• Responsibilities that represent output
interactions are optionally annotated with
stereotype «out»!
• Name: ST_Protocol, Value: out

�7

COMP-533 Protocol Model © 2013 Jörg Kienzle

From Use Cases to Protocol Model

• Each use case is mapped to a Use Case Map
(UCM)!

• Each interaction is mapped to a responsibility!
• Input interactions are tagged with stereotype <<in>>!
• Output interactions are tagged with stereotype <<out>>!
• Time-triggered events are mapped to timers!

• The workflow of the scenario described in the use
case is mapped to control flow elements in UCM!
• Ambiguities in the textual descriptions of the workflow are

eliminated

�8

COMP-533 Protocol Model © 2013 Jörg Kienzle

RecycleItems Use Case
Use Case: RecycleItems!
Scope: RecyclingMachine!
Level: User-Goal!
Intention in Context: The User wants to recycle bottles and cans in exchange for money.!
Multiplicity: Only one User can recycle items at a given time.!
Primary Actor: User!
Secondary Actors: Recognizer, Display, FinishedButton, Printer!
Main Success Scenario:!
 Step 1, 2 and 3 are repeated for each item the User wishes to recycle.!
1. User inserts a can or a bottle into the Recognizer.!
2. Recognizer informs System about the item that was recognized.!
3. System acknowledges recognition to User by updating the refund total on the Display.!
4. User informs System that s/he has no more items to process using the FinishedButton.!
5. System prints receipt using Printer.!
Extensions:!
2a. Timeout occurs because user has not inserted any item into the recognizer for more than 2
minutes. Use case continues at step 5.!
3a. System determines that the inserted item is not accepted at this store.!
 3a.1. System informs user that item is not accepted at this store using the Display.!
 3a.2. System instructs the Recognizer to reject the inserted item. Use case continues with
next item at step 1.

�9

COMP-533 Protocol Model © 2013 Jörg Kienzle

Recycling Machine Environment Model

�10

: RecyclingMachine

<<time-triggered>>
timeout

finished
:Recognizer

1

:FinishedButton

1recognizedItem
1

:Printer

1
printReceipt

ejectItem

:Display

1

displayTotal
displayRefused

COMP-533 Protocol Model © 2013 Jörg Kienzle

Recycling Machine Environment Model

• Input	

 RecognizedItem(item: RecognizedItems)	

 Finished	

 Timeout	

!

• Output	

 EjectItem	

 DisplayTotal(amount: Positive)	

 DisplayRefused(reason: String)	

 PrintReceipt(amount: Positive)

�11

<<enumeration>>
RecognizedItems

Coke
Pepsi
...

COMP-533 Protocol Model © 2013 Jörg Kienzle

Recycling Machine Protocol Model

�12

: RecyclingMachine

<<time-triggered>>
timeout

finished
:Recognizer

1

:FinishedButton

1recognizedItem
1

:Printer

1
printReceipt

ejectItem

:Display

1

displayTotal
displayRefused

<<in>><<in>> <<out>>

<<out>>

<<out>>

<<out>>

COMP-533 Protocol Model © 2013 Jörg Kienzle

UCM - Failure Points
• Explicit approach with Failure Points!

• Indicates location of failure on scenario path!
• Failure condition!
• Sets failure variable (failure_name) to indicate which failure

occurred!
!
!

• Failure Start Point!
• Activated if guard (failure_name) evaluates to true

�13

[condition]

F
[failure_name]

COMP-533 Protocol Model © 2013 Jörg Kienzle

• Example!
• RF:!

• Sets X to 0!
• Failure = false!
• Failure2 = false

R1
R2

RF

FailurePoint

F
[failure]!

RA
[x > 3]!

UCM - Failures Examples

�14

R1
R2

RF

FailurePoint

F
[failure]!

RA
[x > 3]!R1

R2 FailurePoint

[x > 3]!

RA

R2

RA

R1
FailurePoint

[x > 3]!

RF
F

[failure]!

R1
R2

RF

FailurePoint

F
[failure2]!

RA
[x > 3]!

RA

R1
FailurePoint

[x > 3]!

Situation 1:
x = 1

No failure occurs,
workflows continue as normal

Situation 2:
x = 5

Failure occurs on first pass,
execution jumps to failure start point,

Second pass succeeds

Situation 3:
x = 5

Failure occurs on first pass,
but since no failure start

point is defined
execution stops there

sets failure to true

sets failure to true

In all 3 cases, the
execution of the path

with RA is not affected!

COMP-533 Protocol Model © 2013 Jörg Kienzle

UCM - Abort Start Points
• Abort Start Points!

• Activated if guard (failure_name) evaluates to true!
• Aborts all other paths in the abort scope (all concurrent branches

that are active on the same or lower level maps)

�15

F
[failure_name]

R1
R2

RF

FailurePoint

[failure]! RA
[x > 3]!

F

R1
FailurePoint

[x > 3]!

RF [failure]!
F

R2 Situation 4:
x = 5

Failure occurs on first pass,
execution path containing RA is aborted,
execution continues at abort start point,

second pass successful

COMP-533 Protocol Model © 2013 Jörg Kienzle

UCM - Implicit Failure Points
• Implicit approach without Failure Points!

• Location and failure variable defined by scenario definition!
• Greater flexibility in defining scope (path node, map, component reference,

component/responsibility definition)!
• Example (with map scope)!

• Failure occurs above map with the abort path!
• Result: not caught, scenario terminates with error!

• Failure occurs on or below map with abort path!
• Scenario ends with end point of abort path  

(unless end point is bound to out-path of a stub)!
• Abort path specified on map A !

• Result: all paths on all maps are aborted!
• Specified on B !

• Result: only the two concurrent paths on B are aborted!
• Specified on C!

• Result: all paths on C and D are aborted;!
• Specified on D!

• Result: only the path on D is aborted

�16

Map A!

Map B! Map C!

Map D!

R5!

R4!R2!

R3!

RF!

[failure]!

R1!

F
Specified on
one of the
four maps

COMP-533 Protocol Model © 2013 Jörg Kienzle

Protocol Model with State Diagrams

• In case the system protocol is rather “modal”, state
diagrams can be used to model the order of input
events!
• In UML 2.0 terminology these kind of state diagrams are called protocol

state machines!
• We will only use simplified state diagrams, because!

• We want to remain at a high level of abstraction during analysis;!
• A lot of information is already included in the Concept Model, the

Environment Model and in the Operation Model;!
• We don’t want to duplicate information.!

• For example, it is not necessary to show guard conditions, because they are
included in the operation schema as preconditions or if-then-else
expressions.

�17

COMP-533 Protocol Model © 2013 Jörg Kienzle

General State Diagram
• Initially, the system starts in State P!
• If the event e is received, and the guard cond is true, then

action a is taken and the current state switches to State Q!
• Immediately after than, the system terminates (reaches

the final state)

�18

P Q
e [cond] / a

COMP-533 Protocol Model © 2013 Jörg Kienzle

Protocol Model (3)
• In our case, the events designate input events. It is the

input event that triggers the transition and the action
that follows.!

• An OperationName is provided as an Action, if the name
is different from the input event that triggers the
transition, otherwise it can be omitted!

• We show only the event names, because the event
parameters are declared with the declaration of the
time-triggered event or of the message that triggers the
event (and they are the same), and the source actor is
documented in the operation schema.

�19

COMP-533 Protocol Model © 2013 Jörg Kienzle

Simple State Diagram Example

�20

! Ready Running

Stopped

buttonPressed / startTimer

buttonPressed / stopTimer
buttonPressed /

resetTimer

COMP-533 Protocol Model © 2013 Jörg Kienzle

Sequencing
• Sequence: Event e1 leads to state S and is

followed by event e2. The actions triggered by e1
and e2 have to occur in sequence.

�21

S
e1 e2

openAccount closeAccount

COMP-533 Protocol Model © 2013 Jörg Kienzle

Loops
• Repetition or loop: Event e occurs repeatedly leaving

the system in the same state. Note that the concept of
state here is at a high level with the meaning “the same
events are acceptable”.

�22

S

e

checkBalance

COMP-533 Protocol Model © 2013 Jörg Kienzle

Alternative
• Alternative: Event e can lead to two different

states, depending on the current state values.!
• In the example, depending on the available balance, withdrawal

might be possible, or be rejected and result in a blocked account.

�23

P
e

Q

R
withdraw blocke

COMP-533 Protocol Model © 2013 Jörg Kienzle

Hierarchy (1)
• Irrespective of what substate we are in, closeAccount

moves the system to the final state

�24

checkBalance

openAccount

checkBalance
withdraw
deposit

deposit closeAccount

COMP-533 Protocol Model © 2013 Jörg Kienzle

Hierarchy (2)
• Irrespective of what substate we are in, closeAccount moves

the system to the final state

�25

checkBalance

openAccount

checkBalance
deposit

deposit
closeAccount

withdraw

COMP-533 Protocol Model © 2013 Jörg Kienzle

Concurrent / Orthogonal Substates

• Entering State A results in entering State B and State D!
• Shortcut for having States BD, CD, BE, CE, BF, CF!

• Useful to model independent sequences

�26

A
B C

D FE

COMP-533 Protocol Model © 2013 Jörg Kienzle

Concurrent Substates Example

�27

Car Running

DP

accelerate
brake

lightOnlightOff acOnacOff

COMP-533 Protocol Model © 2013 Jörg Kienzle

Autoconcurrent State
• As long as state A is active!

• Whenever e1 occurs, a new instance of state A is created, 
ready to process events!

• Typically, e1 will create a new instance of a class from the concept
model, and all processing that follows (e2, e3) is related to that
class instance

�28

A

B Ce1 e2 e3

*

COMP-533 Protocol Model © 2013 Jörg Kienzle

ActiveAccount *

Autoconcurrent State Example

�29

checkBalance

openAccount

checkBalance
deposit

deposit
closeAccount

withdraw shutdown

COMP-533 Protocol Model © 2013 Jörg Kienzle

 Bank {protocol}

Example Protocol Model

�30

ActiveAccount *
checkBalance

openAccount

checkBalance
deposit

deposit
closeAccount

withdraw shutdown

COMP-533 Protocol Model © 2013 Jörg Kienzle

Protocol Model and Operation Model (1)

• The behaviour of a system is defined by the Protocol Model
and the Operation Model taken together.!

• The Protocol Model determines the acceptability of an event
and therefore of the corresponding triggering message.!

• The precondition in the Operation Schema determines if the
effect of an event is well behaved.!

• The Protocol Model takes precedence over the precondition, as
shown by the following table:

�31

Precondition true Precondition false

Protocol accepts Operation invoked and
effect defined

Operation invoked but
effect undefined

Protocol rejects Event ignored Event ignored

COMP-533 Protocol Model © 2013 Jörg Kienzle

Protocol Model and Operation Model (2)

• Rejecting/ignoring an input event means that the
state of the system is unaffected. !
• However, analysis uses an abstract notion of state, and the

implementation is free to respond to the erroneous event and its
triggering message, for example, with a helpful error message.!

• A system need not have a Protocol Model. All
input events are then acceptable at any time.

�32

COMP-533 Protocol Model © 2013 Jörg Kienzle

Checking for Model Consistency

• The analysis models should be complete and
consistent!
• A model is complete when it captures all the meaningful

abstractions in the domain.!
• Models are consistent when they do not contradict each other.!

• A model can also be checked for internal consistency.

�33

COMP-533 Protocol Model © 2013 Jörg Kienzle

Requirements Specification Process (1)

• 1. Determine the system interface!
• 1.1!For establishing the system interface, analyze the scenarios in

the Use Case Model. For each scenario: !
• Find the actors who are involved, and!
• The services they need.!

• 1.2!Develop the Environment Model: identify actors, output
messages, and input messages (system operations).!

• 1.3 Produce the Concept Model by adding the boundary and actors
to the Domain Model. Only actors having direct interaction with the
system should be shown, and nothing else should appear outside
of the boundary. Add roles to all association ends.

�34

COMP-533 Protocol Model © 2013 Jörg Kienzle

Requirements Specification Process (2)

• 2. Develop the Behavior Model!
• 2.1 Develop the Protocol Model!

• Generalize the scenarios of the Use Case Model and define system states.!
• Combine system states to form the Protocol Model.!

• 2.2 Develop the Operation Model!
• 2.2.1 For each system operation, develop the pre- and postconditions:!

•Describe each aspect of the result as a separate subclause of Post.!
•Use the Environment Model to find the messages that have to be output as

a result.!
•Check that results do not allow unwanted values.!
•Add relevant Concept Model invariants to the pre- and postconditions.!
•Ensure that the pre- and postconditions are satisfiable.!

• 2.2.2 Derive Scope, Messages and New clauses from the postconditions
(incrementally with 2.2.1)!

• 2.2.3 Complete the message (type) declarations in the Environment Model

�35

COMP-533 Protocol Model © 2013 Jörg Kienzle

Requirements Specification Process (3)

• 3. Check the Analysis Models!
• 3.1 Check for completeness against the requirements:!

• All possible scenarios stated in the use cases are covered by the
Protocol Model.!

• All required system services can be mapped onto system operations.!
• All static information is captured by the Concept Model.!
• Any other information, e.g. technical definitions and invariant constraints,

are documented.!
• To check for completeness, compare the Use Case Model and the

Operation Model!
• Inspect the use cases and define the state change that each should

cause. Then "execute" the use cases, using the operation schemas.
Check that resulting state conforms to what was expected.

�36

COMP-533 Protocol Model © 2013 Jörg Kienzle

Requirements Specification Process (4)

• 3.2 Consistency between models:!
• Domain Model versus Concept Model: !

• All classes, relationships and attributes mentioned in the Domain Model appear in the
Concept Model, or their absence can be justified and is documented. !

• Environment Model versus Concept Model: !
• The boundary of the Concept Model is consistent with the Environment Model. !

• Environment Model versus Protocol Model: !
• Every input message in the Environment Model appears in the Protocol Model as an event,

and vice versa.!
• Concept Model versus Operation Model:!

• All classes, attributes and associations accessed in the Operation Model are part of the
Concept Model, and there are no “useless” classes in the Concept Model. !

• The Operation Model must preserve Concept Model invariants.!
• Environment Model versus Operation Model: !

• An actor that appears in the Operation Model is part of the Environment Model.!
• All input messages in the Environment Model must trigger an operation modeled by an

operation schema in the Operation Model, and all output messages in the Environment
Model must be generated by a system operation.

�37

COMP-533 Protocol Model © 2013 Jörg Kienzle

Iterations
• It is usually necessary to go back and forth

between the Environment Model, the Concept
Model and the Operation Model to make them
complete, consistent, but also as simple as
possible, by eliminating the unused elements.

�38

COMP-533 Protocol Model © 2013 Jörg Kienzle

Questions?

�39

? ??
?

??

? ?
?

COMP-533 Protocol Model © 2013 Jörg Kienzle

Buy Drink Use Case (1)
Use Case: Buy Drink !
Scope: Vending Machine!
Level: User Goal!
Intention in Context: The intention of the Customer is to buy a

drink in exchange of money.!
Multiplicity: There can always be only one Customer

interacting with the system at a given time.!
Primary Actor: Customer!
Secondary Actors: Selector Button, Coin Slot, Shelf, Sensor,

Money Box, Drink Light, Cancel Button, Display, Terminal!
Precondition: The system is in service, filled with drinks and

change, and the Money Box is not full.

�40COMP-533 Protocol Model © 2013 Jörg Kienzle

COMP-533 Protocol Model © 2013 Jörg Kienzle

Buy Drink Use Case (2)
Main Success Scenario:!
Customer selects drink by pushing appropriate drink selector button.!
1. Button notifies System of selected drink.!
2. System displays the price of the selected drink on Display.!
Customer inserts a coin into Coin Slot.!
3. Coin Slot notifies System.!
4. System recognizes the coin, and updates the remaining price on Display.!
Steps 3 and 4 are repeated until the amount of inserted money reaches or exceeds the
price of the drink.!
5. System validates that there are sufficient funds for the selection and notifies
Shelf to start dispensing the drink.!
6. Sensor informs System that the drink has been dispensed.!
7. System asks Money Box to collect the specified amount of money and, if
necessary, provide the change.!
Customer collects the drink and optionally the change.

�41COMP-533 Protocol Model © 2013 Jörg Kienzle

COMP-533 Protocol Model © 2013 Jörg Kienzle

Buy Drink Use Case (3)
Extensions:!
2a. System ascertains that the selected drink is not available and flashes Drink
Lights; use case ends in failure.!
4a. System fails to identify the coin; System asks Money Box to eject coin; use
case continues at step 3.!
(3-4)a. Customer informs System to abort the sale by hitting the Cancel button;!
 (3-4)a.1 System asks Money Box to eject coins; use case ends in success.!
(3-4)b. System times out.!
 (3-4)b.1 System asks Money Box to eject the inserted coins; use case ends in
failure.!
5a. System ascertains that the inserted money exceeds the price for the drink
and that there is not enough change;!
 5a.1 System asks Money Box to eject inserted coins.!
 5a.2 System displays “no change” on Display; use case ends in failure.!
7a ||. The Money Box is full.!
 7a ||.1 System displays “no service” on Display and goes out of service; use

case ends successfully.!
7b ||. The delivered drink was the last one of that kind.!
 7b ||.1 System turns on the appropriate Drink Light; use case ends successfully.

�42COMP-533 Protocol Model © 2013 Jörg Kienzle

COMP-533 Protocol Model © 2013 Jörg Kienzle

Vending Machine Use Case Diagram

�43

Drink Vending Machine

Buy Drink

Service
Machine

Customer

0..*

ServicePerson

0..*

Terminal

1

Display

1

Selector
Button

1..*

Cancel
Button

1

MoneyBox

1

CoinSlot

1

Shelf

1..*
reads

uses

Sensor

1

DrinkLight

1..*

pushes

inserts
coins
into

pushes

reads

COMP-533 Protocol Model © 2013 Jörg Kienzle

COMP-533 Protocol Model © 2013 Jörg Kienzle

Drink Vending Machine Environment Model

�44

:Selector
Button

:Display

selectDrink

unavailable

coinReceived

abort

dispensed

dispense

displayPrice
displayNoChange
displayWelcome

ejectCoins
ejectCoin
collectCoins
giveChange

1..*

1

:Shelf

1..*

:Sensor

1

:Cancel
Button

1

:Coin
Slot

1

:Drink
Light

1..*

:MoneyBox

1

1

1

1

1

1

1

1

1

: Drink Vending
Machine

COMP-533 Protocol Model © 2013 Jörg Kienzle

Drink Vending Machine Questions

1. Create a URN model for the BuyDrink use case.!
• If you decide to group several basic interaction steps into one URN

responsibility, please use the description field of the responsibility to
document which use case steps it represents

�45COMP-533 Protocol Model © 2013 Jörg Kienzle

COMP-533 Protocol Model © 2013 Jörg Kienzle

Clinical Lab System Question
• The task is to develop a computerized data management

system for a clinical test analyzer. An analyzer can carry out
tests on body fluids such as blood, urine, and swab specimens.
An analyzer is capable of carrying out tests on several samples
simultaneously.!

• The technician enters a batch of samples from a single patient
by first entering the patient’s identification and then indicating,
one at a time, the tests that need to be performed on the
samples. By a ”batch end” message, s/he informs the system
that there are no more samples for the current patient. When all
the tests for a patient have been performed by the analyzer, they
are collected together into a patient report, which is sent to the
technician.

�47

COMP-533 Protocol Model © 2013 Jörg Kienzle

Clinical Lab System Question (2)

• The system can perform test requests for more than one patient at
a time. The technician may ask for a report reflecting the current
status of a patient’s tests before they are all completed. The tests
for a patient may also be aborted, in which case a patient report
containing just the test results collected so far is generated and all
further tests on samples from the same patient are ignored.!

• Environment Model!
• Show by a Environment Model the interaction between the technician, the system and the

analyzer.!
• Provide message declarations. !
• Write down some possible/forbidden message sequences; show both input and output

messages. (Can also be answered based on the Protocol Model.)!
• Protocol Model!

• Devise a Protocol Model for the clinical lab system

�48

