
COMP-533 Solution Midterm 2013 © 2013 Jörg Kienzle

Grocery Cooperative
The application is about a grocery cooperative: a union of grocery retailers
are cooperating when purchasing goods in order to get better conditions
from the suppliers. The cooperative buys products, each characterized by a
name and a unit size (measured in integral steps of cm3), from suppliers. A
supplier is known by its name and address. Each supplier has its own price
for a given product. Goods are delivered by the supplier to one of the
warehouses managed by the cooperative.
The cooperative fixes its own retail prices. A retailer, known by its name and
address, orders from the cooperative the products in the quantities it needs.
Retailers have accounts with the cooperative. The amount a retailer must
pay is determined when the order is placed, but only when the goods were
shipped and delivered to the retailer the account of the retailer is charged.
The cooperative also allocates credit limits to its members. A retailer cannot
overdraw this credit limit by an order. Whenever the quantity of a product in
stock falls below a certain limit (as a consequence to an order by a retailer),
an order to replenish the stock is sent to the supplier that offers the best
price for that product.

2

COMP-533 Solution Midterm 2013 © 2013 Jörg Kienzle

name: String
unitSize: Positive
currentPrice: Money
currentStock: Positive
stockLimit: Positive

Product

name: String
address: String

Supplier

name: String
address: String
balance: Money
creditLimit: Money

Retailer

price: Money
Catalog

suppliedBy
0..*

myProducts
0..* address: String

Warehouse

Cooperative

1..* manages

quantity: Positive
unitPrice: Money
status: RetailerOrderStatus

RetailerOrder
myOrders

0..*

storedIn
0..1

1 orderedProduct

0..* receivedOrders

1
madeBy

contains
0..*

1 managedBy

quantity: Positive
unitPrice: Money
delivered: Boolean

Purchase

1 orderedFrom
1 orderedProduct

0..*
myPurchases

0..*
mySales

onHold
shipped
received
paid

<<enumeration>>
RetailerOrderStatus

Grocery Cooperative

3

2

2

2
2

2

2

1

1

1
1

1

1
1
1
1

1

1
1

1

Could be in
Warehouse

Could be Boolean

1 1

1

1

1

1

1

1

12 for classes
13 for attributes

8 for associations
33 points total

COMP-533 Solution Midterm 2013 © 2013 Jörg Kienzle

Ticket Vending Machine (1)
The system for which requirements are to be gathered is an automated ticket
vending machine like the ones you find for Montreal's subway system (“Le
Metro”) that allows users to upload tickets onto a chip card called “opus card”.
For simplicity reasons, we are going to focus only on the simple vending
machines that only accept debit or credit card to purchase tickets (single fare,
multi-fare, weekly and monthly tickets). A sketch of the input and output devices
of the simple ticket vending machine is shown below.
We are also going to assume that the "payment
system", i.e., the software that handles the credit/
debit card reader and PIN keyboard, is provided
by some third-party vendor. In other words, the
software we are developing does not need to
communicate directly with the card reader, or
have to deal with the details of how to handle
credit/debit cards (entering and verifying PINs,
connecting to credit and financial institutions to
validate credit or debit money, etc.), but rather
interacts with the payment system.

6

COMP-533 Solution Midterm 2013 © 2013 Jörg Kienzle

Ticket Venging Machine (2)
To use a ticket vending machine, the customer places the opus card
into the smart card reader/encoder. The user can then consult the
current tickets stored on the card, and is presented with a set of
recharge options on the transaction console. The selector buttons
are used to determine the desired choice. The user then interacts
with the payment system to use the credit/debit card reader and
PIN keyboard to pay for the selected ticket. If the payment
completes successfully, the tickets are uploaded to the card and a
receipt is printed. If payment was unsuccessful, the reason is
displayed on the console and no tickets are issued. At any point in
time before the payment is completed, the user can cancel his
transaction by pressing the cancel button or simply removing his
opus card from the smart card reader/encoder. Finally, during the
interaction, the system beeps within 30 seconds in the case where
the user does not make a selection, or forgets to remove his opus
card from the smart card reader/encoder.

7

COMP-533 Solution Midterm 2013 © 2013 Jörg KienzleCOMP-533 Solution Midterm 2013 © 2013 Jörg Kienzle

RechargeOpusCard Use Case (1)

8

Use Case: RechargeOpusCard
Scope: TicketVendingMachine
Level: User-Goal
Intention in Context: The User wants to refill his OpusCard using a credit card.
Multiplicity: Only one User can recharge an opus card at a given time.
Primary Actor: User
Secondary Actors: SmartCardRE, PaymentSystem, Printer, Speaker
Main Success Scenario:
1. User notifies System that he wants to recharge his opus card.
2. System shows tickets that are currently on the card and recharge options to User.
3. User informs System of recharge choice.
Step 4 and 5 can happen in any order.
4. System displays price of current choice to User.
5. System informs PaymentSystem of price of the ticket.
User completes the transaction with the payment system.
6. PaymentSystem informs System of successful completion of the transaction.
7. System uploads tickets onto opus card using the SmartCardRE.
8. System prints receipt using Printer.
9. System asks the User to collect the receipt and remove opus card.

COMP-533 Solution Midterm 2013 © 2013 Jörg KienzleCOMP-533 Solution Midterm 2013 © 2013 Jörg Kienzle

RechargeOpusCard Use Case (2)

9

Extensions:
2-6a. User informs System that he wants to cancel the transaction. Use case ends in
success.
3a. Timeout
 3a.1. System asks Speaker to beep. Use case continues at step 3.
6a. PaymentSystem informs Systems that payment was unsuccessful.
 6a.1. System informs User about failed transaction. Use case continues at step 3.
10a. Timeout
 10a.1. System asks Speaker to beep. Use case continues at step 10.

COMP-533 Solution Midterm 2013 © 2013 Jörg Kienzle

TicketVending Environment Model

10

:SmartCardRE

1

: TicketVending

<<time-triggered>>
idleTimeout

:Display

1

displayInfoAndChoices(o: OpusCard)
displayPrice(p: Money)

removeCard
transactionFailed

uploadTicket(t: Set(Ticket))

rechargeChoice:Speaker

1 beep

cardInfo(o: OpusCard)

:PaymentSystem

1

:Printer

1

0..1

purchase(p: Money)purchaseOutcome
(outcome: Boolean)

receipt(p: Money)

:SelectButton

*

:CancelButton

1

cancel

5

1

1

1

1

1
1

1
1

1

1

1
1

1 1

1
1

1
1

1

25 points total

COMP-533 Solution Midterm 2013 © 2013 Jörg Kienzle

Parking Garage Use Case
The following is an informal description of how an automobilist
interacts with a parking garage control system (PGCS) when parking
his car. The function of the PGCS is to control and supervise the
entries and exits into and out of a parking garage. The system ensures
that the number of cars in the garage does not exceed the number of
available parking spaces.

The entrance to the garage consists of a gate, a state display showing
whether any parking space is available, a ticket machine with a ticket
request button and a ticket printer, and an induction loop (i.e., a device
that can detect the presence or absence of a vehicle). To enter the
garage, the driver, receives a ticket indicating the arrival time upon his
request. The gate opens after the driver takes the ticket. The driver
then parks the car and leaves the parking garage. In case of problems,
the PGCS notifies an attendant by means of an attendant call light.

11

COMP-533 Solution Midterm 2013 © 2013 Jörg Kienzle

Parking Garage Use Case (1)

12

Use Case: EnterGarage
Scope: PGCS
Level: User-Goal
Intention in Context: The Driver wants to enter the garage with his vehicle.
Multiplicity: Only one Driver can enter the garage at a given time for each entry. If

there are n entries, then n EnterGarage use cases can execute at the
same time.

Primary Actor: Driver
Secondary Actors: RequestButton, Display, TicketPrinter, InductionLoop, Gate,

Attendant Light
Main Success Scenario:
 Driver drives the car to the entrance and stops.
1. RequestButton informs System that a Driver is requesting entry.
2. System requests TicketPrinter to print ticket.
3. TicketPrinter informs System that Driver has taken the ticket.
4. System instructs Gate to open.
 Driver drives car passed the gate into the garage.
5. InductionLoop informs System that vehicle has left the parking spot and passed the

gate.
6. Gate informs System that it is closed.

1

2
2

2
2

2

2

1

1

1

6

COMP-533 Solution Midterm 2013 © 2013 Jörg Kienzle

Extensions:
2a. There are no more parking spots available.

2a.1 System informs User that there are no more parking spots
available by displaying “Garage Full” on the Display. Use case ends
in failure.
3a. TicketPrinter informs System that printing has failed.
 3a.1 System turns on AttendantCallLight. Use case ends in failure.
3b. Timeout: User has not taken the ticket.
 3b.1 System turns on AttendantCallLight. Use case ends in failure.
5a. Timeout: User has not driven past the gate.
 5b.1 System turns on AttendantCallLight. Use case ends in failure.

Parking Garage Use Case (2)

13

2

1

1

1 1

2

30 points total

