
COMP-361 Distributed Game Architectures

Distributed Game
Architectures

Jörg Kienzle

COMP-361 Distributed Game Architectures © 2014 Jörg Kienzle

Distributed Game Architectures Overview

• Distributed Architectures
• Client-Server
• Peer-to-Peer
• Startup

• Centralized
• Decentralized

• Object-Oriented Communication over the
Network
• Remote Commands

2

COMP-361 Distributed Game Architectures © 2014 Jörg Kienzle

Peer-2-Peer Model

3

Direct communication between Players

COMP-361 Distributed Game Architectures © 2014 Jörg Kienzle

Peer-2-Peer (2)
• Both computers run the same application
• Main loop

• If it is the turn of the local player
• Get move from GUI
• Verify correctness
• Apply move to local state
• Send move over the network

• If it’s the turn of the remote player
• Get move from the network
• Apply move to local state

4

COMP-361 Distributed Game Architectures © 2014 Jörg Kienzle

Peer-2-Peer Comments
• Advantages

• Only one application to develop
• Symmetric architecture

• The GUI has access to the entire game state, if
needed

• Game state is local, which increases performance
• Disadvantages

• One application
• No authoritative game state

• Game must be deterministic
• Startup has to be asymmetric (see slide on distributed

system startup)

5

COMP-361 Distributed Game Architectures © 2014 Jörg Kienzle

Client-Server Model

6

Player only knows about Server
Indirect Communication Between Players

COMP-361 Distributed Game Architectures © 2014 Jörg Kienzle

Client-Server (2)
• Client

• Graphical User
Interface

• Network Interface
• Main loop

• If it is the turn of the
local player
• Get move from GUI
• Send move over the

network to server
• Wait for game state

from server

7

• Server
• Game State
• Game Behaviour
• Network Interface

• Main loop
• Wait for move from

player
• Verify move
• Apply move to game

state
• Send updated game

state to clients

COMP-361 Distributed Game Architectures © 2014 Jörg Kienzle

Client-Server Comments
• Advantages

• Clear separation of concerns between GUI and Game
Logic

• The authoritative game state is at the server
• Saving and loading games is easy

• Disadvantages
• Two applications to develop
• Game state is remote, which decreases performance

• Caching of game state at the client can help
• GUI does not have access to entire game state

• Caching of game state at the client can help
• If caching is used, then cache must be kept up to date

8

COMP-361 Distributed Game Architectures © 2014 Jörg Kienzle

Client-Server, Thick vs. Thin Clients

• Thin GUI
• No local game state

• At the limit, the GUI does not even know what game is being played!
• Sends commands directly to the server
• Server sends information to be displayed back to the client
• Example: onlive game streaming

• “Intelligent” GUI
• Some local state

• How much state is enough?
• Can do verification of correctness of move without contacting the

server, based on local information
• Can provide user guidance / interactive help that understands the

game semantics

9

What if the entire game state is replicated on the client?

COMP-361 Distributed Game Architectures © 2014 Jörg Kienzle

Distributed System Startup

10

• Somehow your (player) machine has to connect to other (player)
machines

• Always asymmetric
• Centralized startup (à la server)

• Dedicated “startup machine” (or set of machines) that is assumed to be always running
• Location of this machine / set of machines is often hard-coded, or set in a configuration file

• When player machine starts, it connects to the startup machine to announce its
presence

• The startup machine forwards addresses of other machines to the player machine on a
need-to-know basis

• Decentralized startup (à la P2P)
• Start one (player) machine (registration peer), remember network information
• The other peers are provided with the network information of the first peer, typically in

the login / startup window
• When contacted, the registration peer forwards network information of all other

registered peers
• Sometimes also the registration peer provides a broadcast functionality that allows new

peers to announce themselves

COMP-361 Distributed Game Architectures © 2014 Jörg KienzleCOMP-533 Protocol Model © 2013 Jörg Kienzle

Networking and Turn-Based Games

• Movements of players have to be sent over the
network
• From client to server, or
• From peer to peer

• Object-oriented Solution
• Remote Command pattern
• Define a class hierarchy of move actions
• Each action knows how to validate and execute itself,

which results in updating the game state

11

COMP-361 Distributed Game Architectures © 2014 Jörg KienzleCOMP-533 Protocol Model © 2013 Jörg Kienzle

Move Hierarchy

12

Move

isValid()
execute()

Abstract class (or interface)

FireTorpedo

isValid()
execute()

Ship

DeployMine
int x
int y

Subclasses (or classes implementing interface)

public FireTorpedo extends Move {

public FireTorpedo(Ship s) {
myShip = s;

}

public boolean isValid() {
return myShip.hasTorpedo();
}

public void execute() {
myShip.fireTorpedo();

}
}

myShip 1

isValid()
execute()

1 myMineLayer

COMP-361 Distributed Game Architectures © 2014 Jörg KienzleCOMP-533 Protocol Model © 2013 Jörg Kienzle

Move Execution Peer-2-Peer

• On current player’s computer
• GUI handles player input until it determined what move the player

wants to execute
• GUI instantiates the corresponding move object
• GUI verifies if move is valid by calling isValid()

• isValid() calls the appropriate verification methods on the
model (i.e. package / classes containing the game state)

• GUI gives move to the move executor
• Executor executes move on the game state by calling execute()

• Move is sent to the other players’ computers (using serialization)
• On other computers

• Move instance is read from the network and given to executor
• Executor executes move on the game state by calling execute()

13

COMP-361 Distributed Game Architectures © 2014 Jörg KienzleCOMP-533 Protocol Model © 2013 Jörg Kienzle

Move Execution Client-Server

• On current player’s client machine
• GUI handles player input until it determined what move the player wants to

execute
• Optional verification (only possible if the client knows about relevant game state)

• GUI instantiates the corresponding move object
• Move object is sent to server

• On server
• Move instance is read from the network and given to executor
• Executor validates move by calling isValid() (if not already done on the

client)
• If validation succeeds, executor executes move on the game state by

calling execute()
• “move effect” (i.e. updated game state) is sent to all players

• If validation fails, exception is sent back to the current player’s machine

• On all player’s client machines
• Move effects are displayed

14

COMP-361 Distributed Game Architectures © 2014 Jörg Kienzle

Questions?

15

? ??
?

??

? ?
?

