
COMP-361 Software Engineering Project

Medieval Warfare
Jörg Kienzle



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Game Overview
• Turn-based, multiplayer, resource gathering, 

strategic game!
• Players start with a preset amount of land!
• Each region controls a village!
• Villages can train villagers, that can take over 

other land tiles or gather wood!
• Goal: take over the entire island

2



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Island Map
• At least 300 hexagon tiles!
• Any shape, surrounded by 

sea tiles!
• Tiles colored with #players + 

1 colors!
• One color represents neutral territory!
• Regions with less than 3 tiles are 

always neutral!
• 20% of tiles contain trees!
• 10% of tiles contain 

meadows

3



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Villages (1)
• Each region of at least 3 tiles 

always contains a (randomly 
placed) village!

• Each village has a treasury of gold 
and a wood pile!

• At the start of each turn, each land tile generates 1 
gold for the village it belongs to!
• Meadow tiles generate 2 gold, tiles with a tree don’t generate any gold!

• Then, the village has to pay the wage of all its 
villagers. If a village has insufficient funds to pay his 
villagers, all the villagers of the region under control 
of the village perish

4



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Villages (2)
• Villages can be upgraded!
• Hovel: initial state (no cost)!

• Can recruit peasants and infantry!
• Town: 8 wood!

• Can recruit peasants, infantry and soldiers!
• Can build towers!

• Fort: built town and 8 wood!
• Can recruit peasants, infantry, soldiers and knights!
• Can only be invaded by a knight

5



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Villagers
• A village can spend gold to train a villager!

• Peasant: 10 gold, upkeep 2!
• Can’t invade enemy territory!
• Can cultivate meadows!

• Infantry: 20 gold, upkeep 6!
• Can’t invade villages!

• Soldier: 30 gold, upkeep 18!
• Knight: 40 gold, upkeep 54!

• Can’t ride through the forest!
• Tramples meadows!
• Won’t do any labor!

• Upgrading / combining villagers is possible

6



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Moving Villagers
• A villager commands the tile it is on, as well as the 

6 adjacent tiles!
• A tile can only hold one villager, structure or tree 

at a time!
• Each turn, a villager can move to any place on his 

region provided there is a path leading from his 
current position to the destination position, until he 
performs one of the following actions:!
• Acquiring New Land!
• Gathering Wood!
• Clearing a Tombstone!
• Cultivating a Meadow!
• Building a Road

7



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Invading (1)
• Peasants can only acquire neutral land!

• The color of the tile changes!
• If there is a tree on the tile, wood is collected!
• If two regions of the same color are connected, the two villages 

“join”!
• The most advanced village is kept (or else the one commanding the 

biggest region), and the resources are joined!
• The other village is removed

8



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Invading (2)
• Villagers of the rank of infantry or higher can 

invade enemy territory!
• An infantry can only invade enemy territory if it is not protected (1 

hex distance) by an infantry of equal rank or higher!
• If a region can no longer support a village after being invaded, the 

village is turned into a tree and the land converted to neutral 
territory

9



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Invading Villages
• A village can be invaded by a soldier or knight!

• In this case, all the gold and wood of the village is transferred to 
the village of the invader!

• The village is destroyed (and a new hovel is recreated somewhere 
else, if the remaining region is big enough)

10



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Structures
• A town or fort can build a tower!
• Towers cost 5 wood!
• Once built, towers can not be moved!
• Towers act just like an immobile soldier, 

but with no upkeep

11



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Turn Overview
1. Tree Growth Phase!
2. Player Phase: For each player (in 

predetermined order) iterate through:!
1. Tombstone Phase!
2. Build Phase!
3. Income Phase!
4. Payment Phase!
5. Death Phase!
6. Move & Purchase Phase

12



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Additional Requirements
• UI Assistance for looking at your villages / army!

• Make it playable! !
• Loadable or Random Islands!
• Distribution!

• Game Server!
• Three players should be able to play against each other on three 

different machines connected over a network!
• Saving!

• You must allow players to save the current game state in order to 
continue playing at a later time

13



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Project Milestones
• Final grade divided into!

• 3% for the user interface sketch (mid October)!
• 15% for the requirements models (late November)!
• 12% for the design models (early January)!
• 15% for the demo (early March)!
• 20% for the acceptance test (April)!

• Groups of maximum 5 students!
• Same grade for all members of a group!

14



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

User Interface Sketch
• Prepare a sketch (hand drawn or printout) of the 

main screens of your application!
• Should allow the player to trigger all functionality 

described in the requirements document!
• Interaction with the game server!
• How does a player see the island?!
• How does he control his villages?!
• How does he move his villagers?!
• How does he build structures?!
• How does he build upgrades?!
• How are functions such as saving accessed?

15



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Requirements Models
• Requirement models unambiguously specify the 

functionality that your game design/
implementation needs to provide!
• Use case model, to specify interactions with the system!
• Concept model, to specify conceptual game state stored within the 

system!
• Environment model, to specify the interface that the system 

provides to the environment!
• Operation model, to specify the effects of individual system 

interactions!
• Protocol model, to specify the supported system interaction 

scenarios

16



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Design Models
• Design models that provide a detailed blueprint 

the structure (classes) and behaviour (methods) 
of your implementation!
• Design class model!
• Interaction model!

• Focus is only on the part of the design that deals 
with the game state / the game rules / moves!
• No graphics-related classes!
• No network / communication-related classes

17



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Development Environment
• Whatever programming language you like!

• Must be object-oriented!
• We will support!

• Java / Minueto!

• The demo and acceptance Test will be held 
either in the Trottier building!
• Bring your laptops / PDAs / game consoles / desktops, if 

necessary

18



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Demo
• I will provide you with a list of functionalities that 

you need to demo!
• You are allowed to demo more!
• You run the show, we sit there and observe!

• 80% of the grade is based on correct 
implementation of the requested functionality 
(and no crashes / visible bugs)!

• 5% for the presentation quality!
• 15% for additional functionality

19



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Maintenance Phase
• After the demo week, there will be some slight 

changes to the game rules.!
• Simulates “real-life” software development!

• Write structured, modular, extensible code!

20



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Acceptance Test
• WE are in control! We run the show, you sit and 

observe.!
• We’ll use your software, trying to detect bugs / wrong 

implementations of the game rules!
• We will test for ALL the functionality specified in the 

requirements!
• Correct (and playably fast) implementation 
⇒ A- (80%)!

• Additional points for ease-of-use, coolness, 
innovation, additional features, PLAYABILITY (20%)

21



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Flexibility
• Change properties of units!
• Change movement rules!
• Add new units / structures!
• Add new upgrades!
• Add new resources!
• Add “races”!
• Make the game “real-time” 
!

• Document your changes and discuss them with me!
• No “last minute” changes 

(in the Winter semester, no big changes will be accepted)

22



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Some Suggestions
• Start working early. !
• First strive for a simple, correct implementation. Later (if there is 

time enough), add more sophistication.!
• Always keep the deadlines in mind. For the demo you must 

have a functional, convincing application. Do not make big 
changes on the day that precedes the demo or the acceptance 
test (or else be sure to have a functional copy on a safe 
backup...)!

• Keep everyone in the group in “a good mood”.!
• Come up with an initial architecture of the application, then 

assign responsibilities to group members. Have regular group 
meetings to consolidate your work.!

• Testing takes time.!
• Plan for the unpredictable!!
• Start working early!

23



COMP-361 Software Engineering Project © 2014 Jörg Kienzle

Questions?

24

? ??
?

??

? ?
?


