
COMP-361 Software Engineering Project

Software
Engineering Project

Jörg Kienzle

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Overview
• Course goals!
• Course info!
• Textbooks!
• About the Project!
• Grading!
• Background on me!

• My game background!
• My current research

2

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Course Goals

• Learn about and experience software
engineering, in particular model-driven
engineering!

• Develop a (medium-sized) application
using object-oriented technology!

• 1-Year Project!
• Master an object-oriented programming language!

• Work in a (small) group!
• Communicate!!

• Have fun!

3

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Specific Objectives
• Modelling!

• Elicit and specify requirements!
• Design solution that fulfills the requirements!

• Assuring software quality!
• Testing software for regression and acceptance!

• Software Maintenance!
• Working with software engineering tools!

• Modelling tools!
• Compilers!
• Debugger!
• Profiler!
• Version Control!

• Effective team work and team management!
• Relevant project for “Games Option” Students

4

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle 5

Course Goals (2)

Develop a Game!

strategic

multi-player

turn-based (real-time)

distributed2D (3D)

tile-based

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Course Outline (1)
• Intro!

• Software Life-Cycle!
• Model-driven Engineering!

• Requirements!
• Use Cases!
• (Object-Oriented) Domain Modelling!
• Specification of Border between System and Environment!
• Specification of System Protocol

6

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Course Outline (2)
• Design!

• Object-Oriented Structural Design!
• Class Diagrams!

• Object-Oriented Behaviour Design!
• Sequence Diagrams!

• Mapping Requirements to Design!
• Good Design!
• Design Patterns!

• Implementation!
• Mapping Design to Implementation!
• Testing!
• Maintenance

7

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Course Info
• Pre-requisites: 

COMP-206 and COMP-250!
• Course co-requisite 

COMP-303!
• Course hours:!

• Monday, Wednesday: 2:35 - 3:55!
• Course webpage:!

• http://www.cs.mcgill.ca/~joerg/SEL/COMP-361_Home.html!
• Lecture Schedule, Meeting Schedule, Handouts, Course

Slides!
• MyCourses will be used for hand-ins and discussion

groups

8

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

About Me
Jörg Kienzle 
McConnell Engineering, room 327 
Email: Joerg.Kienzle@mcgill.ca  
Phone: (514) 398-2049 
!

Office hours:!
Monday: 13:30 - 14:20  
+ any other time 
(send email)

9

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Jörg’s Background
• Born in Princeton, NJ, USA!
• German parents!
• Grown up in Basel, Switzerland 

(German speaking part)!
• Studied at the Swiss Federal Institute of

Technology, Lausanne 
(French speaking part)!

• Married to a Canadian Girl

10

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

TAs
!

Nishanth Thimmegowda 
McConnell Engineering, room 322 
Email: Nishanth.Thimmegowda@mail.mcgill.ca!
Office hours: Fridays 15:00 - 16:00 (or send email)!
!

Matthias Schöttle 
McConnell Engineering, room 322 
Email: mschoettle@cs.mcgill.ca!
Office hours: Wednesdays 10:00 - 11:00 (or send email)

11

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Textbook on SE in General
• Van Vliet, Hans: Software Engineering: Principles

and Practice, 3rd Edition. Wiley, 2008, 740
pages.

12

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Books on using UML for SE (1)

• Craig Larman: 
Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design, 
First Edition, Prentice Hall, 1998. 
ISBN: 0137488807!
• Note: The new second/third edition of the book is based on the

Rational Unified Process (RUP) rather than the Fusion process.

13

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Books on UML (3)
• James Rumbaugh, Ivar Jacobson and Grady Booch. 

The Unified Modeling Language Reference Manual, 2nd
edition. Object Technology Series, Pearson Higher
Education, 2004. 
(ISBN 0-321-24562-8)!

• Warmer, J.; Kleppe, A.:  
The Object Constraint Language: Getting your models ready
for MDA. Second Edition. Object Technology Series,
Addison–Wesley, Reading, MA, USA, 2003. 
(ISBN 0-321-17936-6)!

• UML Specification 
(available for download from the OMG website)

14

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Books on Design
• Design Patterns!

• E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994. 
ISBN: 0201633612!

• Games!
• Rudy Rucker: Software Engineering and Computer Games,

Addison Wesley, 2003. 
ISBN: 0201767910!

• David Brackeen, Bret Barker, Laurence Vanhelswue: 
Developing Games in Java. New Riders, 2003. 
ISBN: 1592730051

15

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Project Details
• Groups of maximum 5 students!
• Whatever programming language you like!

• Must be object-oriented!
• Whatever platform you prefer!

• PC / Linux / Mac!
• Xbox, Gamecube, PS 3, Wii, and older!
• PDAs, iPod / iPhone!

• We will support!
• Java!
• Graphics library: Minueto (http://minueto.cs.mcgill.ca/)

16

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Grading
• Final grade (Winter 2015!) divided into:!
• Project (65% of final grade, one grade for each group)!

• 3% for the user interface sketch!
• 15% for the requirements document!
• 12% for the design document!
• 12% for the demo (March 2015)!
• 23% for the acceptance test (April 2015)!

• Exams (35% of final grade, individual)!
• 20% Exam on Requirements / Modelling (December 2013 during final exam period)!
• 15% Exam on Design (February/March 2014 during mid-term period)!
!

McGill University values academic integrity. Therefore, all students must
understand the meaning and consequences of cheating, plagiarism and
other academic offences under the Code of Student Conduct and
Disciplinary Procedures!

(see http://www.mcgill.ca/integrity for more information).

17

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

My Interests in a Nutshell (1)

• Concern-Oriented Software Development (COSD)!
• Concerns are the main focus during software development!

• COSD builds on!
• Model-driven Development!
• Reuse!
• Separation of Concerns!

• Model Transformation Technology!
• Model interfaces!
• Model customization!
• Model weaving!

• Aspect-Oriented Modelling / Aspect-Oriented
Programming

18

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

My Interests in a Nutshell (2)

• Fault tolerance!
• Integrating the concern of fault tolerance into the software

development cycle!
• Determine the need for fault tolerance at the analysis level!
• Choose an appropriate architecture and fault tolerance model during

design!
• Providing fault tolerance to the programmer (frameworks, aspect-

orientation)!
• Implementing fault tolerance models on top of COTS middleware!
• Fault tolerance in massively multi-player games

19

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

My Game Background (1)
• Gate!

• Action / Adventure!
• Apple II GS: Assembler!
• Macintosh: Assembler (graphics), C, Pascal!

• Spacefox!
• Side-scrolling shoot-them-up!

• Game Review: http://www.youtube.com/watch?v=D61GUnqqG00!
• Apple II GS: Assembler!

• Hexomania (Hex)!
• Board-game!
• Shareware!
• Macintosh: C++!

• Geokid!
• Kid game!
• Macintosh: C++

20

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

My Game Background (2)
• Apple II GS!

• 2.8 MHz processor (Motorolla 65C816)!
• Graphic Resolution 320x200 (4096 colors)!
• 32 channel sound!
• 1MB RAM!
!
!

• Apple Macintosh!
• 20 MHz processor (Motorolla 68020)!
• Graphic Resolution 640x480 (24bit colors)!
• 16MB RAM

21

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Current Projects: Mammoth

• Massively Multiplayer Game Research 
Framework!
!

• http://mammoth.cs.mcgill.ca/!
• Research areas:!

• Scalability, Fault Tolerance, Persistence & Data Bases, 
Cheat Detection, Consistency, Modeling, AI, Simulation, 
Content Creation!

• 3 Professors:!
• Jörg Kienzle, Bettina Kemme, 

Clark Verbrugge

22

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Mammoth World
• Worlds of different size and 

Sophistication!
• Small 2D Worlds!
• Large 3D Worlds!

• Fixed number of characters!
• Players take control of a

character 
when they log in!

• Players can!
• Walk around!
• Take/drop/look at objects!
• Talk to other players

23

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle 24

Mammoth Evolution

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Current Features of Mammoth

• Distributed Architecture!
• Different Network Implementations!
• One Server + Clients!
• Several Servers + Clients!
• Peer-2-Peer !

• Monitoring Infrastructure!
• Profiling / Logging / Replay!

• Testing Infrastructure!
• Web server for remote debugging!
• Powerful AIs to simulate players!
• Automated distributed testing

25

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Mammoth Distributed Architecture

• No server can store an entire virtual world!
• Multiple “servers” are needed

26

Server 1

Server 2

Server 3

Server 4

Server 5

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Mammoth Distributed Architecture

• Split the world into cells based on obstacle-aware
triangular partitioning

27

Server 1

Server 2

Server 3

Server 4

Server 5

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Mammoth Distributed Architecture

• Game state is split into objects, which are distributed
among the servers

28

Server 1

Server 2

Server 3

Server 4

Server 5

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Mammoth Distributed Architecture

• Cell servers receive copies of all objects that are located in a cell!
• Additional copies for fault tolerance and cheat detection

29

Server 1

Server 2

Server 3

Server 4

Server 5

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Mammoth Distributed Architecture

• A player that joins the game connects to the server of
his cell, which creates master player object

30

Server 1

Server 2

Server 3

Server 4

Server 5

Player Machine

P

P

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Mammoth Distributed Architecture

• Cell server calculates interest match and makes sure that
the player machine receives all relevant game objects

31

Server 1

Server 2

Server 3

Server 4

Server 5

Player Machine

P

P

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Mammoth Research
• Load Balancing!

• Master objects migrate from machine to machine based on load!
• Cells can shrink/grow to reduce/increase server load

32

Example:
Many players move

to the left of the World

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

Mammoth Research
• Load Balancing!

• Master objects migrate from machine to machine based on load!
• Cells can shrink/grow to reduce/increase server load!

• Fault Tolerance!
• Replicas can recover state of lost master objects!

• Cheat Detection!
• Trusted nodes audit other nodes!

• Exploiting the Cloud to host Mammoth game
services!
!

• Many interesting projects!

33

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

TouchRAM
• Tool of Agile Software Design Modelling!

• Support for Class Diagrams, Sequence Diagrams, State Diagrams!
• Reusable Concern Model Library

34

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

TouchRAM GUI
• Multi-Touch!

• Intuitive editing using multi-touch gestures!
• Significant speedup for!

• Navigating big models!
• Moving / rearranging classes!
• Establishing mappings between design concerns!

• Simultaneous support for multi-touch (TUIO) as well as mouse / 
keyboard input!

!

• Multi-User!
• Every GUI Element 

can define its own 
gesture processors

35

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle

TouchRAM Trailer

36

COMP-361 Software Engineering Project - Course Overview © 2014 Jörg Kienzle 37

Questions?

? ??
?

??

? ?
?

