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Tübingen. It was an experience that I will never forget.

I would like to thank my parents for giving me such a great start in life. They

instilled in me the value of education, and have supported me in countless ways.

I would also like to thank my sisters, Ann-Marie and Christina, for their love and

support.

ii



Finally, I would like to thank my wife Masoumeh for her love and encouragement.

Throughout this year, she has stood beside me to pick me up whenever I was stuck

and to celebrate every success. She has made this the happiest year of my life.

iii



ABSTRACT

The computational model of Quantum Finite Automata has been introduced

by multiple authors (e.g. [38, 44]) with some variations in definition. The objective

of this thesis is to understand what class of languages can be recognized by these

different variations, and how many states are required.

We begin by showing that we can use algebraic automata theory to character-

ize the language recognition power of QFAs. Algebraic automata theory associates

to each language a canonical syntactic monoid, and the algebraic structure of this

monoid becomes a meaningful parameter in describing language classes. We show

that the class of languages recognized by Latvian QFAs [3] corresponds exactly to

boolean combinations of languages recognized by Brodsky and Pippenger’s QFA

model [20], which correspond exactly to those languages whose syntactic monoid is

in the class BG. Known results give us a decision procedure for testing membership

in this language class. We also use algebraic automata theory to give nearly tight

upper and lower bounds on the class of languages recognized by Brodsky and Pip-

penger’s QFAs.

We then extend a number of lower bound techniques known for Kondacs and

Watrous’ 1-way QFA model to Nayak’s Generalized QFA. Both of these models are

related in that they are permitted to halt before reading the entire input, allowing

them to recognize certain languages whose syntactic monoid lies outside of BG.

Finally, we investigate the question of QFA succinctness. It is known that QFAs
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can recognize some languages using exponentially fewer states compared to deter-

ministic finite automata. We extend results from [16] to show that the word problem

over abelian groups has this property. We also give example of interesting noncom-

mutative languages with this property.
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ABRÉGÉ

Nous étudions dans cette thèse les automates quantiques finis (QFA), un modèle

de calcul dont plusieurs définitions coexistent (e.g. [38, 44]). L’objectif central de leur

étude est de comprendre quels sont les langages qui peuvent être reconnus par cha-

cune des variantes et de déterminer le nombre d’états nécessaires pour ces calculs.

Nous montrons d’abord que la théorie algébrique des automates peut servir

à caractériser la puissance de calcul des QFAs. La théorie algébrique des auto-

mates associe à chaque langage régulier un monöıde syntactique: plusieurs classes

importantes de langages peuvent alors être mises en relation avec les propriétés

algébriques de ces objets. En exploitant cet angle d’attaque, nous montrons que

la classe de langages reconnus par les QFA dits “Lettons” [3] cöıncide d’une part

avec la classe des combinaisons booléennes de langages reconnus par les QFAs de

Brodsky et Pippenger [20] et, d’autre part, à la classe de langages dont le monöıde

syntactique appartient à la classe BG. Cette caractérisation démontre également

l’existence d’un algorithme permettant de déterminer si un langage donné appar-

tient à cette classe. L’approche algébrique nous permet aussi d’établir des bornes

inférieures et supérieures très proches l’une de l’autre pour la classe de langages qui

peuvent être reconnus par les QFAs de Brodsky et Pippenger.

Nous montrons ensuite que plusieurs des méthodes permettant de borner la puis-

sance des QFAs “1-way” de Kondacs et Watrous peuvent être étendues aux QFAs

généralisés de Nayak. Ces deux modèles peuvent tous les deux arrêter leur calcul
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avant d’avoir terminé la lecture de leur entrée et peuvent ainsi reconnâıtre des lan-

gages dont le monöıde syntactique n’est pas dans BG.

Finalement, nous étudions les QFAs succints. On sait que certains langages

reconnus par des QFAs peuvent l’être par des automates quantiques qui utilisent

un nombre d’états exponentiellement plus petit que leurs équivalents déterministes.

Nous étendons les résultats de [16] et montrons que cela est le cas pour le problème

du mot de tout groupe abélien. Nous donnons également la première construction

de ce type pour une famille de groupes non commutatifs.
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CHAPTER 1
Introduction

The central objective in theoretical computer science is to obtain a rigorous

and formal understanding of computation. In particular, we would like to determine

which problems can or cannot be solved with the use of a given set of computational

resources. The fundamental resources of interest are time and space, but investiga-

tions outside of this framework have also produced considerable insight. Notable ex-

amples include the study of randomized computation [32], parallel computation [23],

and nondeterminism [22].

In recent years there has been a push to better understand the power of com-

putational devices which make nontrivial use of the principles of quantum mechan-

ics. The excitement is driven by many interesting results, among them the discov-

ery of a polynomial time quantum algorithm for factorization [59], a robust formal

definition of a quantum computer [25, 13, 69] and the necessary error correction

schemes [60], the discovery of quantum teleportation [11] and strong quantum cryp-

tograpic schemes [12].

Much of the existing theoretical research into quantum computation has been

in the pursuit of the ‘quantum analogue’ of established concepts in theoretical com-

puter science and in related branches of mathematics. These include the quantum

analogues of complexity classes [37, 68], formal grammars [44], random walks [1],

and information [46].
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A rich theory of finite automata has been developed to understand the power of

computational devices which use finite memory. In this thesis, we study Quantum

Finite Automata (QFAs), which are the analogue of finite automata in the sense that

they model what computations can be performed by an online quantum machine with

memory whose size does not change with the size of the input. Automata theory

plays a foundational role in computer science, and it is hoped that some of this

success can be transferred to the quantum case.

Quantum finite automata can be used to model the dynamics of finite quantum

systems in the same way that deterministic finite automata model the dynamics

of discrete finite systems. They are a simple model of quantum computation, and

a good understanding of QFAs can produce results in related areas of quantum

information science, for example as they did in the case of dense quantum coding [7].

Furthermore, it is important to understand the power of quantum computation in

space restricted settings, as the best current implementations of quantum computers

have only small constant-sized memory [67].

1.1 The Algebraic Approach

The class of finite automata and the class of regular languages which they rec-

ognize is an island of solid ground from which to launch theoretical investigations.

For many years, researchers have sought to further strengthen our understanding of

the regular languages by characterizing subclasses of the regular languages.

For a given automaton M with input alphabet Σ, each word in Σ∗ will induce

an operator on the set of states of M . These operators form forms a finite monoid

under composition. It is well established that by taking this algebraic perspective
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on finite state machines, we obtain powerful insight into the structure of subclasses

of the regular languages. This approach is known as Algebraic Automata Theory.

The ideal framework for the theory was developed by Eilenberg [27], who es-

tablished a bijection between regular language classes which satisfy certain closure

properties, called varieties of languages, with varieties of monoids. An extensive

research program has uncovered a rich taxonomy of regular language classes with

matching algebraic characterizations. Famous results include the algebraic charac-

terization of star-free languages by Schützenberger [57] and of the piecewise testable

languages by Simon [61]. These results has been applied to several areas in theoretical

computer science, such as logic [42, 63] and circuit complexity [39, 8].

In this thesis, we apply algebraic automata theory to the study of quantum

finite automata. We are able to prove a number of characterizations of the languages

recognizable by these different QFA variations, and identify a number of surprising

interrelations between them. These results are obtained using established knowledge

of algebraic automata theory and results which are developed in the thesis.

1.2 Our Contributions

Several models of quantum finite automata have been proposed, and there is

no clear consensus on which of these is the most appropriate. Each model allows

for a different set of possible actions on reading an input letter. These differences

correspond to different underlying physical assumptions. In this thesis we prove

several properties of QFAs which, taken together, give us a much clearer picture of

the interrelation between these different models.
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We focus our attention on five QFA models from the literature. The simplest of

these is the Measure-Once QFA (MOQFA), which are restricted to unitary transfor-

mations. MOQFA can only recognize languages which can in turn be recognized by

permutation automata. However they can do so using much fewer states [5]. Several

generalizations of this definition have been considered. In Kondacs and Watrous’

definition (KWQFA), the machine is permitted to halt before reading the entire

output. This is the most studied of the five variations. Another way of generaliz-

ing MOQFAs is to introduce some randomness through intermediate measurements.

This corresponds to the definition of Latvian QFA (LQFA). The Generalized QFA

(GQFA) definition simultaneously generalizes KWQFA and LQFA. The final defini-

tion, from Brodsky and Pippenger (BPQFA), corresponds to an important subclass

of KWQFA.

We begin in Chapter 2 with an overview of the basic principles and formalism

for quantum mechanics. We survey a number of computational models based on

quantum mechanics, and we introduce the five variations of QFA which we consider.

In the second half of the chapter, we give an introduction to algebraic automata

theory.

In Chapter 3 we consider applications of Eilenberg’s variety theory to charac-

terize the class of languages recognized by different QFAs, including new results for

LQFA and BPQFA. In Chapter 4 we consider a generalization of Eilenberg varieties

to positive varieties in order to get a more refined characterization of the languages

recognized by BPQFA. In Chapter 5 we extend some known techniques of Ambainis

and Freivalds [4] as well as the LQFA characterization of Chapter 3 in order to prove
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impossibility results for GQFA. Finally in Chapter 6 we consider the question of

constructing succinct QFAs. We provide new constructions for succinct QFAs, and

we present some preliminary results which could be used to prove lower bounds on

QFA size.

1.2.1 Characterizations of QFA

The objective of Chapter 3 is to apply Eilenberg’s variety theorem to obtain

algebraic characterizations of the computational power of QFA. We begin by con-

sidering which of the QFA variations have the necessary closure properties to form

varieties of languages. A language variety is a class of languages which is closed

under boolean operations, inverse morphisms, and word quotient. If for a particular

QFA variation we can give constructions for all of these closure properties, this would

immediately imply the existence of some exact algebraic characterization of this type

of QFA. We see that this is true for MOQFA and LQFA.

The class of languages recognized by MOQFA is known [44] to correspond ex-

actly to the class of languages recognized by permutation automata. We show that

this result has a nice interpretation in terms of algebraic automata theory.

Next we consider the case of LQFA. We obtain an exact algebraic characteriza-

tion: LQFA can recognize exactly those languages whose syntactic monoid is in the

variety BG of block groups. The proof involves known properties of the class BG

as well as several technical results regarding LQFAs. To obtain the characterization,

we give a construction for LQFA to recognize the language Σ∗a1Σ
∗ . . . akΣ

∗, which

implies that LQFA can recognize all languages which are recognized by monoids in

the class J of J -trivial monoids. Then, we use algebraic tools to extend this to all
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languages which are recognized by monoids in BG. Finally, we show that LQFA

cannot recognize the languages aΣ∗ or Σ∗a, and it turns out that this suffices to

complete the argument.

There are a number of nice consequences of the LQFA characterization. Since

membership in BG is decidable, this implies that recognizability by LQFA is also

decidable. Furthermore, it implies the following characterization of languages recog-

nized by LQFA: L is recognized by LQFA iff it is a boolean combination of languages

of the form L0a1L1 . . . akLk, where each Li is a language recognized by a group.

A similar line of argument is then used to show that a language L is a boolean

combination of languages recognized by BPQFA if and only if its syntactic monoid

is in BG. This is a surprising connection between BPQFA and LQFA, since the

types of permitted transformations for these two variations are quite different on the

surface. The proof that boolean combinations of BPQFA is contained in BG relies

on some existing lower bound techniques for KWQFAs.

1.2.2 BPQFA

In Chapter 4 we begin a finer investigation on the class of languages recognized

by BPQFA. We begin with a proof that BPQFA cannot recognize the complement

of the language Σ∗aΣ∗bΣ∗. The language Σ∗aΣ∗bΣ∗ can be recognized, however, so

the class of languages recognized by BPQFA is not closed under complement. This

language class does however form what is called a positive variety, which implies that

there is some exact characterization for this class in terms of a structure called ordered

monoids. We introduce the theory of ordered monoids and give some important

examples of positive varieties of monoids.
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We make a number of steps towards obtaining this exact characterization, ob-

taining nearly matching upper and lower bounds. On one hand, we present several

constructions that provably extend the class of languages known to be recognizable by

BPQFA. On the other hand, we develop an algebraic property that implies nonrecog-

nizability by BPQFA. The results seem to point to the conjecture that L is recognized

by BPQFA if and only if its ordered syntactic monoid is in (Nil+ mOJ1) ∗G.

1.2.3 GQFA

There are a number of impossibility results which exist for KWQFA [38, 4, 5, 6].

These results relate the recognizability of a language L by KWQFA to properties of

the minimal automaton for L. In this chapter we investigate similar impossibility

results for the case of GQFA.

Nearly all of the impossibility results for KWQFAs rely in part on a key lemma

that separates the state space into two parts according to their behavior: the ergodic

and the transient part. We show that this powerful lemma can be extended to the case

of GQFA. This gives us a deeper understanding of the structure of GQFAs. Using this

characterization, we can extend several KWQFA impossibility results to the GQFA

case. These results highlight several key properties of GQFA, including the fact that

the class of languages recognized by GQFA is not closed under complement, and that

there are languages which can be recognized by GQFA with probability p = 2/3 but

not with probability p > 2/3.

1.2.4 MOQFA Succinctness

An interesting property of quantum finite automata is that they can recognize

certain languages using much fewer states than the smallest deterministic automaton,
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or even the smallest randomized automaton [4]. In an early result, it was shown that

languages of the form Lp = {w : |w| mod p = 0} for prime p have MOQFA size

O(log p). However, little is known regarding which languages can be recognized

succinctly and which ones cannot.

Recently in [16] it was shown that the word problem over groups of the form Zh
n

can be recognized by MOQFA using O(log n) states. We show that this is true for

all abelian groups. We show some new languages which can be recognized succinctly,

including some interesting examples of succinctly recognizable noncommutative lan-

guages. We also present some ideas for normalizing QFA transitions in the hopes of

proving lower bounds on QFA size.
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CHAPTER 2
Background

In this chapter, we outline the necessary background for the discussion in the

later chapters. In Section 2.1, we introduce quantum mechanics and quantum com-

putation, and we give formal definitions for quantum finite automata. In Section 2.2

we introduce the fundamental concepts of algebraic automata theory, the main tool

of our investigation.

2.1 Quantum Computation

The objective of this section is to introduce the mathematical foundations of

quantum mechanics, and to give formal definitions to quantum finite automata. Be-

fore we begin, we give an informal introduction to fundamental concepts in quantum

mechanics.

Quantum Mechanics is a mathematical framework for describing certain physical

properties occurring at the atomic and sub-atomic level. This framework gives a good

description of certain physical effects which are not adequately explained by classical

mechanics.

Quantum mechanics resolves two seemingly contradictory observations about

the nature of energy. The first of these observations is the apparent wave-like be-

haviour of energy, as seen for example in the diffraction and interference of light, and

the interpretation of light as electromechanical waves. A concrete example of this

can be seen in Young’s double-slit experiment. In this experiment, a light is shone
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towards a filter consisting of two small slits, and then projected onto a screen. The

resulting image exhibits an interference pattern that one would expect if light was

composed of waves.

The second observation is that, for a fixed source and receiver of energy, the

amount of energy received will often occur at discrete multiples of some fixed con-

stant. This would suggest that, like atomic particles, energy should be distributed in

discrete packets that take up a well-defined position in space. These energy packets

are called quanta, and in the case of light they are called photons. This observation

of discretized energy matches well with Bohr-Rutherford model of an atom, where

electrons take discrete valence levels within an atom, and the energy level of an

atom depends on the position of electrons within the different orbital levels. When

an atom stores or releases energy by moving an electron between two orbitals, this

will cause a photon of discrete magnitude to be absorbed or dissipated.

The two observations run into a conflict when we find that even single quanta

can produce wave-like effects such as interference. This aspect of subatomic behavior

is referred to as wave-particle duality. Quantum Mechanics reconciles the particle

and wave nature of energy into a single theory. The quantum mechanical explana-

tion of the wave-particle phenomena is that quanta behave as waves while they are

propagating from sender to receiver, but they take on fixed positions as soon as their

position is observed.

More formally, suppose we consider some measurable property of a particle, such

as the position of a particle in space. Let X be a set of possible positions. While the

particle is not being observed, the quantum state of the system is a vector consisting
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of complex values ci called amplitudes associated to every xi ∈ X, with these ci’s

satisfying
∑

i |ci|2 = 1. The probability of observing the outcome xi in this state is

then |ci|2. As time passes, the state may change, and the ci’s are updated according

to a linear transformation which preserves the condition
∑

i |ci|2 = 1. It is important

to note that, as an independent observer of a quantum state, we do not have full

knowledge of the amplitudes composing a quantum state. Rather, we obtain partial

information about these amplitudes by performing measurements.

This is similar to the framework that is seen in a random state. For a random

state, each possible position xi has associated with it a positive real pi satisfying∑
i pi = 1, and the evolution of the state over time is expressed as a linear transfor-

mation which preserves the condition
∑

i pi = 1. In the quantum case, the negative

and complex amplitudes introduce the possibility that two or more quantum poten-

tialities may cancel each other. This suggests that a particle does not take a concrete

position until the time that it is measured.

Quantum mechanics has a reputation for being very complicated due to the

counter-intuitive consequences of the theory. The mathematics of quantum mechan-

ics, however, is accessible to anyone with a background in linear algebra. We begin

this section with a review of linear algebra, with particular attention to the concepts

which arise when using quantum mechanics. In Section 2.1.2 we give the formal

laws of quantum mechanics. Section 2.1.3 gives an overview of the history of quan-

tum computation, outlining the important computational objects of study. In the

last section we give the formal definition of the QFA models we consider and some

discussion.
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2.1.1 Preliminaries

We first review some linear algebraic concepts that arise frequently in quantum

mechanics, and we introduce Dirac’s vector notation. An expanded introduction can

be found in [46].

Linear Algebra Primer

Recall that for any vector space V over field F, or F-vector space, there exists

a set B ⊆ V such that any vector v ∈ V can be expressed uniquely as a linear

combination
∑

b∈B vbb, where vb ∈ F. Such a set is called a basis for V . It can be

shown that any two bases for V must have the same cardinality, and this value is

called the dimension of V . We will be chiefly concerned with finite dimensional V ,

in which case we can express a v as an n-dimensional column vector. The vectors in

space V form an abelian group under addition, and we denote by 0 the identity.

For vector spaces V and W over F, we say that A : V → W is a linear transfor-

mation if it satisfies A(v1 + v2) = A(v1) + A(v2) and A(αv1) = αA(v1) for arbitrary

v1, v2 ∈ V , α ∈ F. Such a transformation can be expressed as a matrix of m × n

coefficients, where m and n are the dimensions of W and V respectively. We often

identify a linear transformation with its matrix representation.

We will denote by Av the image of v under A. As we are acting on the left,

we will denote the composition of two linear transformations A and B as BA. BA

is again a linear transformation. If V = W , we call A a linear operator. For each

vector space there is a unique linear operator I such that Iv = v for all v ∈ V . We

call this the identity operator on V . If B is an operator such that AB = BA = I,
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then we call B an inverse of A. If A has an inverse, it is necessarily unique and we

denote it as A−1.

We say that v 6= 0 is an eigenvector of A if Av = λv for some λ ∈ F. Then λ is

the eigenvalue of A corresponding to v. The set of eigenvector-eigenvalue pairs of a

linear operator characterize many important properties of that operator.

For a given eigenvalue λ, the set of all v such that Av = λv forms a subspace,

which is called the eigenspace associated with λ. The dimension of this space is called

the multiplicity of λ,

We define the trace Tr(A) of a complex linear operator A to be the sum of

the diagonal coefficients when A is represented as a matrix. This sum will be equal

to the sum of the eigenvalues taken with their multiplicities, and thus is invariant

under a change of basis. A useful property of the trace operation is that it satisfies

Tr(AB) = Tr(BA) for linear operators A and B.

Inner Product Spaces

We now restrict our attention to complex vector spaces. An inner product func-

tion on V is a function (·, ·) : V × V → C that is linear in the second argument, is

conjugate symmetric (i.e. (v, w) = (w, v)), and is such that (v, v) is nonnegative real

for all v ∈ V . We say that V equipped with such an inner product is called an inner

product space.

The conditions on the inner product function allow us to introduce notions of

lengths and angles to the vector space. First, we say that the norm ‖v‖ of a vector v

is the quantity
√

(v, v). We say that vectors of unit length are normal. To normalize

a vector is to scale a vector to unit length. Furthermore, we say that two nonzero
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vectors v and w are orthogonal if (v, w) = 0. We extend the concept of orthogonality

to subspaces by saying that subspaces S and T of V are orthogonal if vectors in S

and T are pairwise orthogonal.

It is often convenient to express vectors in terms of bases where the basis ele-

ments are pairwise orthogonal and normal, or orthonormal. In this case, the coeffi-

cient of basis element b for vector v is simply (b, v).

For any linear operator A, there is a unique linear operator A† such that

(v, Aw) = (A†v, w) for all v, w ∈ V . This matrix is called the adjoint of A. In

the finite dimensional case, the matrix representation of A† can be obtained from A

by taking the transpose of A and taking the conjugate of each element. The adjoint

operator † satisfies (AB)† = B†A†.

Hilbert Spaces and Dirac Notation

A Hilbert space is a complex inner product space that is closed under taking

limits. In the finite dimensional case, any complex vector space will be a Hilbert

space.

Hilbert spaces have an interesting relationship with their duals. The dual V ∗

of an F-vector space V is the vector space formed by the set of linear functions

f : V → F. Hilbert spaces have the property that the map µ : V → V ∗ defined by

µ(v) = (v, ·) is an isomorphism. In particular, if {v1, . . . , vn} is a basis for V then

{µ(v1), . . . , µ(vn)} is a basis for V ∗.

Dirac introduced an unconventional notation for expressing vectors that high-

lights the relationship of Hilbert spaces with their duals, and is well suited to the

Hilbert space manipulations that arise in quantum mechanics. The first convention
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is to denote vectors as |ψ〉 where ψ is the label of the vector. Second, the notation 〈ψ|

is used to denote the linear function 〈ψ| : Cn → C defined by 〈ψ|(|ϕ〉) = (|ψ〉, |ϕ〉),

i.e. 〈ψ| = µ(|ψ〉). The notation 〈ψ|ϕ〉 is used as a shorthand for 〈ψ|(|ϕ〉), and thus

〈ψ|ϕ〉 is equal to the inner product. For the remainder of the thesis, we will use the

notation 〈·|·〉 for inner products functions of Hilbert spaces. Observe that the matrix

representation of 〈ψ| is simply the conjugate transpose of |ψ〉. We define |ψ〉† = 〈ψ|

so that, for example, (A|ψ〉)† = (|ψ〉)†A† = 〈ψ|A†.

The following property, called the completeness relation, is often used to simplify

expressions. Let {|i〉 : 1 ≤ i ≤ n} be an orthonormal basis for Cn. Then for

any vector |ψ〉 we have |ψ〉 =
∑

i〈i|ψ〉|i〉 =
∑

i |i〉〈i|ψ〉 = (
∑

i |i〉〈i|)|ψ〉. Thus∑
i |i〉〈i| = I.

Direct Sums and Tensor Products

Direct sums and tensor products are two composition operators on vector spaces.

These operators allow us to compose two vector spaces to make a larger space, or

conversely, it allows us to express structural decompositions of vector spaces.

We say that V is the direct sum of the subspaces S and T (we write V = S⊕T )

if every vector |v〉 ∈ V can be written uniquely as |s〉 + |t〉 for some |s〉 ∈ S and

|t〉 ∈ T . In most cases of interest to us, S and T will be orthogonal subspaces,

however this is not strictly required by the definition.

Let us write (|s〉, |t〉) ∈ S × T as |s〉 ⊗ |t〉, and let α ∈ C. The tensor product

S⊗T of S and T is defined to be the quotient of the vector space S×T with respect

to the following identities:

� (|s1〉+ |s2〉)⊗ |t〉 = |s1〉 ⊗ |t〉+ |s2〉 ⊗ |t〉,
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� |s〉 ⊗ (|t1〉+ |t2〉) = |s〉 ⊗ |t1〉+ |s〉 ⊗ |t2〉,

� (α|s〉)⊗ |t〉 = α(|s〉 ⊗ |t〉) = |s〉 ⊗ (α|t〉).

If we identify vectors of S × T according to these rules, then the equivalence classes

will form a vector space of dimension m · n. In particular if {|s1〉, . . . , |sm〉} and

{|t1〉, . . . , |tn〉} are bases for S and T respectively, then the set {|si〉 ⊗ |tj〉 : 1 ≤ i ≤

m, 1 ≤ j ≤ n} forms a basis for S ⊗ T . If S and T are Hilbert spaces, then there is

a natural way to define a Hilbert space over S ⊗ T given the associated norms for S

and T .

The notion of tensor product is related to bilinear forms. Let S and T be two

C-vector spaces of dimension m and n respectively. A bilinear form of S and T is

a function b : S × T → C that is linear in S for each fixed |t〉 ∈ T and linear in T

for each fixed |s〉 ∈ S. The tensor product S ⊗ T is constructed so that the dual of

S ⊗ T is isomorphic to the space of bilinear forms of S and T .

In many cases we will need to apply the tensor operation and direct sum oper-

ation several times, so it is important to note that both operations are associative.

When working with a long sequence of tensors, it is common to discard the ⊗ symbol

and just write |s〉 ⊗ |t〉 as |s〉|t〉 or even |st〉.

For operators A and B on S and T respectively, we define the operator A⊗ B

to be the unique linear operator on S ⊗ T satisfying A⊗B(|s〉 ⊗ |t〉) = A|s〉 ⊗B|t〉.

The operator A⊕B is defined similarly.

Important Classes of Linear Operators
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There are a number of special classes of linear transformations that arise in the

study of quantum computation. We present some of the more important ones below.

For this section we will assume that the operators are working on a Hilbert space.

Unitary operators: A operator U is called unitary if it satisfies (|ψ〉, |ϕ〉) =

(U |ψ〉, U |ϕ〉) for all vectors |ψ〉, |ϕ〉. In other words, 〈ψ|U †U |ϕ〉 = 〈ψ|ϕ〉. Since

this relation must hold in particular on any set of basis elements, by the complete-

ness relation we must have U †U = UU † = I and therefore U † = U−1. Conversely,

any U satisfying U † = U−1 must be unitary.

Normal operators: An operator N is called normal if N commutes with N †.

This is true, for example, in the case of unitary matrices. Normal matrices satisfy

the following structure theorem:

Theorem 2.1 (Spectral Decomposition Theorem) Let N be a normal matrix with

eigenvectors |ϕ1〉, . . . , |ϕk〉 and corresponding eigenvalues λ1, . . . λk. Then N can be

expressed as:

N =
∑
i

λi|ϕi〉〈ϕi|.

This implies that normal matrices are diagonal with respect to any basis consisting

of orthonormal eigenvectors.

It is convenient to define an extension of functions f : C → C to normal

matrices. For normal N , we define f(N) to be the matrix formed by applying

the spectral decomposition and applying f termwise to the eigenvalues of N , i.e.

f(N) =
∑

i f(λi)|ϕi〉〈ϕi|. This is a well-defined operation in general. As an example,
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we define
√
N to the operator formed by taking the square roots of the eigenvalues

of N . This new operator satisfies (
√
N)(
√
N) = N .

Hermitian operators: An operator H is Hermitian if it satisfies H = H†. We

also call such operators self-adjoint. Hermitian operators are necessarily normal.

Positive operators: We say that A is a positive operator if 〈ψ|A|ψ〉 is a nonnega-

tive real for all ψ ∈ Cn. All positive operators are necessarily Hermitian and normal,

which implies that the eigenvalues of a positive operator are nonnegative real.

Orthogonal Projectors: A orthogonal projector P is a Hermitian operator which

satisfies P 2 = P . The set of all |ψ〉 such that P |ψ〉 = |ψ〉 forms a subspace S, and if

B = {|φi〉} is a basis for S, then P =
∑

i |φi〉〈φi|.

2.1.2 Quantum Mechanics

We are now ready to review the mathematical formulation of quantum mechan-

ics. We first give all of the basic definitions, and we follow this with some more

advanced concepts that can be skipped on a first reading. All of the relevant terms

can be found in the index.

We begin with a description of the system state. Quantum mechanics asserts

that the state space of an isolated physical system corresponds to the set of norm

one vectors in a Hilbert space. We call a vector of this form a quantum state.

In the cases we consider, we will assume that the dimension of this space is some

finite n which is known to us, and that {|i〉 : 0 ≤ i < n} is an orthonormal basis for

the space.
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The orthonormal basis vectors correspond to a set of properties of a state that

are, in principle, perfectly distinguishable by measurements. For instance, the prop-

erty could be the polarization of a photon, which could be distinguished by a set of

polarizing filters. If the number of possible values for the property is two, then we

call the system a qubit. Qubits have special significance since systems with less than

two dimensions are trivial, and arbitrarily large finite-dimensional quantum state

spaces can be built by tensoring qubits together.

We now describe how the system may behave while it is isolated. Let |ψt〉 be

the state of a quantum state at some fixed time t, and let |ψt′〉 be the state of the

same system at time t′ > t. Then |ψt′〉 = U |ψt〉 for some unitary U that does not

depend on |ψt〉. We call U an evolution operator. Quantum mechanics conceivably

permits any unitary U to be an evolution operator.

Without prior knowledge of a quantum state’s preparation, we, as the external

observers of a quantum state, must remove the state from isolation in order to obtain

information about it. Quantum measurement is a formalization of this process. It is

an inherently probabilistic process, in the sense that the outcome of a measurement

is taken from a probability distribution. The randomness in measurement is not

due to our ignorance of the system state, rather it reflects the true behaviour of the

physical world in this circumstance. A quantum measurement can in general obtain

only partial information about the quantum state, in the same way that a sample of

a random variable gives only partial information about the exact distribution.

There are a number of ways to formally define measurements. The simplest

and most relevant to our case is projective measurements. Let S1 ⊕ · · · ⊕ Sk be a
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partition of the Hilbert space into orthogonal subspaces, and let Pi be the projector

corresponding to Si. Clearly,
∑

i Pi = I. Then the effect of measuring |ψ〉 with re-

spect to {P1, . . . , Pk} is twofold. First, the index i is communicated to the observer

with probability equal to ‖Pi|ψ〉‖2. We call this index the measurement outcome.

Secondly, the state changes (or collapses) to Pi|ψ〉/‖Pi|ψ〉‖, where i is the measure-

ment outcome. Thus, a measurement will cause a change in the state unless |ψ〉 lies

entirely within one of the Si subspaces. For any such partition S1 ⊕ · · · ⊕ Sk we

can in principle construct an apparatus to implement the corresponding projective

measurement.

Two quantum systems can be adjoined to make a single quantum system. Sup-

pose wish to join two isolated systems over two Hilbert spaces V1 and V2. The Hilbert

space associated with the combined system is the natural one induced by V1⊗ V2. If

the states of the two systems before the join is |ψ1〉 and |ψ2〉, the resulting state is

|ψ1〉 ⊗ |ψ2〉.

Generalized Measurements and POVMs

Projective measurements characterize exactly the type of measurements which

may be performed by interacting directly with a quantum system. However, it is

possible to obtain more refined information about the closed system by first adjoining

a second quantum system, applying a transformation to the combined system, and

then removing the second system. These operations are exactly characterized by

generalized measurements.
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A generalized measurement is defined by a set of operators {Ni} satisfying∑
iN

†
iNi = I. On the application of such a measurement to state |ψ〉, the out-

come of the measurement is i with probability ‖Ni|ψ〉‖2 = 〈ψ|N †
iNi|ψ〉, in which

case the state collapses to Ni|ψ〉/‖Ni|ψ〉‖. The special case of projective measure-

ments corresponds to the case when the Nis are projection operators.

An alternative way to express generalized measurements is through positive

operator-valued measurements, or POVMs. A POVM is expressed as a set of positive

operators {Ei} such that
∑

iEi = I. The outcome of a POVM measurement on

state ψ is the value i with probability 〈ψ|Ei|ψ〉. Observing that operators of the

form N †
iNi are necessarily positive, we can convert a generalized measurement to a

POVM by taking Ei = N †
iNi for all i. Conversely we can convert a POVM to a

generalized measurement by taking Ni =
√
Ei.

Orthogonality and Perfect Distinguishability

If two state vectors |ψ1〉 and |ψ2〉 are orthogonal to each other, then they are

perfectly distinguishable in the sense that there is exists a measurement which, when

applied to state |ψi〉, will outputs i with probability 1. Clearly if |ψ1〉 and |ψ2〉 are

orthogonal, then the measurement M = {E1, E2} defined by E1 = |ψ1〉〈ψ1| and

E2 = I − |ψ2〉〈ψ2| is a distinguishing measurement.

Conversely, nonorthogonal states are not perfectly distinguishable. Suppose

for the sake of contradiction that two nonorthogonal states |ψ1〉 and |ψ2〉 can be

perfectly distinguished by some POVM {E1, E2}. Then |ψ2〉 can be uniquely written

as |ψ2〉 = α|ψ1〉 + β|ψ′2〉, where |α| > 0 and |ψ′2〉 is the projection of |ψ2〉 onto the

span of all vectors orthogonal to |ψ1〉. The probability of obtaining outcome 1 on
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measuring |ψ2〉 is:

〈ψ2|E1|ψ2〉

= (α∗〈ψ1|+ β∗〈ψ′2|)E1(α|ψ1〉+ β|ψ′2〉)

= α∗α〈ψ1|E1|ψ1〉+ α∗β〈ψ2|E1|ψ1〉+ β∗α〈ψ1|E1|ψ2〉+ β∗β〈ψ2|E1|ψ2〉

≥ α∗α〈ψ1|E1|ψ1〉 = α∗α > 0.

It is important to emphasize here that for two pairwise distinguishable states

|ψ1〉 and |ψ2〉 it is possible for the system to arrive in some state |ψ〉 = α|ψ1〉+β|ψ2〉

for nontrivial α and β. This essential characteristic of quantum mechanics is called

the superposition principle, and state |ψ〉 are said to be a superposition of |ψ1〉 and

|ψ2〉.

Mixed States and Density Matrices

There are times when we would like to think of the state of the system as

coming from some probability distribution E = {(pi, |ψi〉)}, where |ψi〉 occurs with

probability pi and
∑

i pi = 1. We call E an ensemble of quantum states, or a mixed

state.

There is a very useful formalism for representing mixed states via density ma-

trices. For the ensemble E above, the corresponding density matrix ρ is:

ρ =
∑
i

pi|ψi〉〈ψi|.

It is not hard to show that ρ is a positive operator with unit trace (Tr(ρ) = 1).

Thus, ρ is normal and by the spectral decomposition it can be expressed as:
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ρ =
∑
i

λi|φi〉〈φi|,

where |φi〉 is the eigenvector corresponding to the eigenvalue λi and, since ρ is pos-

itive and has unit trace, it follows that the λi are nonnegative reals summing to

1. This observation has a number of interesting consequences. First, every ρ that

is positive and has unit trace will correspond to some ensemble; in particular, the

ensemble induced by the eigenvectors and eigenvalues of ρ. Thus, we can take the

condition of being positive and unit trace as our definition for density matrices. Fur-

thermore, since not all ensembles correspond to eigenvalue ensembles, it follows that

two different ensembles may produce the same density matrix.

Density matrices allow us to succinctly describe the outcome of transformations

and measurements on ensembles. If transformation U is applied to the ensemble E ,

the resulting ensemble E ′ = {pi, U |ψi〉} has density matrix ρ′ =
∑

i piU |ψi〉〈ψi|U † =

U(
∑

i pi|ψi〉〈ψi|)U † = UρU †. In a similar way, one can show that a measurement

{Mi} on an ensemble with density matrix ρ yields the outcome i with probabil-

ity Tr(MiρM
†
i ) and in this case the density matrix of the resulting ensemble is

MiρM
†
i /Tr(MiρM

†
i ). Observe that measurement outcomes depend solely on the

structure of the density matrix and not the initial ensemble. Any two ensembles

having the same density matrix are therefore indistinguishable and so for many ap-

plications it is sufficient to identify an ensemble with its density matrix.

As a final note, we will sometimes need to refer to the space spanned by the

eigenvalues of a density matrix ρ. This subspace is called the support of ρ, and we

denote it supp(ρ).
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Von Neumann Entropy

Let X be a discrete random variable that takes values from {x1, . . . , xn}, each i

with probability pi. Recall that the Shannon entropy of X is defined as:

H(X) =
∑
i

−pi log pi.

The Shannon entropy is a measure of the amount of uncertainty that we have in the

value of a random variable. If X takes n possible values, then H(X) ≤ log n, with

equality when X is uniformly distributed. For p ∈ [0, 1] we use H(p) as a shorthand

to denote the entropy function of the Bernoulli random variable which takes value 1

with probability p and 0 otherwise.

Related important quantities include the conditional Shannon entropy H(X|Y )

of X given Y , which quantifies the uncertainty of X conditioned on knowing Y , and

I(X : Y ), which is the mutual information of X and Y , which quantifies the amount

of information that knowledge of X gives you towards knowledge of Y , or vice-versa.

These quantities can be computed with the identities H(X|Y ) = H(X, Y ) − H(Y )

and I(X : Y ) = H(X, Y )−H(X)−H(Y ), where H(X,Y ) = H(X × Y ).

The Von Neumann entropy measure is a generalization of this concept to mixed

states:

Definition 2.1 Suppose that ρ is a density matrix with spectral decomposition ρ =∑
i=1 λk|φi〉〈φi|. Let X be a random variable with distribution {λ1, . . . , λk}. Then

the Von Neumann entropy S(ρ) of ρ is H(X).

In the case that an ensemble is made up of orthogonal vectors, from the Von

Neumann entropy we get the Shannon entropy as a special case.
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Von Neumann entropy, like Shannon entropy, is always nonnegative. Fur-

thermore, for a mixed state over vectors in Cn, the maximum possible entropy

is log n. The maximum is achieved when the density matrix can be expressed as

ρ = 1
n

∑n
i=1 |φi〉〈φi|, where the |φi〉’s are orthonormal eigenvectors of ρ. Such states

are said to be maximally mixed.

Consider the application of a unitary U to the state ρ. Observe that this does

not change the entropy of ρ since ρ =
∑

i λi|φi〉〈φi| and UρU † = U
∑

i |φi〉〈φi|U † =∑
i λi|φi〉〈φi|. For a projective measurement {Mj}, the operation E defined by ρ 7→∑
jMjρM

†
j will satisfy S(ρ) ≤ S(Eρ).

The Von Neumann entropy is continuous with respect to natural distance mea-

sures for density matrices:

Lemma 2.2 [46, Theorem 11.6] Let τ0, τ1 be two density matrices of dimension d

and ε = ‖τ0 − τ1‖t = Tr(τ0 − τ1), ε < 1/3. Then,

|S(τ0)− S(τ1)| ≤ ε log2 d− ε log2 ε.

Completely Positive Superoperators

We have seen that the dynamics of a pure state is determined simply by unitary

matrices. This transformation can be expressed in the density matrix formalism by

the mapping:

ρ 7→ UρU †. (2.1)
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In certain situations, we prefer a broader class of operations that include stochastic

processes. Suppose, for example, that a measurement {Mj} is made on a system in

the mixed state ρ, and the outcome of the measurement is not known. Then the

resulting state is transformed according to the rule:

ρ 7→
∑
j

MjρM
†
j . (2.2)

Such transformations may for example be used to model decoherence, which is the

tendency of a pure quantum state to collapse (i.e. become measured) under pressure

from the external environment. It may also be used to describe the future state

of a system after a series of measurements, when the outcome of the intermediate

measurements are not yet known.

Below we given a definition of completely positive superoperators, which cap-

ture the class of transformations that are permissible under the axioms of quantum

mechanics:

Definition 2.2 Let ρ be a n × n density matrix and let Eρ be the density matrix

of the state which results if we apply E. We say that E is a completely positive

superoperator (CPSO) if:

1. The transformation ρ → Eρ is a linear transformation on the d2-dimensional

space of d× d matrices.

2. E is trace-preserving: Tr(Eρ) = Tr(ρ).

3. E is completely positive, i.e. if H is the space on which E operates, then for

any additional space H ′ the transformation E⊗ I is a positive map on H⊗H ′.
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We will be particularly interested in CPSOs E corresponding to sequences of

operations corresponding to alternating unitary transformations and measurements.

It can be shown that such that CPSO of the form (2.1), or (2.2) in the case that the

measurement is projective, imply S(ρ) ≤ S(Eρ). Conversely, any CPSO E satisfying

S(ρ) ≤ S(Eρ) can be approximated using a series of unitary matrices and projective

measurements.

Quantum Fourier Transform

The Fourier transform is a function which decomposes a periodic function into

its frequency components. It is a fundamental analytical tool in many areas of

mathematics, and has many applications in physics and engineering.

The Fourier transform also plays an important role in quantum computation.

The efficient quantum algorithms for integer factoring and the discrete log problem

both rely on the fact that we can use quantum computers to efficiently obtain certain

useful information regarding the Fourier coefficients of a function. Both algorithms

require that we can apply the Fourier transform in time polylogarithmic in the di-

mension of the space. Later in the thesis, we use the Fourier transform for a different

purpose; namely to design of QFAs which use exponentially fewer states than the

equivalent DFAs.

Let {|0〉, . . . , |n − 1〉} be an orthonormal basis of Cn. The Quantum Fourier

Transform (QFT) of size n, denoted Fn, is the linear function which acts on basis

vectors as:

Fn|j〉 =
1√
n

n−1∑
k=0

e
2πijk

n |k〉.
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This is a unitary matrix and so it can be implemented as an evolution operator.

The QFT defined above is associated with the group Zn of integers mod n with

+ as the operation. It is a special case of the Abelian Quantum Fourier Transform,

which we will describe below.

Let G be an abelian group, with |G| = n. We denote by C[G] the set of all

functions f : G → C. By fixing an orthonormal basis {|g〉}g∈G of Cn, We can

naturally associate functions of this type to vectors in Cn.

A character of G is a homomorphism χ : G → C. Any two distinct characters

χ1, χ2 will satisfy 1
n

∑
g χ1(g)χ2(g) = 0. Also, χ(g)χ(g) = 1 for all χ, g, and

1
n

∑
g χ(g)χ(g) = 1. There will be n characters for the group G, thus if we scale each

of them by 1√
n

we get an orthonormal basis of Cn.

The set of characters form a group Ĝ under product, which is called the dual

group of G. This group will be isomorphic to G. Let χg be the character associated

with g under an isomorphism. Then for functions f ∈ C[G], the abelian Fourier

transform f̂ : Ĝ→ C of f is f̂(χg) =
∑

g′ χg(f(g′)). In other words, f̂ is an expression

of the function f in the basis of characters. Furthermore, the transformation f 7→ f̂

can be inverted according to the formula f(g) = 1
n

∑
χ f̂(χ)χ(g−1)

Up to the normalization factor, the transformation f 7→ f̂ corresponds to the

function Fn above, where the group in this case is Zn and |j〉 on the left hand side

represents the basis vector χj. Likewise the abelian QFT FG of G is defined as

follows:

FG|g〉 =
1√
n

∑
g′

χg′(g)|g′〉.
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2.1.3 Historical Development of Quantum Computation

Whenever a mathematical model is made to formalize the behavior of a physical

process, certain implicit assumptions are made about the underlying physical system.

Turing, in his famous paper [65], argued at length that the assumptions made for his

computation model were motivated by the real limitations of an automated process.

Although he was concerned only with computations, developments in the 1970’s

led researchers to formally consider notions of computability in resource-bounded

settings. The class P of decision problems solvable in polynomial time on a Turing

machine were found to be of central interest for a number of reasons. It is closed

under composition, it contains many nontrivial problems, and polynomial time com-

putability on a Turing machine corresponds exactly to polynomial time computability

on random access machines, and thus on most physical implementations of comput-

ing devices. This cemented P as the de facto standard of efficient deterministic

computation.

However, this is not the only reasonable model of efficient computation. For

example, we may consider a machine which is permitted to make random choices

based on the outcome of a sequence of unbiased coin tosses. The class BPP [47] of

bounded-error probabilistic polynomial time computable languages consists of those

languages L for which there exists a randomized algorithm and a probability bound

p > 1
2

such that all inputs are correctly classified by the randomized algorithm with

probability at least p. Clearly P is contained in BPP , but there are languages

in BPP for which no P algorithm is known. For example, the problem of testing
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whether a matrix of multivariate polynomials is nonsingular is in BPP but is not

known to be in P .

The classes BPP and P may not be ideally suited to describe computation at

a microscopic level. As we move from macroscopic to microscopic physical systems,

the dominant physical rules begin to change. This has motivated researchers to re-

consider the notion of efficient computation in different physical environments. An

important early insight was provided by Landauer [41], who considered the thermo-

dynamics of computing systems that work in a closed environment. A closed physical

system is one which can exchange heat with the external environment but not mat-

ter. Landauer showed that implementing certain information-theoretic tasks requires

a minimum amount of thermodynamic activity. In particular, he argued that the

operation of erasing, i.e. setting a bit of arbitrary value to zero, would imply a de-

crease in entropy and thus require a dissipation of at least a fixed constant amount of

heat energy. This is important considering the computational device involving many

erasures would require some minimal interface for energy dissipation. Furthermore,

it implies that isolated systems, such as those which are modeled by pure quantum

states, are incapable of such erasures.

This motivated the investigation of reversible computation, which is the study

of the power of computation devices that do not allow erasure. Bennett [10] showed

that for every Turing machine computing a function, there is a reversible Turing

machine computing an equivalent function with a linear factor overhead. Fredkin

and Toffoli [29] demonstrated that there exists a simple reversible gate which is

universal for computation, and showed that a circuit composed of binary AND, OR,
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and NOT gates can be converted into a reversible circuit with linear overhead in the

depth. Later, Toffoli [64] completed the picture by showing that the reversible gates

themselves can be implemented in such a way that state transitions can be achieved

in a continuous reversible motion. These results were used by Benioff [9] to show

that the transition function of a reversible Turing machine could be expressed as an

evolution operator.

Researchers soon found evidence that quantum computers could potentially be

superpolynomially faster at certain tasks when compared to Turing machines. Feyn-

man [28] suggested that there were inherent limitations to simulations of quantum

processes by classical machines, and thus quantum mechanics holds a power of com-

putation that is not captured by existing devices. Bennett and Brassard [12] demon-

strated the existence of provably secure public cryptography using quantum states.

Deutsch [25] was the first to formalize the notion of a quantum computer. His

model of quantum Turing machines, or QTMs, is the natural extension of a Turing

machine to quantum amplitudes. It is similar in this respect to a random Turing

machine. Recall that a configuration of a Turing machine T = (Q, q0,Σ,Γ, δ, F ) is a

tuple (q, t, i) ∈ Q×γ∗×Z+ which finitely describes the machine state, tape contents,

and head position of an intermediate state of the machine. The state of a quantum

Turing machine is a pure state over the basis of possible configurations of a regular

Turing machine. While a random Turing machine makes one of several possible legal

transitions, each with a certain probability, the quantum Turing machine replaces

probability with amplitude. As in the random Turing machine model, the amplitude

of the transition must depend only on the letter under the tape head and the value
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of the finite state. Thus, a set of such amplitudes for each possible legal transitions

completely specifies the machine. The final condition is that the induced transition

function must be unitary on the vector space of possible configurations.

The main accomplishment of Deutch’s QTM is the definition of a quantum com-

putational model which is universal for itself and which is sufficiently powerful to

implement quantum informational tasks of interest, such as an EPR test or the im-

plementation of a quantum cryptographic scheme. Bernstein and Vazirani [13] made

a number of enhancements to this formalism. They first resolved several concerns

regarding the QTM model. First, they showed that one can restrict the class of

allowable transformations to those with coefficients taken from a fixed set. This is

important because it is unreasonable to assume that machines using transitions with

arbitrary coefficients can be constructed. They also showed that, to approximate

the behavior of a given QTM M for T steps to within a factor ε, it is sufficient that

the transitions be implemented to within O(log T ) bits of accuracy. Furthermore,

they showed that the universal simulation of a QTM could be implemented in a

polynomial number of QTM steps. However, there are still significant drawbacks to

the QTM model. Firstly, there is no known way to check whether a given QTM

specification is well-formed, in the sense that the local transition function δ extends

to a unitary transformation on the space of Turing machine configurations. Further-

more, primitives such as branching and looping which are fundamental in most other

computational models can only be adapted to special cases of QTM, so much of our

intuition about computation does not help us to understand the power of QTMs.

32



Yao later advocated a simpler model of quantum computation called quantum

circuits [69]. The quantum circuit model is a special case of one considered earlier by

Deutsch [26], which he called quantum computational networks. The more general

model allowed feedback loops.

Recall that a qubit is a two-dimensional quantum system. We use {|0〉, |1〉} as

the basis of a qubit. In the quantum circuit model, operations are performed on a

system of a finite set of qubits tensored together. For a quantum circuit, we fix a set

of quantum gates, each of which are unary operators on a space of ` qubits for some

fixed `. The circuit is then specified by a sequence of quantum gates operating on

each step, one can either apply either a unitary operation on a subset of the qubits,

or perform the measurement {|0〉〈0|, |1〉〈1|} on a single qubit. A quantum circuit

can be used to probabilistically compute a boolean function f : {0, 1}n → {0, 1} by

setting the initial state to |x1〉 · · · |xn〉, where xi is the ith input bit, and setting the

output of the machine to be the outcome of a qubit measurement.

Quantum circuits hold many advantages over quantum Turing machines. Unlike

in the QTM case, any quantum circuit will be automatically well-formed. Further-

more almost all quantum algorithms and quantum information tasks of interest can

be expressed naturally using quantum circuits. Quantum circuits can be simulated

by a QTM, and a quantum circuit can be used to simulate the behavior of a QTM

for a fixed number of steps.

2.1.4 Quantum Finite Automata

Quantum Finite Automata are abstract models of physical computation devices

in the setting of online computation. An online computation device is one which
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receives its input as a series of input signals, where each input signal is taken from

some finite set Σ. The machine is understood to have an internal state, and each

input signal changes the state of the machine in a way that depends on the current

input signal and the current state of the machine. In order to give such machines a

mathematical treatment, certain assumptions have to be made regarding the under-

lying physical rules. We will call such a collection of assumptions a model. A central

question in this framework is then: what languages L ⊆ Σ∗ can be recognized by

these machines?

The most important model of online computation is the Deterministic Finite

Automata, or DFA. Each DFA M has a finite set Q of possible internal states, and

at all times during the computation M will be in some state q ∈ Q. When the

input signal σ ∈ Σ is received, the machine M will change its state according a fixed

transition function δ : Q× Σ→ Q.

It is important to note that the definition DFAs do not fit all finite memory

physical computation devices that we may wish to consider. The model of randomized

finite automata is more appropriate, for example, if we wish to discuss a finite state

machine which makes transition errors with some probability ε > 0. In this case, the

state of a machine at any given time is a random variable. It is in this same spirit

that Quantum Finite Automata are defined.

The simplest model of QFAs is the one given by Crutchfield and Moore [44],

which we call Measure-Once QFAs, or MOQFAs. This name refers to the fact that

the state remains unobserved until the end of the computation, at which point a
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measurement is made to determine whether the given input word should be accepted

or rejected.

Measure-Once QFA (MOQFA) An instance of an MOQFA is given by a tuple

M = (Q, q0,Σ, {Uσ}, F ), where Q is a finite set with |Q| = n, q0 is a distinguished

start state, {Uσ} is a set of state transitions, and F is the set of accepting states.

The elements of Q correspond to a set of n physical states which are pairwise

perfectly distinguishable as discussed in Section 2.1.2. For each q ∈ Q we associate

a vector |q〉 from an orthonormal basis {|q〉}q∈Q of Cn. The state of a MOQFA at

any time is a superposition of the |q〉’s.

The working alphabet will be Σ ∪ {¢, $}, where ¢ and $ are distinguished start

and end markers, respectively. For every σ ∈ Σ ∪ {¢, $} we associate a unitary

operator Uσ on Cn. We use the set F to define a measurement {Pacc, Prej} with

Pacc =
∑

q∈F |q〉〈q| and Prej =
∑

q /∈F |q〉〈q|. When a letter σ is read, the state is

transformed from |ψ〉 to Uσ|ψ〉. The operators U¢ and U$ correspond to preprocessing

and postprocessing of the machine. The machine is initialized to the state U¢|q0〉

before the input word is read. On input w = w1 . . . wm the machine moves to state

|ψw〉 = Uwm · · ·Uw1U¢|q0〉. When the final input character is read, the operator U$ is

applied to the state and the resulting state is measured with respect to {Pacc, Prej}.

If the outcome of the measurement is acc, the machine accepts, otherwise it rejects.

Observe that the output of the machine on input w is, in general, a random

variable. Thus we say that M recognizes L with probability p if every w ∈ L (w /∈ L)

is accepted (rejected) with probability p > 1
2
. This will be the standard mode of

recognition.
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Let Σ = {a, b}. As an example, consider the language: Lm = {w : |w|a

mod m = 0}, where |w|a denotes the number of occurrences of the letter a in w.

Here is a simple MOQFA to recognize Lm. Let M = (Q, q0,Σ, {Uσ}, F ), where

Q = {0, 1, . . . ,m − 1}, q0 = 0, F = {0}, U¢ = U$ = Ub = I and Ua is the unique

linear operator such that Ua|i〉 = |i + 1 mod m〉 for all i. It is easy to check by

induction that Ua is unitary and |ψw〉 = ||w|a mod m〉 for all w. Thus there is an

m-state MOQFA recognizing Lm with probability p = 1.

Fix an MOQFA M over the alphabet Σ. We say that the state |ψ〉 is reachable

if there exists a w ∈ Σ∗ such that |ψ〉 = |ψw〉. The set of reachable states of an

MOQFA are possibly infinite, so one might wonder to what extent this is indeed a

‘finite’ machine. Let us try to resolve this issue with a few relevant facts about these

machines. When we insist that M recognizes a language with bounded probability

p > 1
2
, there will exist vectors |ψ〉 and constants δ < 1 such that there is no word

w satisfying 〈ψw|ψ〉 > δ. Consider, for example, two states |ψa〉 and |ψr〉 such that

U$|ψa〉 ∈ Sacc and U$|ψr〉 ∈ Srej. These states exist so long as Pacc and Prej are

nontrivial. Now consider the state |ψ〉 = 1√
2
(|ψa〉+ |ψr〉). The neighborhood around

this state is not reachable, otherwise there would be a word w which is accepted with

probability p′ such that (1−p) < p′ < p, a contradiction. Furthermore, we can show:

Theorem 2.3 If M recognizes L with probability p > 1
2
, then L is regular.

Proof: The right equivalence relation for a language L is the relation ∼L,r on Σ∗

defined by x ∼L,r y if for all u ∈ Σ∗ we have xu ∈ L⇔ yu ∈ L. By the Myhill-Nerode

Theorem [36], a language is regular if and only if the number of right equivalence
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classes is finite. Thus it is sufficient to show that if an MOQFA M recognizes L,

then ∼L,r has finitely many such classes.

Let Uw = Uwm · · ·Uw1 for w = w1 . . . wk. Let n be the dimension of M ’s state

space, and let Sacc⊕Srej be the partition of Cn into the accepting and rejecting sub-

spaces. For word w define Sw,acc = U †
wSacc and Sw,rej = U †

wSrej. Then Sw,acc ⊕ Sw,rej

is also an orthogonal decomposition of Cn. Finally, define Pµ to be the projection

operator into space Sµ.

Suppose x 6∼L,r y. Then without loss of generality there exists a word u such

that xu ∈ L but yu /∈ L. We show that this implies a bounded distance between

states |x〉 = Ux|q0〉 and |y〉 = Uy|q0〉. Since M recognizes L with probability p, we

have:

‖Pu,acc|x〉‖2 ≥ p (‖Pu,rej|x〉‖2 < (1− p)),

‖Pu,rej|y〉‖2 ≥ p (‖Pu,acc|y〉‖2 < (1− p)).

Define |x′〉 = |x〉 − |y〉. Then:

p ≤ ‖Pu,acc|x〉‖2 ≤ ‖Pu,acc|y〉‖2 + ‖Pu,acc|x′〉‖2

=⇒ p ≤ (1− p) + ‖Pu,acc|x′〉‖2

⇐⇒ ‖Pu,acc|x′〉‖2 ≤ 2(p− 1

2
)

Thus, states |x〉 and |y〉 must be distance at least
√

2(p− 1
2
) apart. But for

any fixed integer n and distance d > 0, the number of pairwise distance d vectors of

norm 1 in Cn is finite, and so the number of right congruence classes in L are finite

and we are done. �
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Kondacs Watrous QFA (KWQFA): A Kondacs-Watrous [38] QFA is defined

by a tuple M = (Q,Σ, {Aσ}, q0, Qacc, Qrej), where Qacc and Qrej are disjoint. Define

Qnon = Q− (Qacc∪Qrej). When a symbol σ is read, the machine applies the unitary

transformation Aσ to the state, and then measures with respect to:Pacc =
∑
q∈Qacc

|q〉〈q|, Prej =
∑
q∈Qrej

|q〉〈q|, Pnon =
∑

q∈Qnon

|q〉〈q|

 .

If the measurements outputs acc (resp. rej), then the machine halts and accepts

(resp. rejects) the input. Otherwise the machine continues. We require that the

probability that the machine has not halted after processing the $ symbol is 0.

Brodsky-Pippenger QFA (BPQFA): Brodsky and Pippenger [20] considered

a number of different variations of QFAs, including this special case of KWQFA.

A BPQFA is given by a tuple M = (Q,Σ, {Aσ}, q0, Qacc, Qrej) as in the KWQFA

model, with two changes. First, we additionally require that the machine does not

transition to an accepting state until the endmarker is read. Second, we say that a

BPQFA M recognizes L if each word w ∈ L is accepted with probability p > 0, and

each word w /∈ L is rejected with certainty.

Latvian QFA (LQFA): Defined by Ambainis et al [3], an LQFA is a tuple M =

(Q,Σ, {Aσ}, {Pσ}, q0, Qacc), where the {Aσ} are unitary matrices and {Pσ} are mea-

surements (each Pσ consists of a finite set of projections {Pσ,i} satisfying
∑

i Pσ,i = I.

We require that P$ is the measurement {Pacc =
∑

q∈Qacc
|q〉〈q|, Prej =

∑
q /∈Qacc

|q〉〈q|},

and the machine accepts or rejects according to the outcome of this measurement.

The mode of recognition for this machine is bounded error. LQFAs are permitted to
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perform arbitrary measurements before the end, however the machine cannot accept

before reading the entire input.

Generalized QFA (GQFA): Introduced by Nayak [45], GQFAs generalize both the

LQFA’s ability to apply a different projective measurement for each letter, and the

KWQFA’s ability to halt before the end of the input. An instance of a GQFA is given

by a tuple M = (Q,Σ, {Aσ}, {Pσ}, q0, Qacc, Qrej). On input σ, the machine applies

the unitary Aσ, then the measurement Pσ. Then, as in the case of KWQFAs, a

measurement {Pacc, Prej, Pnon} is made. If the output is non, then the machine reads

the next letter. Otherwise, the machine halts and accepts or rejects accordingly.

We have made a slight change to the definition. The original definition allowed

the machine to apply a sequence of ` alternating transformations and measurements

for each letter. This does not effect the computational power of GQFAs since we can

simulate a sequence of ` transformations and measurements by one transformation

and measurement (Claim 1).

2.2 Algebraic Automata Theory

In this section we give a brief introduction to the central concepts in algebraic

automata theory, and also present some known facts which are relevant to our inves-

tigation. For a more complete treatment, we recommend [52, 48].

2.2.1 Automata as Monoids

Let us first recall some fundamental definitions of semigroup theory. A semi-

group is a set S equipped with a binary associative operation ·S. A monoid M is a

semigroup with a distinguished identity element 1 satisfying 1 ·M m = m ·M 1 = m
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for all m ∈ M . A simple example of a semigroup is the familiar set Σ+ of all finite

nonempty strings over alphabet Σ with concatenation as the binary operation. Like-

wise, the set Σ∗ forms a monoid with the empty word as the identity element. To

simplify notation, we often write the product of two elements m and n as mn.

A subsemigroup S ′ of S is a subset of S which is closed under the operation ·S. A

submonoid is a subsetM ′ of a monoidM which is closed under ·M and forms a monoid

under that operation. For semigroups S and T , the direct product of S and T is the

semigroup with set S×T and operation (s, t) ·S×T (s′, t′) = (s ·S s′, t ·T t′). The direct

product of two monoids M and N naturally forms a monoid. For two semigroups

S and T , a morphism is a function ϕ : S → T such that ϕ(s ·S s′) = ϕ(s) ·T ϕ(s′).

A monoid morphism is a semigroup morphism of monoids that additionally satisfies

ϕ(1S) = 1T .

For a semigroup S we denote by S1 the monoid formed from S by adding an

identity element to S if no such element exists. Let S be a semigroup and let ∼ be an

equivalence relation on monoid elements. We denote by [s] the equivalence class of

s. We say that ∼ is stable if for all s, t ∈ S and u, v ∈ S1 we have that s ∼ t implies

usv ∼ utv. In this case, the set of equivalence classes forms a semigroup under the

operation [s] · [t] = [st]. We call this semigroup the quotient semigroup of ∼ and it

is denoted S/∼.

For any set E, the set of all functions f : E → E form a monoid T (E) under

function composition, with the identity function as the identity element. We say that

M is a transformation monoid if it is a submonoid of T (E) for some E. There is a

natural transformation monoid associated with the transition function of a DFA. Let
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A = (Q, q0,Σ, δ, F ) be such an automaton. For every word w, the transition function

δ induces a function δ|w : Q → Q, and the set MA of all such functions forms a

monoid under composition. We call MA the transition monoid of A. Furthermore,

there is a natural morphism ϕ : Σ∗ →MA defined by ϕ(w) = δ|w for all w ∈ Σ∗.

This motivates an algebraic reformulation of the notion of recognition by a finite

automaton. We say that a language L ⊆ Σ∗ is recognized by a monoid M if there

exists a morphism ϕ : Σ∗ → M and a set F ⊆ M such that ϕ−1(F ) = L. Let A

be an automaton recognizing L. Then MA recognizes L via the natural morphism

and with F = {δ|w : δ|w(q0) ∈ Qacc}. Conversely, if L is recognized by a morphism

ϕ : Σ∗ →M for finite M , it is easy to construct a finite automaton that determines

the value of ϕ(w) for a given w ∈ Σ∗. Thus we have the following variation of

Kleene’s theorem:

Theorem 2.4 A language L ⊆ Σ∗ is regular if and only if it is recognized by some

finite monoid.

We will see that this perspective allows us to parameterize Kleene’s theorem by

considering the class of languages recognized by subclasses of monoids.

We say that monoid N divides monoid M (denoted N � M) if there exists a

surjective morphism from some submonoidM ′ ofM ontoN . The division relation is a

partial order on the isomorphism classes of the set of finite monoids. The significance

of monoid division in this context is that it preserves language recognizability in the

following sense: if N recognizes L and N divides M , it follows that M also recognizes

L.
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For every language L there is a monoid M(L) recognizing L that is minimal

with respect to the division relation; in other words, a monoid M recognizes L if

and only if M(L) � M . This monoid is called the syntactic monoid of L. It can

be constructed as follows: For a language L ⊆ Σ∗ let ≡L be the congruence on Σ∗

defined by x ≡L y if for all u, v ∈ Σ∗ we have uxv ∈ L ⇔ uyv ∈ L. We call ≡L the

syntactic congruence of L. Then the syntactic monoid is Σ∗/ ≡L. Furthermore, if L

is regular then the transition function of the minimal automaton for L is isomorphic

to the syntactic monoid of L.

2.2.2 The Variety Theorem

In this section we introduce Eilenberg’s variety theorem. The word variety is

used here to denote a class of algebraic structures that are natural in the sense that

they satisfy certain natural closure properties. This notion was originally used for

classes of algebras over infinite sets by Birkhoff [18], but Eilenberg adapted this

notion to the case of finite sets. He defines a variety of finite monoids to be a class

of finite monoids closed under (finite) direct product and division. Many natural

classes of finite monoids form varieties, for example the class G of monoids which

are groups. Eilenberg’s varieties are sometimes called pseudovarieties to distinguish

them from the infinite case, but we will refer to them simply as varieties.

For a language L ⊆ Σ∗ and w ∈ Σ∗, the left quotient of w with L to be the

language w−1L = {x : wx ∈ L}. The right quotient Lw−1 is defined in a similar way.
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We say that a class of languages V forms a variety of languages if it is closed under

boolean operations, inverse homomorphisms, and word quotient1 .

Let V be a variety of monoids. We write V → V if V is the class of all regular

languages which can be recognized by some monoid in V. This class will form a

variety of languages. The Variety Theorem [27] establishes a strong relationship

between these classes:

Theorem 2.5 (Variety Theorem) The correspondence V → V is a one-to-one cor-

respondence between varieties of monoids and varieties of languages.

We mention at this point that there is a parallel theory of automata as semi-

groups, the distinction being that in the monoid theory the empty word is treated

as a valid input but in the semigroup theory it is not. In other words, the monoid

theory characterizes languages L ⊆ Σ∗ and the semigroup theory characterizes lan-

guages L ⊆ Σ+. We will present only the monoid theory here, but from time to time

we will point out the places in which the two theories diverge.

2.2.3 Structural Properties of Monoids

In this section we consider the main structural properties of finite monoids. We

begin by considering an important type of substructure, which are the semigroups

generated by a single element. Let x be the generator. Since the monoid is finite,

there is a minimal k and p such that xk+p = xk. Thus the generated subsemigroup

will have the shape of Figure 2–1.

1 Formally, V associates to each finite alphabet Σ a class of regular languages over
Σ∗.
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Figure 2–1: The structure of a finite semigroup with a single generator.

An idempotent is an monoid element e which satisfies e2 = e. The elements

xk, . . . , xk+p−1 form a cyclic group, and the identity of this cyclic group is the unique

idempotent in the subsemigroup generated by x. Conversely, every idempotent e in

M forms a one-element subsemigroup (in fact, a submonoid).

We next consider the structural properties of monoid ideals. For a monoid M

we say that the set I ⊆ M forms an ideal of M if MIM ⊆ I. Likewise a right ideal

(resp. left ideal) is a set I ⊆ M such that IM ⊆ I (resp. MI ⊆ I). For a subset S

of M , it is easy to see that MSM is an ideal of M , and is in fact smallest ideal of

M containing S. Similarly MS and SM are the minimal left and right ideals of S.

Green’s relations are a series of equivalence relations on monoid elements defined

in terms of the minimal ideals of these elements. They are given below:

� xJ y if MxM = MyM ,

� xRy if xM = yM ,

� xLy if Mx = My,

� xHy if xRy and xLy.
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Green’s relations are also defined for semigroups. For s, t ∈ S we say that sJ t

if S1sS1 = S1tS1, and the other relations are defined in a similar way. All of the

facts in this section also hold in the semigroup case.

A simple but useful fact about the relation J is that xJ y if and only if there

exists s, t, u, v ∈ M such that x = syt and y = uxv. A similar property holds

for the other relations. The R and L relations are left and right compatible with

multiplication respectively, i.e. xRy implies mxRmy and xLy implies xmRym.

Corresponding to each of Green’s relations, we also define the preorder relations

≤J , ≤R, ≤L, and ≤H. We say that x ≤J y if MxM ⊆ MyM , and the other

relations are likewise defined. Furthermore, we define Jx (resp. Rx,Lx,Hx) to be

the J -equivalence (resp. R, L, H- equivalence) class containing x.

Observe that the relation H refines L and R, and the relations R and L

each refine the J relation. The following lemma gives a natural bijective mapping

between the R, L, and H equivalence classes within a J -equivalence class:

Lemma 2.6 (Green’s Lemma) let s and t be such that sRt, and let u, v ∈ M be

such that su = t and tv = s. Define ρu : M → M by ρu(x) = xu and likewise

define ρv : M →M by ρv(x) = xv. Then ρu and ρv are bijections from Ls to Lt that

preserve the R classes. The symmetric result holds for s and t satisfying sLt.

Let J be a set of elements corresponding to a J equivalence class of some

monoid M . Consider a table with each row corresponding to a R class within J and

each column as an L class, with H classes at the intersections. An example of such

an ‘egg-box picture’ is shown in Figure 2–2. An immediate consequence of Green’s
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Figure 2–2: Diagram of a J -equivalence class.

lemma is that there are an equal number of elements in each H-class contained

within a J -class.

The properties of idempotent elements within J -classes is of fundamental im-

portance to the structure of J -classes. In the remainder of this section we present a

few such properties that will be used later in the thesis. The proofs are straightfor-

ward and can be found for example in [48], but we will give proofs for the first two

lemmas to give a flavor of the technique.

Lemma 2.7 For x ∈ M and e = e2 ∈ M , x ≤R e if and only if x = ex (resp.

x ≤L e if and only if x = xe).

Proof: x ≤R e implies that there exists a u such that eu = x. So then x = eu =

eeu = ex. The converse is immediate, and the case of ≤L is symmetric. �

Lemma 2.8 If J is a J -class that contains an idempotent, then every R-class and

L-class in J contains an idempotent.

Proof: Suppose e ∈ J is an idempotent and let eRa. Then there is a u such that

au = e, and ea = a by Lemma 2.7. Then La contains an idempotent uea since
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Figure 2–3: The relationship in Lemma 2.9.

auea = a and a ≤L uea ≤L auea = a. Likewise every bLe is such that Rb contains

an idempotent. �

Lemma 2.9 Let a and b be monoid elements such that b ∈ Ja. Then ab ∈ Ja (in

particular, ab ∈ Ra ∩ Lb) if and only if there is an idempotent in Rb ∩ La.

A diagram of this relationship is presented in Figure 2–3.

2.2.4 Identities

Let Γ be a infinite countable set and let u, v ∈ Γ∗. Then u = v is a monoid

equation. We interpret the words u and v as products of variables which take values

from some monoid M . We say that M satisfies the equation u = v if any valid

substitution of the letters of u and v by elements in M leads to equality.

Several algebraic properties of monoids can be expressed succinctly in terms

of monoid equations. For instance, a monoid is commutative if and only if the

equation xy = yx is satisfied, and a monoid is a semilattice if and only if it is

idempotent xx = x and commutative xy = yx. The class of commutative monoids

and of semilattices form varieties, denoted Com and J1 respectively. We say that a

defining equation of a variety is an identity for that variety.
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Observe that equation varieties are preserved by the variety closure properties.

For example, an equation satisfied by M and N will also be satisfied by M × N .

Conversely, all monoid varieties can be characterized equationally using a certain

extension of the equational framework. We outline this extension below.

For strings u, v ∈ Σ∗ we define r(u, v) to be the size of the smallest monoid that

does not satisfy u = v, and we set r(u, v) =∞ if u and v are equal. Then the function

d : Σ∗ × Σ∗ → [0, 1] defined by d(u, v) = 2−r(u,v) is a metric over strings in Σ∗. We

denote by Σ̂∗ the set of limits of Cauchy sequences with respect to this metric. The

set Σ̂∗ forms a monoid under concatenation. Now, for u, v ∈ Σ̂∗. we say that u = v

is a (pseudo)-equation, and we say that M satisfies the equation if there is a pair

of sequences u1, u2, . . . and v1, v2 . . . converging to u and v such that M satisfies the

equations ui = vi in the limit. Monoid varieties can now be characterized as follows:

Theorem 2.10 ([19]) Every monoid variety can be defined by a set of pseudoequa-

tions.

A similar characterization will hold in the case of semigroup varieties.

It is difficult to obtain a clear mental picture of an arbitrary element of Σ̂∗

from the definition. Fortunately we can already characterize most monoid varieties

of interest by looking at a simple subclass of Σ̂∗. We consider the closure of finite

strings in Σ∗ under concatenation and the ω operator, which we define below.

Definition 2.3 For x ∈ Σ̂∗, we denote by xω the limit limk→∞ xk!.

If x is a monoid element, then the limit xω is the idempotent element in the

semigroup generated by x. This allows us to specify varieties equationally in terms

of identities satisfied by the idempotents. For instance, the equation xωy = yxω
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expresses the algebraic condition that all idempotents commute with all elements of

the monoid.

2.2.5 Important Varieties

The power of the algebraic method follows not only from the basic framework,

but from the taxonomy of varieties that has developed over many years of investi-

gation. Varieties that are defined in terms of natural algebraic properties are often

interrelated in meaningful ways.

Two central varieties are G, which is the variety of groups, and A, which is

the variety of aperiodic monoids. The significance of these two varieties is exhibited

by the celebrated Krohn-Rhodes Theorem [40], which states that all finite monoids

divide an iterated semidirect product of groups and aperiodic monoids. In this sense,

groups and aperiodic monoids are the building blocks of finite monoids.

In this section we highlight several important varieties of monoids, with par-

ticular focus to those which arise from our work. In many cases, there exists a

combinatorial description of the class of languages recognized by these varieties.

Varieties of Groups

A group is a monoid for which all elements m there is an element m−1 satisfying

mm−1 = m−1m = 1. The variety G of all finite groups can be characterized by the

equation xωy = yxω = y. To see this, on one hand idempotents within groups must

act as the identity since ee = e implies that e = eee−1 = ee−1 = 1. On the other

hand, substituting y for 1 in the equation we get xω = 1. Thus for any x there exists

a suitable power k of x such that xk = 1, and so xk−1 = x−1.
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The class of languages recognized by groups appears to be too complex to admit

a useful combinatorial characterization. However, several important subvarieties of

G have been characterized. A simple example is the variety Ab of Abelian, or

commutative groups. Using the fact that any finite abelian group can be decomposed

into a direct sum of cyclic groups, it can be shown that a language L is recognized

by some finite abelian group if and only if there exists an m such that membership

in L depends only on the number of occurrences of each letter modulo m.

There are also some nontrivial characterizations of subvarieties of G, such as

the class Gnil of nilpotent groups. For two subgroups H1, H2, let [H1 , H2] be the

subgroup generated by group elements of the form h1h2h
−1
1 h−1

2 , with hi ∈ Hi. Let

G = G0. Then G is nilpotent if the series G1 = [G , G0], G2 = [G , G1],. . . ends in

the trivial group. For w, v ∈ Σ∗, let
(
w
v

)
be the number of distinct occurrences of

v in w. A language L is recognized by a group in Gnil if and only if there exists

positive integers m, k such that membership of w in L depends only on the value of(
w
v

)
mod m for all v ∈ Σ∗, |v| ≤ k.

Varieties of Aperiodics

A monoid is called aperiodic if it does not contain a submonoid which forms a

nontrivial group. The variety A of aperiodic monoids is characterized by the equation

xωx = xω. To see this, note that if M is not aperiodic there will exist an x which is

part of a group in M but is not the identity. But then xω must be the identity of

the group, and so xωx = x 6= xω and the equation is violated. On the other hand, if

there is an x such that xωx 6= xω, then the set of elements generated by xωx form a

nontrivial group with identity xω.
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The class of languages recognized by aperiodic monoids was famously character-

ized by Schützenberger [57]. They correspond exactly to the “star-free” languages,

which are those languages which are in the closure of finite languages under concate-

nation and boolean operations, but not star. This class of languages arises naturally

in different contexts. For instance, it is equal to the class of languages which can be

described by a formula in first-order logic over order [42].

Note that this class can include languages which are more simply expressed

using a Kleene star. For example, the language L of words containing at least one a

is star-free, since L = Σ∗aΣ∗ = ∅a∅.

The class Nil is a variety of semigroups which consists of only one idempotent

which acts as a zero in the semigroup. This is naturally characterized by the equa-

tions xωy = xω = yxω. It is not hard to show that the languages recognized by

nilpotent monoids are exactly the languages L ⊆ Σ+ such that either L or L is finite.

Several important aperiodic varieties arise from the definition of Green’s rela-

tions. We say that a monoid M is J -trivial (respectively R, L, or H-trivial) if each

of the J -classes of M are singletons.

The class of H-trivial monoids is exactly the variety A. The variety R of R-

trivial monoids can be characterized by the equation (xy)ωx = (xy)ω. Similarly the

variety L of L-trivial monoids is characterized by the equation y(xy)ω = (xy)ω. The

variety J of J -trivial monoids satisfies J = L ∩ R, so J is characterized by the

equations (xy)ωx = (xy)ω = y(xy)ω.

A beautiful combinatorial characterization of J was obtained by I. Simon [61].

We say that a = a1 . . . ak is a subword of w if w ∈ Σ∗a1Σ
∗ . . . akΣ

∗. We will call the
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language Σ∗a1Σ
∗ . . . akΣ

∗ a subword test. Let J be the language variety such that

J→ J .

Theorem 2.11 (Simon’s Theorem) A regular language L is in J if and only if it

is a finite boolean combination of languages of the form:

Σ∗a1Σ
∗ . . . akΣ

∗.

A language is recognized by an R-trivial monoid if and only if it is a boolean

combination of languages of the form Σ∗
0a1Σ

∗
1 . . . akΣ

∗
k, where ai /∈ Σi−1 for all i. The

L-trivial monoids can recognize those language that are reversals of these languages.

2.2.6 Operations on Varieties

Several of the monoid varieties discussed in this thesis exhibit useful structural

decompositions. We have mentioned for example that all finite monoids divide an

iterated semidirect product of monoids in G and monoids in J1. These decomposition

results can often give us a practical advantage, for example they may help to generate

equations for a variety from the equations of a simpler variety, or to take advantage

of powerful combinatorial results.

In order to formally introduce some of these decomposition results, we must first

introduce some natural operations on varieties.

Wreath Product

Let (M,+) and (N, ·) be two monoids with identities 0 and 1 respectively. A left

action ·L : N ×M → M of a semigroup N on M is a function, denoted multiplica-

tively, that satisfies n′ ·L (n ·Lm) = n′n ·Lm. We say that ·L is unitary if 0 ·Lm = m

and n ·L 1 = 1.
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A semidirect product of monoidsM andN is a monoid over the ground setM×N

with the product (m,n)(m′, n′) = (m + n ·L m′, nn′), with respect to some unitary

left action ·L. This is indeed an associative operation and (0, 1) is the identity. It is a

partial direct product in the sense that the projection π : M×N → N is a surjective

morphism under this product. Semidirect products of semigroups are defined in a

similar way, but without the condition of unitarity.

The wreath product V ∗W of varieties V and W is the variety generated by

the set of semidirect products of some V ∈ V and some W ∈W. Let V → V and

W → W . The class of languages recognized by monoids in V ∗W has a useful

combinatorial characterization in terms of V , W , and finite state transducers. This

characterization is known as the wreath product principle.

Fix an alphabet Σ. Let ϕ : Σ∗ → N be a morphism and let Γ = N × Σ. Also,

let σϕ : Σ∗ → Γ∗ be the function defined by:

σϕ(a1 . . . ak) = (1, a1)(ϕ(a1), a2), . . . (ϕ(a1 . . . ak−1), ak).

We call σϕ the sequential function associated with ϕ. Such a sequential function can

be computed by a finite state transducer whose transition monoid divides N .

Theorem 2.12 (Wreath Product Principle) [62] If L is recognized by a monoid M ∈

V ∗W, then it is a finite boolean combination of languages of the form X ∩ σ−1
ϕ (Y ),

for some alphabet Σ, monoid W ∈ W, morphism ϕ : Σ∗ → W , and languages

X ⊆ Σ∗, Y ⊆ (W × Σ)∗ such that Y ∈ V, X ∈ W.

Malcev Product
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A relational morphism of monoids from M to N is a function ϕ : M → 2N

that satisfies 1N ∈ ϕ(1), ϕ(m1)ϕ(m2) ⊆ ϕ(m1m2), and ϕ(m) is nonempty for all

m ∈M . A relational morphism of semigroups is the same except that the 1N ∈ ϕ(1)

condition is not required. The graph of ϕ, denoted graph(ϕ), is the submonoid of

M × N formed by the set {(m,n) ∈ M × N : n ∈ ϕ(m)}. Let π1 : graph(ϕ) → M

and π2 : graph(ϕ) → N be the projections on to the first and second coordinates

respectively. Then ϕ = π2π
−1
1 . Note that π1 and π2 will be morphism, and π1 will be

surjective. We say that ϕ is injective if π2 is injective. Injective relational morphisms

have the property (ϕ(m1) ∩ ϕ(m2) = ∅ for m1 6= m2). It can be shown that M � N

if and only if there is an injective relational morphism from M to N .

The Malcev product V mOW of V and W is the set of all monoids M for which

there exists a W ∈ W and a relational morphism ϕ : M → W such that for all

idempotents e ∈ W we have ϕ−1(e) ∈ V.

2.2.7 The Variety BG

The variety of block groups [50], denoted BG, is a natural and well-studied class

of finite monoids which arises at several points in our investigation. A monoid M

is a block group if every L-class and every R-class of M each contain at most one

idempotent.

With this formulation, it is not hard to see that the BG is the largest monoid

variety whose corresponding language variety does not contain the languages aΣ∗

or Σ∗a. On one hand, the syntactic monoids of aΣ∗ and Σ∗a respectively have two

R-related idempotents and two L-related idempotents. On the other hand, if L is

such that M(L) has two R-related idempotents x and y, then 1, x, and y form a
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Figure 2–4: The syntactic monoids for Σ∗a and aΣ∗, respectively.

three-element submonoid which is isomorphic to the syntactic monoid of aΣ∗. A

symmetric argument holds for Σ∗a when there are two L-related idempotents.

The variety BG has several equivalent formulations. For instance, it is equiva-

lent to:

� the variety J ∗G,

� the variety J mOG,

� the variety EJ of monoids M such that the set E(M) of idempotents of M

generates a J-trivial subgroup, and

� the variety PG of power groups, which are monoids formed by taking the

powerset of a finite group G as monoid elements with product as the monoid

operation.

These equivalence results give us several useful combinatorial characterizations

of the variety BG. For example, a language L is recognized by a monoid in PG

(and thus BG) if and only if it is a boolean combination of languages of the form

L0a1L1 . . . akLk, where each Li is a language that is recognized by a group.

The variety BG can be characterized equationally as the class of all finite

monoids which satisfy the equation:
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(xωyω)ω = (yωxω)ω,

or equivalently those which satisfy the equation:

(xωyω)ωxω = (xωyω)ω = yω(xωyω)ω.
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CHAPTER 3
Characterizations of QFA

The objective of this thesis is to understand the language recognition power of

different models of QFA. An ideal but sometimes elusive goal in such an undertaking

is to make broad statements about which languages can or cannot be recognized. In

this chapter we apply algebraic automata theory to obtain characterizations of the

class of languages recognized by QFA. Along the way, we introduce techniques for

constructing QFAs, as well as techniques for showing nonrecognizability.

In Section 3.1.3 we investigate the extent to which the five models are closed

under variety operations. In fact the language classes corresponding to MOQFA

and LQFA satisfy all of the variety closure properties. Thus by Eilenberg’s theorem

it is immediate that there exists some algebraic characterization of these language

classes: recognizability of a given language L by MOQFA or LQFA depends solely

on algebraic properties of the syntactic monoid of L. In Sections 3.2 and 3.3 we

obtain these characterizations. We also show in Section 3.4 that the boolean closure

of languages recognized by BPQFA can also be characterized algebraically. For the

case of MOQFA we find that this type of QFA can recognize exactly those languages

whose syntactic monoids are groups.

Note that such an algebraic characterization requires both a recognizability re-

sult showing that each L with syntactic monoid as group can be recognized, and a
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matching proof that any L whose syntactic monoid is not a group cannot be recog-

nized. To show a recognizability result on a variety of monoids, we can take advan-

tage of combinatorial characterizations of the languages in the associated language

varieties. The impossibility result is also assisted by the algebraic setting.

For LQFA, we show that these machines can recognize exactly those languages

whose syntactic monoids are in the variety called BG, which we describe in Sec-

tion 2.2.7. Known results about BG give us a nontrivial combinatorial characteriza-

tion of these languages, which is essential for establishing the recognizability result.

Basic facts about BG reduce the work in the impossibility part to proving the nonrec-

ognizability of two canonical languages aΣ∗ and Σ∗a. This demonstrates the power

of the algebraic perspective.

We find that the remaining models are closed under many but not all of the

variety operations. However, we can still apply algebraic techniques to permit some

partial characterization. In Section 3.4 we show that the boolean closure of lan-

guages recognized by BPQFA is exactly the language class corresponding to the

monoid variety BG. In later chapters we will investigate generalizations of Eilen-

berg’s framework to handle language classes which do not meet all of the variety

closure properties.

3.1 Preliminaries

3.1.1 Criteria for Language Recognition

As the QFA models discussed here have a probabilistic output, we should specify

the criteria for language recognition. We make note here of the distinction between

bounded-error and unbounded error recognition. For bounded-error acceptance, we
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require that there is a lower bound p on the probability of accepting w ∈ L and an

upper bound p′ on the probability of accepting w /∈ L, such that p′ is strictly less

than p. Such a QFA can be easily converted into a QFA which gives the correct

answer with probability p > 1
2
.

The weaker condition of unbounded-error acceptance would require that any

word w ∈ L is accepted with probability strictly greater than some upper bound p

on the probability that any w /∈ L is accepted. Under this criterion, it is possible

to construct QFAs that recognize nonregular languages. For example, consider a

MOQFA over Σ = {a, b} with Q = {q0, q1}, A$ = U¢ = I, initial state |q0〉 =

 1

0


and

Aa = A−1
b =

 cosα sinα

− sinα cosα

 ,
where α is an irrational multiple of π. Then |ψw〉 has nonzero amplitude in the second

coordinate if and only if |w|a 6= |w|b. Thus by defining the accepting subspace to be

span{|q1〉}, M recognizes L = {w : |w|a 6= |wb|} with unbounded error.

Unbounded-error recognition is considered impractical as there is no a priori

way to build confidence in the answer given by the machine. In the bounded error

case, where the correct answer is given with probability p > 1/2, it is well known

(c.f. [47]) that we can build our confidence by running the algorithm several times on

the same input and then taking the majority vote. A good bound on the minimum

number of trials required for a desired accuracy is given by the Chernoff bound, given

below. This is a special case of the Chernoff inequality [21]:
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Theorem 3.1 (The Chernoff Bound) Let X1, . . . , Xn be i.i.d. random variables

which take value 1 with probability 1/2 + ε and value 0 otherwise. Then:

P
[∑

Xi ≤ n/2
]
≤ e−2ε2n.

Supposing we had a machine which, on any input, would produce the correct

output with some fixed probability p > 1
2
. We run this machine on the same input n

times, taking the Xi to be the outcome of the machine on the ith run of the machine.

The Chernoff bound states that the probability that the machine is incorrect on a

majority of these trials diminishes exponentially in n.

For MOQFA and LQFA, this simulation can be performed within the model

itself. Specifically for a machine M and n > 0 we can construct M ′ that accepts

w with probability equal to the probability that the majority of n trials of M on

input w accept. For the MOQFA case we do this on a space with state set Qn. The

initial state is set to
⊗n

i−1 |q0〉 and on input σ we apply the operation
⊗n

i=1 Uσ. This

has the effect of simulating n copies of M in parallel. Let [n] = {1, . . . , n}, and let

Sacc and Srej be the accepting and rejecting subspaces for one copy of M . Then we

define:

S ′acc =
∑

I⊆[n], |I|>n/2

n⊗
i=1

Si,I ,

where Si,I = Sacc if i ∈ I and Si,I = Srej otherwise. Lastly we define S ′rej = S ′acc.

M ′ will accept an input w with probability equal to the probability that a majority

of the copies of M accept. The construction for LQFA is essentially the same. On

the other hand, it is not possible in general to boost the probability of recognition
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for GQFA, KWQFA, or BPQFA, in fact for each of these models there are languages

which QFAs can recognized with some probability p > 1
2
. but not with probability

1− ε for all ε > 0.

3.1.2 Abstract State Descriptions

In Section 2.1.2, we described how density matrices can be used a succinct

description of a mixed state, from which we can calculate the outcome of any sequence

of measurement and evolution operations that are to follow. This is true despite the

fact that the state is a random variable taken from an unbounded number of possible

values.

For all of the QFA models that we discuss here, the processing of some input

word w involves a number of probabilistic choices. The state of a MOQFA and

LQFA behavior in an intermediate stage of processing can be suitably described

using density matrices. It is useful to have a similar formalism to describe the states

of the other machines.

For BPQFA and KWQFA, after reading some partial input w = w1 . . . wk there

is some probability pnon that the machine did not halt while w is being processed.

Recall that a measurement is made after every input letter is read, and the machine

will halt if the outcome of the measurement is acc or rej. Conditioned on machine

M not halting while processing u, we know the outcome of every measurement and

so the state of M is determined. This motivates the following description of the

nonhalting part. For σ ∈ Σ∪{¢, $}, define A′σ is the unitary operator PnonAσ, where

Pnon is the projection into the nonhalting subspace. By induction, it is easy to show

that the vector |ψw〉 = A′wk
. . . A′w1

A′¢|q0〉 is the state ofM conditioned on not halting,
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scaled by a factor of
√
pnon. Notice that for BPQFA, conditioned on M halting, M

has rejected the input. Thus the vector |ψw〉 completely characterizes the behaviour

of M on reading w over all probabilistic choices. For KWQFA, we must additionally

keep track of the probability with which M has accepted or rejected while reading

w, so the abstract state description is naturally a triple (pacc, prej, |ψw〉). Finally for

GQFA, we use a triple (pacc, prej, ρw), where ρw is the density matrix corresponding

to the mixed state of M , conditioned on not halting.

3.1.3 Closure Properties

All five models discussed in the thesis are closed under inverse morphisms. Sup-

pose that L ⊆ Γ∗ is recognized by QFA M and ϕ : Σ∗ → Γ∗ is a morphism.

Intuitively, we construct M ′ recognizing ϕ−1(L) by simulating, on input σ ∈ Σ, the

behavior of M on the word ϕ(σ) = γ1 . . . γk. Thus on reading w1 . . . wn ∈ Σ∗, the

state of M ′ is equal to the state of M on reading ϕ(w1 . . . wn). Finally, M ′ accepts

or rejects as M would, and so M ′ recognizes ϕ−1(L) with the same error bound for

which M recognizes L. So it remains to show that the operations for a series of

letters can be composed into the operation for a single letter. This is immediate

in the case of MOQFAs, since each letter induces a unitary transformation in this

case, and unitary matrices are closed under multiplication. The remaining four cases

require an argument, since each letter induces a unitary transformation followed by a

measurement and it is not clear that a series of such operations can be composed into

one unitary operation followed by one measurement. For KWQFAs and BPQFAs,

this can be done by adding extra halting states. To simulate a series of k transfor-

mations and measurements, we create k copies of each halting state. We send the
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halting part of the ith measurement into the ith copy of the halting state. This can

be done with a single unitary matrix. For LQFAs we have the following theorem:

Claim 1 ([3]) Consider a sequence of l transformations and measurements operating

on a finite space E. These operations can be simulated by one transformation and

one measurement on a (possibly larger) finite space E ′.

The proof idea is based on the principle of deferred measurement [46]. Let

M = {P1, . . . , Pk} be a projective measurement and let U be unitary operator applied

to some space A. We consider the operation M followed by U . We can simulate this

operation on the space A ⊗ B, where the B has dimension k. Define UM to be an

operator on A and B that satisfies:

UM |ψ〉A|0〉B =
∑
i

(Pi|ψ〉A)|i〉B.

This operation can be extended to a unitary matrix. Recalling the definition of the

partial trace, if we apply UM followed by U , the A subspace behaves exactly as if M

and then U were applied to A. We can simulate the partial trace by just measuring

with respect to {IB × |i〉〈i|B}, so if we make this measurement after the operation

UMU , we have the desired output in the subspace A. To complete the proof, we

would need to show that subspace B can be reused without being initialized again.

All of the models we discuss are also closed under left and right quotient. Sup-

pose M recognizes w−1L. From M we can construct M ′ recognizing w−1L by ini-

tializing M ′ to the state of M on reading w. This initialization can be performed

in all of the models, using the ideas from the inverse morphic closure. Likewise, to

recognize Lw−1 we simulate M on L and then apply the operations for w.
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Last, we cover the boolean operations. For the case of MOQFA, KWQFA,

LQFA, and GQFA, from a QFA recognizing L we can construct an QFA for L just

by swapping the accept and reject states. For the case of BPQFA we do not have

this symmetry in the definition, and in fact we show in Chapter 4 that BPQFA are

not closed under complement.

3.2 Characterization of MOQFA

In this section we present a theorem of [44] which characterizes the class of

languages recognized by MOQFA. The theorem can be stated nicely in algebraic

terms.

Theorem 3.2 The language L is recognized by an MOQFA iff its syntactic monoid

is in G.

In Section 3.1.3 it is shown that the class of languages recognized by MOQFA

forms a variety. We need to show that the variety of monoids corresponding to

MOQFA is exactly G. For the upper bound it suffices to show:

Theorem 3.3 Let L be a language such that M(L) ∈ G. Then there is an MOQFA

recognizing L with probability of recognition 1.

Note that all of the models in this paper include MOQFA as a special case, so this

construction applies to all of the QFA models in the thesis.

Proof: First, suppose M(L) ∈ G. Then there is a finite group G, a set F ⊆ G

and a homomorphism ϕ : Σ∗ → G such that ϕ−1(F ) = L. We construct a MOQFA

M = (Q, q0,Σ, {Uσ}, Qacc) that recognizes L by directly computing the value of ϕ(w)

on input w. We define Q = G, q0 to be the identity of G, and Qacc = F . Also define

U¢ = U$ = I, and for each t ∈ Σ we define Ut to be the unique linear operator such
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that for all s ∈ G we have Ut|s〉 = |s · ϕ(t)〉. This is just a permutation of the basis

vectors and so each Ut is unitary. Observe that UtUs|1〉 = |st〉. Thus by induction:

Uwk
· · ·Uw1|1〉 = |ϕ(w1) · · ·ϕ(wk)〉 = |ϕ(w1 . . . wk)〉

So the state of the machine upon reading w is |ϕ(w1 . . . wk)〉, and by definition

ϕ(w1, . . . , wk) ∈ F if and only if w ∈ L. �

To show that L cannot be recognized by MOQFA unless M(L) is a group, it

is sufficient to show that MOQFA cannot recognize Σ∗aΣ∗. To see this, suppose for

example that there is an MOQFA that recognizes L such that M(L) is not a group.

Then there is some element x ofM(L) which does not have an inverse. Observe that 1

and xω form a two-element semilattice with multiplication xωxω = 1·xω = xω ·1 = xω.

This is the monoid commonly denoted U1, and it is easily seen to be isomorphic to the

syntactic monoid of Σ∗aΣ∗. In particular, U1 �M(L), so an MOQFA recognizing L

would imply the existence of an MOQFA recognizing Σ∗aΣ∗.

The nonrecognizability of Σ∗aΣ∗ is based on the following important fact, which

quantifies the intuitive notion that suitable large powers of a unitary matrix act

almost as the identity.

Lemma 3.4 For every unitary operator U on Cn and every ε > 0 there exists a k

such that for all unit vectors |ψ〉 ∈ Cn we have |(|ψ〉, Uk|ψ〉)| ≥ 1− ε.

Proof: Unitary matrices satisfy U †U = UU †, and so they are normal. Recalling

the spectral decomposition theorem, we can express U as U =
∑n

i=1 λi|ei〉〈ei|, where
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each |ei〉 is a normal eigenvector of U with 〈ei|ej〉 = 0 for all i 6= j, and each λi is

the eigenvalue corresponding to |ei〉. Then:

U2 = (
n∑
i=1

λi|ei〉〈ei|)(
n∑
j=1

λi|ei〉〈ei|)

=
∑
i,j

λiλj|ei〉〈ei|ej〉〈ej|

=
∑
i

λ2
i |ei〉〈ei|,

and likewise, Uk =
∑

i λ
k
i |ei〉〈ei|.

Recall that by definition of unitarity, we have (|ϕ〉, |ψ〉) = (U |ϕ〉, U |ψ〉) for all

|ϕ〉, |ψ〉. This implies that all of the eigenvalues λj of U satisfy |λj| = 1.

Since each λj lies on the unit circle, by Euler’s formula it can be expressed

uniquely as e2πiθj for some θj ∈ [0, 1). When we take powers of the U , the eigenvalues

cycle periodically around the unit circle. Let ε′ < ε
n
. By Theorem 201 of [34], for

a suitable choice of k we have |1 − λkj | ≤ ε
n

for all j. Then, using the identity

〈ψ|(
∑

i |ei〉〈ei|)|ψ〉 = 〈ψ|I|ψ〉 = 1, we obtain:

|(|ψ〉, Uk|ψ〉)| =

∣∣∣∣∣1−∑
i

(1− λki )〈ψ|ei〉〈ei|ψ〉

∣∣∣∣∣
≥ 1−

∑
i

|1− λki |

> 1− ε,

as desired. �

Theorem 3.5 There is no MOQFA which recognizes the language Σ∗aΣ∗.
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Proof: Suppose MOQFA M recognizes Σ∗aΣ∗ with recognition probability p > 1
2
.

Let Aa be the unitary matrix induced by the letter a. By Lemma 3.4, for any ε

there is a k such that 〈ψ|Aka|ψ〉 ≥ 1 − ε for all ψ. By a suitable choice of ε, we

can ensure that ‖|ψ〉 − Aa|ψ〉‖22 ≤
√

2(p− 1
2
) for all |ψ〉, in particular for the vector

reached after reading the preprocessing character ¢. Similarly to the argument of

Theorem 2.3, the assumption of bounded error recognition implies that ak and the

empty string should both be accepted or both rejected. Either case will contradict

the assumption that M is recognizing Σ∗aΣ∗ �.

3.3 Exact Characterizations of LQFA

We now prove the following algebraic characterization of LQFA:

Theorem 3.6 A language L is recognized by an LQFA with bounded error if and

only if M(L) ∈ BG.

As discussed in the introduction to the chapter, the proof will be in two parts.

In Section 3.3.1 we show that every language L such that M(L) ∈ BG is recognized

by LQFA. In Section 3.3.2, we show that LQFA cannot recognize the languages aΣ∗

or Σ∗a.

3.3.1 Recognizability Results for LQFA

The first step of the proof is to show that LQFA can recognize subword tests:

Theorem 3.7 LQFA can recognize languages of the form Σ∗a1Σ
∗ . . . akΣ

∗.

Proof: In this proof, we write u ∈ v for u, v ∈ Σ∗ if u occurs as a subword of

v. We prove the result by induction on a1 . . . ak. For the induction base, we con-

struct an LQFA M = (Q,Σ, q0, {Aσ}, {Pσ}, F ) for the language Σ∗aΣ∗. We set

Q = {q0, q1, . . . , qn−1}, A¢ = A$ = I and P¢ = P$ = {I}.
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Let Fn be the Fourier transform over Zn. On input a, the transformation Fn

is applied followed by measurement Ma = {|q0〉〈q0|, . . . , |qn−1〉〈qn−1|}, and no action

is performed for σ 6= a. The first a that is read will cause the machine to move to

some state qi uniformly at random. The second and subsequent applications will

have the same effect. To see this, note that Fn|q0〉 =
∑

j

√
1
n
|qj〉 for the first a, and

in general Fn|qi〉 =
∑

j
1√
n
χi(j)|qj〉, where χi is the character of i in the group Zn

and |χi(j)| = 1. Thus after reading the input word, if we measure with respect to

{Pacc =
∑

i6=0 |i〉〈i|, Prej = |0〉〈0|}, we obtain the correct answer with probability at

least
(
n−1
n

)
.

We now induct on this construction. The inductive hypothesis is that we have

a machine M (`) = (Q(`), q0,Σ, {A(`)
σ }, {P (`)

σ }, Q(`)
acc), such that the state of M (`) at

any time is |q〉〈q| for some q ∈ Q
(`)
acc, and if w satisfies a1 . . . a` ∈ w then q ∈ Q

(`)
acc

with probability
(
n−1
n

)i
, and a1 . . . ak /∈ w implies q /∈ Q(`)

acc. Assume this is true for

` = i− 1. We augment the construction to make a machine for the case ` = i.

Our augmentation will proceed as follows. First let Q
(i)
acc be a set of (n − 1)i

new states, all of which are distinct from Q(i−1), and let Q(i) = Q(i−1) ∪ Q(i)
acc. For

each q ∈ Q
(i−1)
acc we uniquely associate n − 1 states q2, . . . , qn ∈ Q

(i)
acc. We leave q0

unchanged.

It remains to define the A
(i)
σ transitions. Define Ã

(i−1)
σ (resp. P̃

(i−1)
σ ) to be

the transformation that acts as A
(i−1)
σ on Q(i−1) ⊂ Q(i) and as the identity else-

where. Using Claim 1, we construct P
(i)
σ A

(i)
σ so that they simulate the operation

P̃
(i−1)
σ Ã

(i−1)
σ B

(i)
σ , where B

(i)
σ is an additional operation (consisting of a unitary trans-

formation and a measurement) which processes the ai character. Note that the
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operations are applied from right to left. For all σ 6= ai we set B
(i)
σ so as to perform

no action. For σ = ai, we define B
(i)
σ so that, independently for each q ∈ Q

(i−1)
acc ,

the transformation Fn is applied to Qq = {q, q2, q3, . . . , qn}, followed by the measure-

ment {|q〉〈q|, |q2〉〈q2|, . . . , |qn〉〈qn|,
∑

q′ /∈Qq
|q′〉〈q′|}. At the end we have a machine

M = M (k) that recognizes Σ∗a1Σ
∗ . . . akΣ

∗.

To simplify notation, we define Q(0) = Q
(0)
acc = {q0} and B

(1)
σ = A

(1)
σ for all σ.

The correctness of the construction follows from this lemma:

Lemma 3.8 Let w be any word. As we process w with M , for all 0 ≤ i < k the

total probability of M being in one of the states of Q(i) is nonincreasing.

Proof: For any S ⊆ Q, denote by P (S) the sum probability of being in one of the

states of S. Every nontrivial Aσ matrix can be decomposed into a product of B
(i)
ai

matrices operating on different parts of the state space. All of these matrices operate

on the machine state in such a way that for all j and for any {q, q′} ⊆ Q
(j)
acc, at any

time there is an equal probability of being in state q or q′. Thus the distribution of

the state at any time can be completely specified by P (Q
(0)
acc), . . . , P (Q

(k)
acc).

For all 0 ≤ i < k the machine can only move from Q(i) to Q\Q(i) when B
(i+1)
ai+1

is applied, and this matrix has the effect of averaging the likelihood of being in any

given state of Q
(i)
acc ∪ Q(i+1)

acc . Since |Q(i+1)
acc | = (n − 1)|Q(i)

acc|, it follows that a B
(i+1)
ai+1

operation will not increase P (Q(i)) unless P (Q
(i+1)
acc ) > (n− 1)P (Q

(i)
acc). It can easily

be shown by induction on the sequence of B
(j)
aj matrices forming the transitions of

M that this condition is never satisfied. Thus P (Q(i)) is nonincreasing for all i. �

We are now ready to prove that M recognizes L = Σ∗a1Σ
∗ · · · akΣ∗. First we

show that any w /∈ L is rejected with certainty. The transitions are constructed

69



in such a way that M can only move from Q(i−1) to Q(i) upon reading ai, and M

cannot move from Q(i−1) to Q(i+1) in one step (even if ai = ai+1). Next we show

that any w ∈ L is accepted with probability
(
n−1
n

)k
. After reading the first a1,

P (Q
(1)
acc) ≥

(
n−1
n

)
and by Lemma 3.8 this remains satisfied until a2 is read, at which

point M satisfies P (Q
(2)
acc) ≥

(
n−1
n

)2
. Inductively after reading subword a, M satisfies

P (Qacc) ≥
(
n−1
n

)k
. Thus M recognizes Σ∗a1Σ

∗ . . . akΣ
∗ with probability

(
n−1
n

)k
. �

We now return to the proof of Theorem 3.6. By Theorem 2.11, it follows that

LQFA can recognize any language whose syntactic monoid is in J. We can extend

this construction to cover all languages whose syntactic monoid is in J ∗G with the

theorem below.

Lemma 3.9 If LQFA can recognize every language whose syntactic monoid is in the

variety V, then they can recognize every language whose syntactic monoid is in the

variety V ∗G.

Proof: Recalling the wreath product principle in Section 2.2.6, It is sufficient to

show that an arbitrary language of the form the L = X ∩ σ−1
ϕ (Y ), for arbitrary X

such that M(X) ∈ G, arbitrary Y such that M(Y ) ∈ V, and morphism ϕ : Σ∗ → G

for G ∈ G, can be recognized by an LQFA.

Clearly X is recognized by an LQFA. By the assumption, there is an LQFA

M = (Q, q0, G × Σ, {Ag×σ}, F ) that recognizes Y . We will construct a machine

M ′ = (Q′, q′0,Σ, {Aσ}, F ′) that applies the transduction σϕ : Σ∗ → (G × Σ)∗ and

sends this input into M . We begin by defining Q′ = G × Q and q′0 = (1, q0). For

σ ∈ Σ, the transformation Aσ is applied in two steps. First, for each g ∈ G the

operation Ag×σ is applied to the space g×Q. Second, the basis states are permuted
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by Pϕ(σ) defined by Pϕ(σ)|g, q〉 = |gϕ(σ), q〉. This is indeed a permutation since ϕ is

a group morphism. We set F ′ = G× F .

Initially, all of the amplitude is in the subspace corresponding to {1}×Q. Con-

sider the behaviour of M after reading partial input a1, . . . ai−1. All of the machine’s

amplitude is in the subspace corresponding to the states ϕ(a1 . . . ai−1) × Q. Thus

on input ai the operation corresponding to (ϕ(a1 . . . ai−1), ai) is applied to M , so M ′

recognizes σ−1
ϕ (Y ) as required. �

Thus, LQFA can recognize every language whose syntactic monoid is in J ∗G.

Noting the fact that J ∗G = BG completes the theorem. �

3.3.2 Impossibility Results

In this section we show that LQFA cannot recognize aΣ∗ or Σ∗a. Both proofs

depend on the properties of Von Neumann entropy, outlined in Section 2.1.2. The

first result is implied by the results of Nayak.

Theorem 3.10 [45] There is no LQFA that recognizes the language Σ∗a with prob-

ability p > 1
2
.

Proof Sketch: This proof was originally given for GQFAs, of which LQFAs are a

special case. The proof idea is to show that the dynamics of an n-state LQFA

recognizing Σ∗a would imply the existence of series of mixed states over the working

space of the machine whose entropy grows unbounded, contradicting the maximal

entropy bound of log n. Recall that we denote by I(X : Y ) the mutual information

between two random variables X and Y . The entropy lower bounds are implied by

the famous Holevo theorem:
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Theorem 3.11 (Holevo Theorem [35]) Let X be a random variable taking value x

with probability px, let {ρx}x∈X be a set of density matrices, and let ρ =
∑

x ρx. Then

for any measurement of ρ, if Y is the classical random variable corresponding to the

outcome of the measurement, then:

I(X : Y ) ≤ S(ρ)−
∑
x

pxS(ρx).

This theorem has many immediate consequences regarding the relation between

classical information and quantum information, for instance the fact that no more

than n classical bits of information can be stored accurately in n quantum bits. In

this particular case, it implies the following:

Theorem 3.12 If ρ0 and ρ1 are two density matrices which can be distinguished

correctly by a measurement with probability p, then for ρ = 1
2
(ρ0 + ρ1) we have:

S(ρ) ≥ 1

2
(S(ρ0) + S(ρ1)) + 1−H(p).

Suppose thatX is a uniform boolean variable. Then ρX = 1
2
(ρ0+ρ1) = ρ. Taking

Y to be the outcome of a measurement on ρX = ρ, we see that I(X : Y ) ≥ 1−H(p).

Applying this inequation with the Holevo theorem gives the claimed inequality. �

Suppose M is an LQFA recognizing Σ∗a with probability p > 1
2
. Let ρw be the

state of an LQFA on input w. The last step of the proof is to build a series of density

matrices whose entropy grows unbounded. We start with the machine states ρa and

ρb corresponding to reading the words a or b. Since M recognizes Σ∗a, it follows that

ρa and ρb are distinguishable with probability at least p, so the state ρ′ = 1
2
(ρa + ρb)

has entropy at least 1−H(p), which is a positive constant for fixed p > 1
2
.
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For finite L, let ρL correspond to the mixed state 1
|L|
∑

w∈L ρw, and for σ ∈ {a, b},

let Eσ be the operation applied when reading σ. Then ρLσ = 1
|Lσ|
∑

w∈Lσ ρw = EσρL.

Let Lk = {a, b}k. Note that ρLk+1
= 1

2
(ρLka+ρLkb). Words in Lka are distinguishable

from words in Lkb with probability p, and so S(ρLk+1
) ≥ S(ρLk

) + 1 − H(p). For

sufficiently large k this becomes larger than log n, a contradiction. Therefore, there

can be no LQFA recognizing Σ∗a. �

The next theorem was proven in [3]:

Theorem 3.13 There is no LQFA that recognizes the language aΣ∗ with probability

p > 1
2
.

Proof: Again in this case we will apply basic properties of Von Neumann entropy, but

the proof of this theorem is considerably more involved than the previous. Suppose

M is an LQFA that recognizes the aΣ∗ with probability p > 1
2
, with Σ = {a, b}.

Let A and B be the operations corresponding to reading a and b respectively. Let

ϕ : Σ∗ →M(aΣ∗). Now ϕ(a) is idempotent, so for all i, j > 0 if ρw is the state reached

on reading w, the states Aiρw and Ajρw should both be accepted with probability at

least p or rejected with probability at least p. The same statement holds also for B.

The proof involves constructing a normalized transformation Alim which can

replace A and still recognize aΣ∗ with probability at least p, but in addition Alim

will satisfy AlimA = AAlim = Alim. We also construct a normalized Blim with the

same property. Note that ϕ(ab) and ϕ(ba) are also idempotent. Using Alim and

Blim, normalized versions of the transformations AB and BA are constructed. The

normalized transformations for AB and BA are called Clim and Dlim respectively.

The proof will be in two parts. First, we show that applying the final measurement
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to Climρ (Dlimρ), where ρ is the initial state, causes the machine to accept (reject)

with probability p. Next, we conclude by showing Clim = Dlim, thus contradicting

the assumption that M recognizes aΣ∗.

The proof uses the trace distance. The trace distance between matrices ρ0 and

ρ1 is defined as ‖ρ0 − ρ1‖t, where ‖ρ‖t = ‖Tr(
√
ρρ†)‖t is the trace norm of ρ. The

trace distance is a metric on the space of n × n density matrices. If ρ0 and ρ1 are

such that δ = ‖ρ0 − ρ1‖t ≥ 0, then there is a measurement that distinguishes ρ0

from ρ1 with probability at least 1
2

+ δ/4. Furthermore, for any CPSO E we have

‖Eρ0 − Eρ1‖t ≤ ‖ρ0 − ρ1‖t.

Let E be a CPSO. Define E ′ to be the operation that applies E with probability

1
2
, and applies the identity operation otherwise.

Lemma 3.14 1. For any CPSO E such that S(Eσ) ≥ S(σ) for all mixed states

σ, we have that for any mixed state ρ the sequence E ′ρ, (E ′)2ρ, . . ., (E ′)iρ, . . .

converges.

2. Let Elim be the map ρ→ limi→∞(E ′)iρ. Then, Elim is a CPSO and S(Elimρ) ≥

S(ρ) for any density matrix ρ.

Proof: Let ρi = (E ′)iρ. The sequence S(ρ1), S(ρ2), . . . is nondecreasing and is

bounded above by log n, thus for fixed n it will converge to some fixed value slim.

Now consider the sequence ρ1, ρ2, . . .. The space of n × n density matrices forms a

compact space with respect to the trace metric, and so the sequence must have some

limit point ρlim, i.e. for all ε there exists an i such that ‖ρlim − ρi‖t < ε. By the

continuity of S, S(ρlim) = slim .
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It remains to show E ′ρlim = ρlim. It is sufficient to show Eρlim = ρlim. Sup-

pose instead that ‖ρlim − Eρlim‖t = δ > 0. Let ρ′lim = 1
2
(ρlim + Eρlim). By

Theorem 3.12 and the fact that trace distance implies distinguishability, we have

S(ρ′lim) > S(ρlim) + 1−H(1
2
+ δ

4
). We show that this implies that there exists i such

that S(ρi) > slim, contradicting the fact that slim is an upper bound on S(ρj) for all

j. Let ε > 0 be chosen such that ε log2 d−ε log2 ε < H(1
2
+ δ

4
). Since ρ is a limit point,

there exists i such that ‖ρlim − ρi‖t ≤ ε. CPSOs do not increase the trace distance,

so ‖ρ′lim − ρi+1‖t ≤ ε. By Lemma 2.2, S(ρi+1) ≥ S(ρ′lim)− ε log2 d+ ε log2 ε > slim, a

contradiction.

To see the second part, notice that the limit of a sequence of linear maps on

d × d matrices is a linear map on d × d matrices. Furthermore, if each map is

trace-preserving and positive, the limit is trace preserving and positive. Finally,

S(Elimρ) = slim ≥ S(ρi). �

Let us take a moment to consider the meaning of the operator Elim. Suppose

that LQFA M recognizes some language L with bounded probability. and suppose

that E is the transition performed within the LQFA whenever some letter σ is read.

Let ϕ : Σ∗ → M(L) be the syntactic morphism. If ϕ(σ) is idempotent, then we can

replace the operation E in M with Ek for any k and still recognize L correctly. In

the same way, we can replace E with Elim in M and recognize L correctly. The Elim

operation is a normalized version of E which has the nice property ElimE = ElimE.

Let M be a LQFA recognizing aΣ∗ with probability p, and let A and B be the

operations performed when reading an a (b), We define C = AlimBlim, D = BlimAlim.

Informally the operations Clim and Dlim correspond to the transitions invoked on
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reading the profinite strings (aωbω)ω and (bωaω)ω respectively. Let ρ be the state

after reading the start marker ¢, and let ρx be the state reached after reading x.

We want Clim (Dlim) to map ρ a state which is accepted (rejected) with probability

p. Define Qa (Qb) to be the set of all probabilistic combinations of states ρax (ρbx).

Also, let Qa and Qb be the closures of Qa and Qb.

Lemma 3.15 (Lemma 7 in [3]). Climρ ∈ Qa and Dlimρ ∈ Qb.

In particular, this lemma implies that if ρ is the initial state, the final measure-

ment of M distinguishes Climρ from Dlimρ with probability p.

Proposition 3.16 For a mixed state ρ, Climρ = ρ if and only if Dlimρ = ρ.

Proof: Suppose Climρ = ρ. This implies Cρ = ρ. Otherwise, by Theorem 3.12,

S(C ′ρ) > S(ρ) and, since S((C ′)iρ) ≥ S(C ′ρ), we have S(Climρ) > S(ρ) and Climρ 6=

ρ. Likewise, since C = AlimBlim, this implies Bρ = ρ and Aρ = ρ. The other

direction is similar. �

We are now ready to show:

Lemma 3.17 Clim = Dlim.

Proof: Note that Climρ = ClimClimρ. By Proposition 3.16, This implies Climρ =

DlimClimρ. To show that Dlim = Clim, take an arbitrary ρ and consider ‖Climρ −

Dlimρ‖t. Let ρdiff = Climρ−Dlimρ. We need to show that Tr(ρdiff ) = 0.

Note that Climρdiff = ρdiff = Dlimρdiff . We can decompose ρdiff as ρdiff = ρ+−ρ−,

where ρ+ and ρ− are both positive. We show that Tr(ρ+) = 0 and Tr(ρ−) = 0. We

will need the following proposition, which is easy to check:

Proposition 3.18 Let A be an arbitrary CPSO. Assume that ρ is such that Aρ = ρ.

Let H be the support of ρ. Then A(H) ⊆ H.
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Observe that Clim, Dlimρ+ = ρ+, and likewise for ρ−. Tr(ρdiff ) = Tr(ρ+) −

Tr(ρ−). We can obtain the values Tr(ρ+) and Tr(ρ−) using the following proposition:

Proposition 3.19 (Proposition 3 of [3]) Let E be a CPSO such that S(Eρ) ≥ S(ρ).

Let H be such that E(H) ⊆ H. Then, for any ρ, TrPHρ = TrPHEρ

In particular, note that Climρ+ = ρ+ = Dlimρ+, and likewise for ρ−. Let H+ and

H− be the projection onto the support of ρ+ and ρ− respectively. Taking E = Clim

or E = Dlim, we see that Tr(PH+Climρ) = Tr(PH+ρ = Tr(PH+Dlimρ), and thus

Tr(ρ+) = Tr(PH+ρdiff ) = Tr(PH+(Climρ −Dlimρ)) = 0. Similarly Tr(ρ−) = 0, and

therefore Tr(ρdiff ) = 0 and therefore Climρ = Dlimρ. �

Now Clim = Dlim, but the final measurement distinguishes Climρ from Dlimρ

with probability p. This contradicts the assumption that M recognizes aΣ∗ with

probability p. This completes the proof of Theorem 3.13. �

3.4 Characterization of Boolean Closure of BPQFA

In this section we present the following algebraic characterization of the boolean

closure of BPQFA.

Theorem 3.20 L can be recognized by a Boolean combination of BPQFA if and only

if its syntactic monoid is in BG.

The outline of the proof is similar to the case of LQFA. We start with the

recognizability results.

3.4.1 Recognizability Results

Brodsky and Pippenger gave a BPQFA construction for subword tests. The key

to their construction is what they call a trigger chain. We review this in Section 4.1.
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Thus, boolean combinations of BPQFA can recognize every piecewise testable lan-

guage, i.e. every language whose syntactic monoid is in J. We can extend this to

the following:

Theorem 3.21 Boolean combinations of BPQFA can recognize every language whose

syntactic monoid is in J ∗G.

Proof: Recalling the wreath product principle in Section 2.2.6, It is sufficient to show

that an arbitrary language of the form the L = X ∩ σ−1
ϕ (Y ), where X is a language

such that M(X) ∈ G, Y is a language such that M(Y ) ∈ J. We can use the MOQFA

construction to recognize X, so it is sufficient that we can recognize σ−1
ϕ (Y ). Since

M(Y ) ∈ J, Y = ∪i∩j Yij where Yij is a subword test or the complement of a subword

test. Then σ−1
ϕ (Y ) = σ−1

ϕ (
⋃
i

⋂
j Yij) =

⋃
i

⋂
j σ

−1
ϕ (Yij). It is now sufficient to show

that BPQFA can recognize an arbitrary language of the form σ−1
ϕ (Yij). If Yij is a

subword test, then we can compute σ−1
ϕ (Yij) with the same strategy as in LQFA

for Theorem 3.9. Otherwise, we do the same on σ−1
ϕ (Yij) and use the fact that

σ−1
ϕ (Yij) = σ−1

ϕ (Yij) and the closure under complement. �

3.4.2 Impossibility Results

We now show that neither of the languages aΣ∗ and Σ∗a are boolean combina-

tions of languages recognized by BPQFA. First, we will introduce two lemmas which

have been used extensively to prove impossibility results for KWQFAs and BPQFAs.

These lemmas describe the state of the machine after reading a long sequence of

letters. We will use the notation introduced in Section 3.1.2.

Lemma 3.22 Let M be a KWQFA or BPQFA, then for all w ∈ Σ∗ there exists a

partition Ew
1 ⊕ Ew

2 of the state space into orthogonal subspaces such that
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1. |ψ〉 ∈ Ew
1 implies A′w|ψ〉 = Aw|ψ〉, A′w|ψ〉 ∈ Ew

1 , and

2. |ψ〉 ∈ Ew
2 implies limk→∞A′

wk |ψ〉 = ~0.

We will refer to the subspaces Ew
1 and Ew

2 as the ergodic and transient subspaces,

respectively. Note that the behavior of a state |ψ〉 ∈ E1 behaves exactly as a state

in an MOQFA. The next lemma describes the behavior of the machine while reading

a string of the form (x ∪ y)∗.

Lemma 3.23 Let M be a KWQFA or BPQFA. Then for all pairs x, y ∈ Σ∗ there

exists a partition Ex,y
1 ⊕ E

x,y
2 into orthogonal subspaces such that:

1. |ψ〉 ∈ Ex,y
1 implies A′x|ψ〉 = Ax|ψ〉, A′x|ψ〉 ∈ E

x,y
1 , A′y|ψ〉 = Ay|ψ〉, A′y|ψ〉 ∈ E

x,y
1

2. |ψ〉 ∈ Ex,y
2 implies that for any ε > 0 there exists w ∈ (x ∪ y)∗ such that

‖A′t|ψ〉‖ ≤ ε

Let |ψ〉 be the state of a BPQFA after reading the input symbol. Then |ψ〉 can

be split into |ψ〉 = |ψ1〉 + |ψ2〉, with |ψi〉 ∈ Ex,y
i . Since the operations A′x and A′y

are linear, we can think of the Ex,y
1 and Ex,y

2 component of the machine as acting

independently. The transitions A′x and A′y act unitarily on the subspace Ex,y
1 , so

the |ψ1〉 component has a periodic behaviour. The |ψ2〉 component behaves in an

essentially aperiodic fashion.

Intuitively, any language L recognized by a BPQFA machine using only the

Ex,y
1 component will be such that M(L) satisfies xω = yω, since the Ex,y

1 component

behaves as an MOQFAs. Now let us consider the E2 part. By the lemma, for words

x and y and for all ε there exists wx and wy such that length of the Ex,y
2 part of the

state after reading xwx or ywx is of length at most ε. Likewise there exists a word w

such that the length of the Ex,y
2 part of the state after reading wx or wy is at most
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ε. This suggests that transition monoid of a language recognized by the Ex,y
2 part

will be R-trivial and L-trivial, and thus J -trivial. Taken together, this suggests an

upper bound of EJ, or in other words BG, on the monoid variety corresponding to

boolean combinations of languages recognized by BPQFA. This is formally proven

below:

Theorem 3.24 The languages aΣ∗ and Σ∗a cannot be expressed as Boolean combi-

nations of languages recognized by BPQFA.

Proof: We begin with the aΣ∗ result. By closure under inverse homomorphisms,

it is sufficient to show this for Σ = {a, b}. Let M be a BPQFA that recognizes L

with probability p, and let |ψ〉 = A′¢(|q0〉). The first step is to show that for any

two prefixes v, w ∈ {a, b}+ and any ε > 0, there exists v′, w′ ∈ {a, b}∗ such that

‖A′vv′|ψ〉 − A′ww′|ψ〉‖2 < ε. Thus if ε ≤ √p, it follows that M cannot distinguish

between vv′ and ww′ with sufficiently large probability. As in Lemma 3.22, separate

Enon into two subspaces E1 and E2 with respect to the words x = a and y = b.

Then we can rewrite |ψ〉 as |ψ〉 = |ψ1〉 + |ψ2〉, where |ψi〉 ∈ Ei. By the lemma,

and since A′a and A′b act unitarily on E1, for any ε′ there exists v′ and w′ such that

‖A′vv′|ψ〉 − |ψ1〉‖22 < ε′ and ‖A′ww′|ψ〉 − |ψ1〉‖22 < ε′. For any fixed ε, we can find a

sufficiently small ε′ so that ‖A′vv′|ψ〉 − A′ww′|ψ〉‖22 < ε.

Suppose L is a Boolean combination of m languages L1, . . . , Lm, with each Li

recognized by a BPQFA Mi. As above, we can construct inductively on the languages

Li, two words v = v1v2 . . . vm ∈ {a, b}∗ and w = w1w2 . . . wm ∈ {a, b}∗ such that av

and bw are indistinguishable for every Mi. Thus we must have either {av, bw} ⊆ L

or L∩{av, bw} = ∅, and in either case L 6= aΣ∗. For the construction, we first choose
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v1 and w1 so that, for all v′ and w′, av1v
′ and bw1w

′ are indistinguishable by M1.

Given that, for all v′ and w′, av1 . . . vi−1v
′ and bw1 . . . wi−1w

′ are not distinguishable

by any of M1, . . . ,Mi−1; we construct vi and wi so that, for all v′ and w′, av1 . . . viv
′

and bw1 . . . wiw
′ are indistinguishable by Mi.

A similar analysis can be used to show the Σ∗a result. Consider a single BPQFA

M recognizing L with probability p. Let |ψ〉 = A′¢|q0〉 be the initial state. Let

b ∈ Σ\{a}, and let E1 and E2 be as in Lemma 3.22 with x = a and y = b. We can

uniquely split |ψ〉 into |ψ1〉+ |ψ2〉, where |ψ1〉 ∈ E1 and |ψ2〉 ∈ E2.

Suppose L is a boolean combination of m languages L1, . . . , Lm where each Li

is recognized by some BPQFA Mi with probability pi. For any ε, we can construct

a word w = w1 . . . wm such that, for all w′, the condition ‖A′ww′|ψ〉 −A′ww′|ψ1〉‖2 < ε

is met by each Mi. If we choose ε <
√

min{pi}, then there is an k such that for

all i, machine Mi satisfies ‖A′
ww′abk |ψ〉 − A′ww′a‖2 < pi. Thus we must have either

{ww′abk, ww′a} ⊆ L or {ww′abk, ww′a} ∩ L = ∅, and in either case L 6= Σ∗a. �

It is somewhat surprising that the BG variety turns up in both the characteriza-

tion of languages recognized by LQFA and of the boolean closure of languages recog-

nized by BPQFA. But if we look at the proofs of both cases we see some similarities

between the two. For example, in the recognizability part of both characterizations,

we use the fact that J is a lower bound on the monoid variety and the fact that this

can be extended to J ∗G by a simulation of a transducer via vthe wreath product

principle.

There are also similarities in the irreversibility part. We have seen that the

class of languages recognized by LQFA and the class of languages recognized by
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BPQFA can trade off randomness to allow some nonreversible behaviour. Also in

both cases there is a finite bound on the number of irreversible transitions which may

be invoked. This prevents either model from recognizing Σ∗a or aΣ∗, which would

require an unbounded number of irreversible transitions to recognize.

On the BPQFA side, this comes from the fact that irreversible steps can only

be made by halting and rejecting, whereas if we want to accept w there has to be

a nonzero bound on the probability that the machine has to read the entirety of a

word w. In the LQFA case, the limit on the number of irreversible steps comes from

the finite upper bound on the entropy of the state.

An unexpected consequence of these results is that the class of languages recog-

nized by LQFA and the boolean closure of languages recognized by BPQFA are both

closed under reversal. This is surprising considering the fact that there is no obvious

way to construct an LQFA or BPQFA for LR given an LQFA or BPQFA for L.
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CHAPTER 4
BPQFA

In the previous chapter, we saw that we can use Eilenberg’s variety theorem

to characterize the boolean closure of languages recognized by BPQFA. We shall

see in Section 4.2 that the class of languages recognized by BPQFA is in fact not

closed under complement, and thus does not form a variety. This implies that our

characterization of BPQFA is not complete. Fortunately, we can take advantage

of an extension of Eilenberg’s theorem to the case of ordered monoids [51]. This

extension can be used to characterize language classes which are closed under all of

the variety operations except complement. In this chapter, we use these algebraic

methods to make several steps toward an exact characterization of the languages

recognized by BPQFA.

The BPQFA model corresponds to an important subclass of KWQFA. There is

a subtle power that arises from being able to halt before the end: it allows the state

transition, conditioned on not halting, to be nonunitary. BPQFAs capture exactly

what nonunitary behavior can be produced by halting before the end of the input.

We formalize this idea in Section 4.1. It is exactly this power that is used to show

that BPQFA and hence KWQFA can recognize the language Σ∗a1Σ
∗ . . . akΣ

∗.

In Section 4.3, we give an overview of the theory of ordered monoids. In the

remaining sections, we outline our progress towards an exact characterization of
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BPQFA. In Section 4.4, we show several new BPQFA constructions, and in Sec-

tion 4.5 we give some algebraic conditions for recognition by BPQFA.

4.1 Preliminaries

Recall that in Section 3.1.2 we described a simple and useful characterization of

the behavior of BPQFAs, over all probabilistic choices, using scaled pure states. We

adopt this point of view for the remainder of this chapter. In particular, we will not

assume that |ψ〉 vectors have unit length. Also, we define Sacc (resp. Srej, Snon) to

be the space on which Pacc (resp. Prej, Pnon) projects.

We first present a geometric interpretation of the type of transformations which

can be performed by BPQFA. It highlights the fact that by halting before the end,

we can implement a projection operator on the space of scaled pure states.

Lemma 4.1 Let M be a BPQFA (or KWQFA). For a ∈ Σ, there is a subspace Sa

of Snon such that the operation A′a = PnonAa can be decomposed as A′a = VaPa, where

Pa is a projection onto Sa and Va is an operator which acts unitarily on the subspace

Snon. Conversely, for every Va that acts unitarily on Snon and every Pa that projects

into a subspace of Pnon, there is a unitary Aa such that VaPa = PnonAa.

Proof: Let A′a = PnonAa, let Sa = {|ψ〉 : |ψ〉 ∈ Snon ∧ Aa|ψ〉 ∈ Shalt}, and let

S ′a = {|ψ〉 : |ψ〉 ∈ Shalt∧Aa|ψ〉 ∈ Snon}. The sets Sa and S ′a are orthogonal subspaces

and, by unitarity of Aa, they have the same dimension. Let Ra be a unitary matrix

which swaps these two subspaces. We define Va = RaAa and we define Pa to be the

projection onto Sa. Now A′a = VaPa as required. The matrix Va is clearly unitary

and it maps vectors in Snon to vectors in Snon. The construction of Aa in the converse

is similar. �
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We have mentioned that the intermediate stochastic state of a KWQFA after

reading w ∈ Σ∗ is characterized by a triple ψw = (pw,acc, pw,rej, |ψw〉), where pw,acc

(pw,rej) is the probability of accepting (rejecting) while reading w, and |ψw〉 is the

state conditioned on not halting. Thus we can think of the output of a KWQFA as

coming from two sources, from the values of pw,acc and pw,rej, and from the outcome

of the measurement on |ψw〉. The lemma above implies that BPQFA describe exactly

what information can be gained just from measuring |ψw〉.

We now present the construction given by Brodsky and Pippenger for subword

tests. We will make a few adjustments to the presentation to make it easier to present

the generalized constructions that we describe in later sections.

Theorem 4.2 ([20]) BPQFA can recognize L = Σ∗a1Σ
∗ . . . akΣ

∗.

Proof: Brodsky and Pippenger called their construction a trigger chain. The ma-

chine M we construct for L consists of k + 2 nonhalting states q0, . . . qk+1, k halt-

and-reject states q0,rej, q1,rej, . . . , qk−1,rej, and a single accept state qk,acc. Reading

the initial character ¢ sets the initial state to 1√
k+1

∑k+1
i=1 |qi〉, giving the following

picture for the case k = 3:

A trigger is an operation which averages the amplitudes in two adjacent states

qi and qi+1. This is achieved by applying the following operation on the states qi,
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qi+1, and qi,rej respectively:

T =


1
2

1
2

1√
2

1
2

1
2
− 1√

2

1√
2
− 1√

2
0

 .
Before each application, the Qrej coordinate will always be reset to 0. In this case,

T has the following effect:

T

[
α β 0

]T
=

[
α
2

+ β
2

α
2

+ β
2

α√
2
− β√

2

]T
.

If α and β are positive reals, then T averages the amplitude between the first

two states, and places any excess amplitude into Qrej. After projecting the resulting

vector into Snon, the trigger has the effect of projecting the initial vector onto the

subspace spanned by [ 1 1 0 ]T . If α = β, then the trigger will have no effect. Let

Ti for i ≤ k be the operation that applies the T operation to states qi, qi+1, and qi,rej,

and let Tk be the operation which applies the T operation to qk, qk+1, and qk,acc.

Suppose for instance that the trigger T0 is applied to the initial state. For k = 3,

this produces the following state:

If this action is followed by a measurement with respect to {Pacc, Prej, Pnon}

then the machine will halt and reject with probability corresponding to the squared

magnitude of the amplitude in q0,rej, otherwise the contents of q0,rej will be emptied
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and we will be left with a balanced weight between q0 and q1. Note that applying

T1, T2, or T3 to the initial state would have no effect.

Now if we were to follow the T0 action with a T1 action, we would arrive at the

following picture:

The operation T3 puts a bounded amount of amplitude in q3 if and only if q3

has been lowered from its initial value, which happens only if T0, T1, T2 have been

applied in sequence. This is the idea that will be used to recognize subwords.

We now define the machine M . The transformation associated with each letter

will involve a sequence Ti operations. Reading the initial character ¢ sets the initial

state to 1√
k+1

∑k+1
i=1 |qi〉. On input σ ∈ Σ, M applies the transformation Aσ =

Aσ,1 · · ·Aσ,k, where

Aσ,i =


Ti−1 if ai = σ,

I otherwise.

Note in particular that the triggers will be applied from right to left.

Finally, let U$ be the operation that applies the operation Tk, while the remain-

ing amplitude is sent to the rejecting states.

Let us establish some properties of the machine M .

Claim 2 Let α0, . . . , αk be the amplitudes of q0, . . . , qk upon reading w ∈ Σ∗. Then

the αi’s are positive real and satisfy α0 ≤ α1 ≤ · · · ≤ αk.
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To see this, note that the property holds for the initial state, and the Ti operators

preserve this property. Also:

Claim 3 Let A and B be sequences of Ti operations with i ≤ k, and let BA be the

composition of these sequences, applied from right to left. Then the amplitude of qk

after applying BA is at most the amplitude of qk after applying A.

Claim 3 follows by Claim 2 and an inductive argument on k. This can be extended

to the following:

Claim 4 Let A1, B1, . . . , Am, Bm be sequences of Ti−1,i operations with i ≤ k. Then

the amplitude of qk after the operation BmAm · · ·B1A1 is at most the amplitude of

qk after the operation Am · · ·A1.

We now return to proving the correctness of M . Note that M will accept with

nonzero probability if and only if the amount of amplitude in qk has changed from

1√
k+1

while reading the input sequence. For all i, qi will have amplitude 1√
k+1

as long

as the subword a1 . . . ai has not been read. This can be shown by induction on i. For

i = 1, note that the definitions of Aσ are such that for all w /∈ Σ∗aΣ∗, A′w does not

contain the trigger T0, while A′a1
does contain the trigger T0. Assume the claim is

true for all i′ < i. Thus qi−1 does not change its amplitude unless a1 . . . ai−1 is read.

When ai−1 is read, observe that the Aai−1,i · · ·Aai−1,k operation is applied to states

which have already equal in amplitude so the amplitude in qi will not be change until

ai is read in sequence (note that this holds even if ai−1 = ai). Thus if a1 . . . ak /∈ w,

on reading w the amplitude in qk will remain at its initial value and the machine will

reject with probability 1.
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It remains to show that every w ∈ L is accepted with some probability p > 0. If

w = a1 . . . ak is read, the amount of amplitude in qk will have decreased by a factor

of 1
2k . By Claim 4, the amplitude of qk on reading some word in L is at most 1

2k ,

and so there is a positive lower bound on the probability that a given word in L is

accepted. This completes the proof of correctness. �

This construction demonstrates a surprising computational power of BPQFA.

In the next section we prove an important limit on this power.

4.2 Impossibility Results

In this section we show that BPQFA cannot recognize the language Σ∗bΣ∗aΣ∗.

Since there is a BPQFA construction for the language Σ∗bΣ∗aΣ∗, this implies that

BPQFA are not closed under complement.

Theorem 4.3 ([3]) For any a 6= b and for any Σ satisfying {a, b} ⊆ Σ, BPQFA

cannot recognize Σ∗bΣ∗aΣ∗.

Proof: Without loss of generality we let Σ = {a, b}. In this case, Σ∗bΣ∗aΣ∗ = a∗b∗.

Our proof makes frequent use of the following corollary to the ergodic-transient

lemma:

Corollary 4.1 ([6]) For any KWQFA (or BPQFA) M and word w we can define

subspaces Ew
1 ⊕ Ew

2 = Enon such that |ψ1〉 ∈ Ew
1 implies (A′w)i(|ψ1〉) = (Aw)i(|ψ1〉)

for all i, and |ψ2〉 ∈ Ew
2 implies limi→∞ ‖(A′w)i|ψ2〉‖ = 0.

We now establish a relationship between projection operations and idempotents.

Let us define the following subclass of operations:

Definition 4.1 A projection operator P is an Snon-projection if P (Snon) ⊆ Snon.
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Thus if we restrict our attention to vectors in Enon, then P will behave exactly

as a projection. This is not true of all projections, e.g. it is not true of a projection

onto a line that is not in Snon or perpendicular to Snon. This definition is relevant to

our situation since the state |ψ〉 of M after reading some partial input must satisfy

|ψ〉 ∈ Enon.

Claim 5 Any Snon-projection P can be simulated by a unitary transformation U and

the BPQFA measurement.

This is just a special case of Lemma 4.1.

Let L be a language recognized by a BPQFA M with probability p, and let

ϕ : Σ∗ → M(L) be the syntactic morphism. Clearly, if A′a is an Enon-projection,

then ϕ(a) must be idempotent (i.e. ϕ(a) = e = e2). We claim that the following

converse is also true:

Claim 6 Let L, M , p, and ϕ be as above, and let ϕ(a) be an idempotent. Let M ′

be the machine constructed by replacing each A′a with an Enon-projection onto Ea
1 .

Then M ′ also recognizes L with probability p.

Proof: Suppose that M ′ does not recognize L with probability p. Thus, either M ′

accepts some word w ∈ L with probability pw < p, or M ′ accepts some word w /∈ L

with probability pw > 0. We consider the former case, the latter is similar.

Define ε so that
√
p =
√
pw + ε. Let k be the number of occurrences of a in w.

Note that k > 0, otherwise M and M ′ would accept w with the same probability. Let

w = w0aw1 . . . wk−1awk with wi ∈ (Σ\{a})∗. Let U be a unitary matrix such that U ′

is the Enon-projection onto Ea
1 . We set j to be such that ||(A′a)j|φ〉−U ′|φ〉||2 = ε′ < ε

k
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for all |φ〉 ∈ Enon (we know by Corollary 4.1 that such a j exists). Now consider:

w′ = w0a
jw1 . . . wk−1a

jwk.

We have w′ ∈ L since ϕ(a) is idempotent. Let |ψ〉 = |q0〉 be the initial state of M .

Note that, for all |φ〉, (A′a)
jA′w0
|φ〉 = U ′A′w0

|φ〉+|ξ〉 for some |ξ〉 satisfying |||ξ〉|| < ε′.

So there exists a vector |ξ1〉 such that |||ξ1〉|| < ε′ and:

A′wk
(A′a)

j · · ·A′w1
(A′a)

jA′w0
|ψ〉 = A′wk

(A′a)
j · · ·A′w1

(U ′A′w0
|ψ〉+ |ξ〉)

= A′wk
(A′a)

j · · ·A′w1
U ′A′w0

|ψ〉+ |ξ1〉.

In general there exists vectors |ξi〉, 1 ≤ i ≤ k, such that |||ξi〉||2 ≤ ε′ for all i, and:

A′wk
(A′a)

j · · ·A′w1
(A′a)

jA′w0
|ψ〉 = A′wk

U ′ · · ·A′w1
U ′A′w0

|ψ〉+
k∑
i=1

|ξi〉

and so:

P[M accepts w′] =
∥∥∥PaccA′$ (A′wk

U ′ · · ·A′w1
U ′A′w0

|ψ〉+
∑
|ξi〉
)∥∥∥2

2

≤
(∥∥PaccA′$ (A′wk

U ′ · · ·A′w1
U ′A′w0

|ψ〉
)∥∥

2
+
∑
‖|ξi〉‖2

)2

< (
√
pw + ε)2 = p.

The original M accepts w′ with probability strictly less than p, a contradiction. �

Proof: [Theorem 4.3] Suppose for contradiction that M is a BPQFA which rec-

ognizes Σ∗bΣ∗aΣ∗ with probability p. By Claim 6, we can assume without loss of

generality that A′a and A′b are Enon-projections.
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For any M and w, we can define Sw,rej to be the set of all vectors |ψ〉 ∈ Snon such

that A′w|ψ〉 ∈ Srej (if M halts with certainty before w is processed then A′w|ψ〉 = ~0 ∈

Srej). It is easy to show by linearity that Sw,rej is a subspace. For shorthand, define:

Sα =
⋂

w,x,y∈Σ∗

Swbxay$,rej, Sβ =
⋂

x,y∈Σ∗

Sxay$,rej, Sγ =
⋂
y∈Σ∗

Sy$,rej.

Observe that Sα ⊇ Sβ ⊇ Sγ. At all times, the state vector of M must be

contained in the subspace Sα in order to recognize the language Σ∗bΣ∗aΣ∗, since all

words containing the subword ba must be rejected with certainty. When the first b

is read, the state vector must fall into the subspace Sβ, since by definition |φ〉 ∈ Sα

implies A′b|φ〉 ∈ Sβ. If an a is read while the state vector is in the subspace Sβ, the

state vector must fall into the subspace Sγ, and the state vector must remain here

until the end of the computation. We argue that any vector in |ψ〉 ∈ Sα will fall

into Sγ reading an a followed by a b, thus the word ab is rejected with certainty, a

contradiction.

Define Sβ be the subspace such that Sβ⊕Sβ = Cn. The vector |ψa〉 = A′a|ψ〉 can

be uniquely decomposed into |ψα〉+ |ψβ〉, where |ψα〉 ∈ Sα ∩ Sβ and |ψβ〉 ∈ Sβ. We

claim that |ψβ〉 ∈ Sγ. Observe that A′a|ψ〉 = A′aA
′
a|ψ〉, so |ψα〉 + |ψβ〉 = A′a(|ψα〉 +

|ψβ〉). Let Pβ be the projection operator onto Eβ. Now:
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|ψα〉+ |ψβ〉 = A′a(|ψα〉+ |ψβ〉) =⇒ Pβ(|ψα〉+ |ψβ〉) = Pβ(A
′
a(|ψα〉+ |ψβ〉))

⇐⇒ ψα = Pβ(A
′
a|ψα〉)

=⇒ |ψα〉 = A′a|ψα〉

and so:

|ψα〉+ |ψβ〉 = A′a(|ψα〉+ |ψβ〉) ⇐⇒ |ψα〉+ |ψβ〉 = |ψα〉+ A′a|ψβ〉

⇐⇒ |ψβ〉 = A′a|ψβ〉.

From |ψβ〉 ∈ Sβ it follows that A′a|ψβ〉 ∈ Sγ, and thus |ψβ〉 ∈ Sγ. Now consider

|ψab〉 = A′b(|ψα〉 + |ψβ〉). Since A′b(|ψα〉 + |ψβ〉) ∈ Sβ and A′b|ψβ〉 ∈ Sβ, we must

have A′b|ψα〉 ∈ Sβ. But |ψα〉 ⊥ Sβ and A′b is an Snon-projection, so we must have

A′b|ψα〉 = ~0. Thus |ψab〉 = A′b|ψα〉+A′b|ψβ〉 = A′b|ψβ〉 ∈ Sγ. Thus, ab is rejected with

certainty, as we wanted to show. �

4.3 Syntactic Ordered Monoids

In this section, we briefly describe how Eilenberg’s framework can be extended

to ordered monoids. As before, there is also a parallel theory of ordered semigroups.

For a fuller treatment, see Pin [52].

We say that a relation ≤ on a monoid M is an order if it is reflexive, antisym-

metric, and transitive, and stable if multiplication on the left and right preserves the

relation. An ordered monoid is a monoid M equipped with a stable ordering ≤M .

If the ordering is implicit we omit the relation sign and say that M is an ordered
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monoid. Note that for any monoid M we can associate a natural ordered monoid by

equipping it with the ordering defined by x ≤ y iff x = y. We call this the trivial

ordering, and it is the one we associate by default to the free monoid Σ∗ over Σ.

The standard definitions regarding monoids have natural extensions to the or-

dered case. The direct product of M and N is the ordered monoid with element set

M×N , and componentwise multiplication and order relation. An ordered submonoid

is a subset M ′ of M which forms an ordered monoid with respect to the operation

and ordering of M . For ordered monoids M and N , we say that the morphism

ϕ : M → N is a morphism of ordered monoids if it is a monoid morphism that

respects the ordering of M and N (i.e. m1 ≤M m2 ⇒ ϕ(m1) ≤N ϕ(m2)). We say

that M divides N (writing M � N) if there is an ordered submonoid N ′ of N and a

surjective ordered morphism ϕ : N ′ →M .

An order ideal of M is a set F ⊆ M such that (∀y ∈ F )(∀x ≤M y)x ∈ F .

For an element y ∈ M we define the order ideal generated by y, denoted ↓ y, as

{x : x ≤M y}. Any order ideal is a union of the order ideals of its maximal elements.

We say that a language L ⊆ Σ∗ is recognized by the ordered monoid M if there

exists an order ideal F ⊆ M and a morphism of ordered monoids ϕ : Σ∗ → M such

that L = ϕ−1(F ). Observe that this is the same as in the unordered case except

for the restriction on the choice of F . If a monoid M is equipped with the trivial

ordering, then there is no restriction on the choice of F and we obtain the original

notion of recognition as a special case.

For any language L ⊆ Σ∗, there is a canonical ordered monoid M(L) recognizing

L, called the ordered syntactic monoid of L. It is canonical in the sense that it is
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the smallest ordered monoid recognizing L in the sense of the division relation and

is unique up to isomorphism. In other words, the ordered monoid M recognizes L

iff M(L) �M .

The ordered syntactic monoid of L can be constructed from the minimal au-

tomaton for L. We outline this process below. A congruential order is a stable

quasi-ordering on Σ∗. Each congruential order ≤ has a natural ordered monoid as-

sociated with it, which is called the quotient monoid and is denoted Σ∗/ ≤, formed

by taking the equivalence classes of ≤ as monoid elements with the natural ordering

and multiplication. Let ≤L be a congruential order on Σ∗ defined by x ≤L y if for

all u, v ∈ Σ∗ we have uyv ∈ L ⇒ uxv ∈ L. Then M(L) = Σ∗/ ≤L. This monoid is

finite if and only if L is regular.

A positive variety of languages is a class of regular languages closed under union

and intersection (we say positive boolean combinations), inverse morphisms, and word

quotient. A variety of ordered monoids is a set of finite monoids closed under taking

submonoids, direct products, and surjective homomorphisms. If V is a variety of

ordered monoids, then let V be the class of regular languages L such that M(L) ∈ V .

For a variety of ordered monoids V, we write V → V if V is the set of all

languages recognized by some ordered monoid in V. In this case set V forms a

positive variety of languages. Furthermore, we have the following generalization of

the variety theorem:

Theorem 4.4 (Positive Variety Theorem) [51] The correspondence V→ V defines

a one-to-one correspondence between varieties of ordered monoids and the positive

varieties of languages.
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All of the definitions and results so far can be applied to the semigroup case

by replacing submonoids with subsemigroups, monoid morphisms with semigroup

morphisms and Σ+ for Σ∗ in all places except for the definition of ≤L.

In the remainder of this section, we give some examples varieties of ordered

semgroups and monoids.

� Any variety V or monoids (resp. semigroups) can be treated as a variety of

ordered monoids by equipping each monoid with the trivial ordering.

� The variety J+ consists of those monoids M such that the identity 1 of M is

maximal in the ordering. A language is recognized by an ordered J+ monoid

if and only if it is a positive boolean combination of languages of the form

Σ∗a1Σ
∗ . . . akΣ

∗. J+ is an ordered subvariety of J.

� The variety J+
1 consists of all idempotent and commutative ordered monoids

in J+. The class of languages recognized by ordered monoids in J+
1 are exactly

those which can be expressed as positive boolean combinations of languages of

the form Σ∗aΣ∗.

� The variety of semigroups Nil+ consists of those semigroups S which contain

exactly one idempotent, and this idempotent is smaller than any element in

the ordering. In particular, the unique idempotent must be a zero. A language

L is recognized by a semigroup in Nil+ if and only if there exists a positive

integer k such that |x| > k ⇒ x ∈ L. Semigroups in Nil+ are necessarily J -

trivial.
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For any variety V of ordered monoids, the set of ordered monoids V obtained

by reversing the ordering is again a variety. Let J−1 = J1, and likewise define J− and

Nil−. A language L satisfies M(L) ∈ V if and only if M(L) ∈ V.

Algebraic properties of ordered monoids can be expressed by inequations. For

instance, the property of that the identity of M is maximal in the partial ordering

(and thus M ∈ J+) can be expressed by the inequation x ≤ 1. Likewise, membership

in J+
1 can be expressed by the inequation x ≤ 1 and the equations xy = yx and

x = xx. Analogous to the unordered case, it can be shown that every variety of

ordered monoids can be characterized in terms of inequalities over Σ̂∗ [54]. With

a slight abuse of terminology, we will refer to such inequalities as identities. The

variety Nil+, for example is characterized by the identity xω ≤ y.

4.3.1 Positive Varieties Defined by Composition

Semidirect products and relational morphisms are also extended to ordered

monoids [55]. Let S be an ordered semigroup and let T be an ordered monoid.

Let · be a left action of T on S , and suppose that · additionally satisfies:

� t ≤ t′ ⇒ t · s ≤ t′ · s, and

� s ≤ s′ ⇒ t · s ≤ t · s′,

Then the set S × T forms an ordered monoid with the operation defined by

(s, t)(s′, t′) = (s + t · s′, tt′) and the order defined by (s, t) ≤ (s′ ≤ t′) iff s ≤ s′ and

t ≤ t′.

For a morphism ϕ : Σ∗ → W . Let σϕ : Σ∗ → (W × Σ∗) be the function defined

by:
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σϕ(a1 . . . an) = (ϕ(a1), a1)(ϕ(a1a2), a2) . . . (ϕ(a1 . . . an−1), an)

We call σϕ the sequential function associated with ϕ.

Theorem 4.5 (Wreath Product Principle of Ordered Monoids) [56] A language is

in V ∗W if and only if it is a positive boolean combination of languages of the form

σ−1
ϕ (V ) for some morphism ϕ : Σ∗ → W , with W ∈W and M(V ) ∈ V.

An ordered relational morphism φ : (S,≤) → (T,≤) is a relational morphism

from S to T such that the graph of the relation is an ordered monoid. For ordered

variety V, Such a relational morphism is said V-relational if, for idempotents e ∈ T ,

we have that φ−1(e) ∈ V. The Mal’cev product V mOW of V and W is the variety

of ordered monoids generated by the set of ordered monoids M for which there exists

an ordered V-relational morphism from V to W.

4.3.2 Examples

In this section we consider a number of examples of ordered varieties of monoids

related to our discussion.

ECOM−

The variety ECOM− of monoids M is the class of monoids such that the sub-

monoid generated by the idempotents E(M) of M forms a commutative monoid in

J−. In other words, ECOM− is characterized by the equations xωyω = yωxω and

xω ≥ 1.

This variety is equivalent to the variety INV− generated by naturally ordered

inverse monoids [55]. A monoid element m is said to be inverse if there exists a
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unique m ∈ M such that mmm = m and mmm = m. A monoid M is a naturally

ordered inverse monoid if every element of M is inverse and M is ordered by the rule

x ≤ y iff there exists an idempotent e such that x = ye. In [55] it is further shown

that ECOM− is equivalent to J−1 ∗G and J−1 mOG [55].

In Pin [49], it was shown that a language L is in ECOM− if and only if it

can be recognized by a reversible finite automata (RFA), which we define below. A

partial DFA M is a generalization of DFA where we permit the transition function

δ to be incomplete function. We say that M recognizes the language L(M) =

{w|δ(w, q0) is defined,δ(w, q0) ∈ F}. A reversible automata is a partial DFA such

that the transition function δ is injective.

BG+

The variety BG+ is a natural ordered counterpart to the variety BG. It is

defined as the class of all monoids in BG which satisfy the ordering condition xω ≤ 1.

Conversely, it can be shown that monoids which satisfy xω ≤ 1 are in BG, so this

single inequation exactly characterizes BG+.

As with BG, this variety has equivalent formulations. In particular:

BG+ = J+ ∗G = J+ mOG.

By applying the wreath product principle, we can show that a language L is

recognized by a monoid in BG+ if and only if it is a positive boolean combination of

languages of the form L0a1L1a2 . . . akLk, where each Li is a language whose syntactic

monoid is a group.
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Nil+ mOJ1

In this section we give some basic properties of the variety Nil+ mOJ1 of ordered

monoids, as it is a central point in our investigation of BPQFA.

Theorem 4.6 The variety Nil+ mOJ1 is characterized by the inequations (xy)ωx =

(xy)ω = y(xy)ω and xω ≤ x.

Proof: Suppose M ∈ Nil+ mOJ1. Then by definition there is a monoid N ∈ J1

and an ordered relational morphism ϕ : M → N such that ϕ−1(e) ∈ Nil+ for all

idempotents e. Take any x ∈ M . By definition of ϕ, there is at least one element

e ∈ ϕ(x), and it is idempotent since N is idempotent. Then e ∈ ϕ(xω), and since

ϕ−1(e) ∈ Nil+ we have xω ≤ x. Furthermore Nil+ mOJ1 ⊆ Nil mOJ1 = J [48] so M

satisfies (xy)ωx = (xy)ω = y(xy)ω

On the other hand, let M be a monoid that satisfies the equations above, and let

E(M) be the set of idempotents of M . Let N be the monoid with element set 2E(M)

with set intersection as the binary operation. It is easy to check that N is idempotent

and commutative. Define the morphism ϕ : M → N by ϕ(m) = {e ∈ E(M) : em =

e = me}. We check that ϕ is indeed a morphism. Clearly e ∈ ϕ(x) ∩ ϕ(y) implies

e ∈ ϕ(xy). Suppose e ∈ ϕ(xy). Then e = exy ≤R ex ≤R e implies exRe, and so

ex = e since M is J -trivial. Likewise xe = e and therefore e ∈ ϕ(x), and in the

same way e ∈ ϕ(y).

Now suppose that ϕ(x) = ϕ(y). M is J-trivial so it satisfies the equation

xωx = xω = xxω. Thus xω ∈ {e ∈ E(M) : ex = e = xe} = ϕ(x) = ϕ(y) = ϕ(yω).

Likewise, yω ∈ ϕ(xω). This implies that xω = xωyω = yω. Finally M satisfies xω ≤ x,

so yω = xω ≤ x and therefore ϕ−1(x) satisfies the Nil+ equation. �
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4.4 Recognizability results

We say that a BPQFA recognizes a language L ⊆ Σ∗ with certainty if it correctly

distinguishes all w ∈ Σ∗ with probability 1. It is possible to completely characterize

the class of languages recognized by BPQFA in this way.

Theorem 4.7 The language L is recognizable by BPQFA with certainty if and only

if it is recognized by a reversible finite automaton.

Proof: This fact was implicitly stated in [33]. In one direction, it is easy to simulate

a reversible finite automaton with a BPQFA with probability of acceptance 1. Let

R = (Q,Σ, q0, δ, F ) be an RFA, we construct a BPQFA M ′ recognizing L(R). Choose

Q′ = Q × {0, 1} and let Q′
acc = F × 1, Q′

rej = (Q − F ) × 1, Q′
non = Q × 0. Let

δw : Q → Q be the partial function defined as δw(q) = δ(q, w). For every σ ∈ Σ∗

we simulate δσ on the Q× 0 subspace, except that we map undefined transitions to

Q×1. There is always some way to complete the partial function δw so that it forms

permutation. Choose an arbitrary completion and let Aσ be the permutation matrix

associated with that permutation.

Now let M be a BPQFA that recognizes L with certainty. Without loss of gen-

erality assume that L 6= ∅. The first step will be to construct a normalized machine

M ′ which recognizes L with certainty. Denote by |ψw〉 the unnormalized state of the

BPQFA upon reading w. For the empty string ε we can assume that ‖|ψε〉‖ = 1, oth-

erwise the machine has halted with some nonzero probability, contradicting L 6= ∅.

Suppose wa is such that ‖|ψw〉‖ = 1 but ‖|ψwa〉‖ < 1. This implies that |ψu〉 ⊥

|ψw〉 for any prefix u of w. By definition there is some nontrivial probability of

rejecting wa. Since now we must ultimately reject all strings in waΣ∗ with probability
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1, we can create a new reject state qw,r and change the operator Aa so that it

sends |ψw〉 directly into |qw,r〉. We claim that for any w,w′ such that w is not right

congruent to w′ and ‖|ψw〉‖ = ‖|ψw′〉‖, we must have |ψw〉 ⊥ |ψw′〉. Suppose not.

Then w.l.o.g. there is a string x such that wx ∈ L and w′x /∈ L. We can write

|ψw′〉 as α|ψw〉 + β|ψ⊥w 〉 for |α| 6= 0. Then w′x is accepted with nonzero probability,

a contradiction.

Finally, since any pair of states corresponding to different right congruence

classes must be orthogonal, the set of reachable states for each congruence classes

is contained within a subspace which is disjoint from the subspaces of the other

classes. Since the transformations are unitary, we can keep track of the subspaces

with a partial injective automaton. �

Theorem 4.8 Let V be an ordered variety of semigroups or monoids. If BPQFA

can recognize every language whose ordered syntactic monoid is in V, then BPQFA

can recognize every language whose ordered syntactic monoid is in V ∗G.

Proof: As in Theorem 3.9, this is just a matter of applying the wreath product

principle and simulating the transduction in the monoid. In this case, we need the

ordered wreath product principle (Theorem 4.5). �

Combining this result, the fact that BG+ = J+ ∗ G, and the trigger chain

construction, we get:

Theorem 4.9 BPQFA can recognize every language whose syntactic monoid is in

BG+ or J−1 ∗G.
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Figure 4–1: The initial state of the machine Ms.

There are, however, generalizations of the trigger chain idea that can be used to

recognize a strictly larger class of languages. We consider some of these extensions

in the remainder of the section.

Let M be a BPQFA that implements the trigger chain to recognize the language

Σ∗a1Σ
∗ . . . akΣ

∗. We modify this machine to recognize a different language. Recall

that the last step of M is to apply the trigger Tk on states qk and qk+1. Let αk and

αk+1 be the amplitudes of these states after reading the input word. The machine

accepts with probability |αk−αk+1|2
2

, which by construction will be at least some value

δ > 0 when αk 6= αk+1.

For s ∈ [0, 1√
k+1

] we define Ms to be a BPQFA machine that behaves exactly

as M above except that the amplitude of qk+1 is initialized to s instead of 1√
k+1

. A

picture for the case k = 3 is given in Figure 4.4.

Under a certain formal condition, which we describe below, Ms will recognize

a language with bounded probability. Let f : Σ∗ → [0, 1] be the final amplitude of

qk+1 as a function of the input word, let S = {f(w)|w ∈ Σ∗}, and for s ∈ S let

Ls = {w|f(w) = s}.

Lemma 4.10 If there is a δ > 0 such that |s′ − s| ≥ δ for all s′ ∈ S − {s}, then

Ms recognizes the language Ls. Otherwise, Ms does not recognize any language with

bounded probability.
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Proof: Suppose δ > 0 exists. When w /∈ Ls, w is accepted with probability at least

δ2

2
. When w ∈ Ls, the amplitude of qk after reading the input will be the same as

that of qk+1, so w will be accepted with probability 0. On the other hand, if no such

δ exists then for all ε > 0 there exists a word w that is accepted with probability ε′

such that 0 ≤ ε′ ≤ ε. �

Here is a simple example of a language L which can be recognized by an appli-

cation of Lemma 4.10:

L = Σ∗aΣ∗bΣ∗ ∪ Σ∗aΣ∗bΣ∗aΣ∗bΣ∗.

The syntactic monoid of L is not in BG+ or in J−1 ∗G, and so it falls outside

of the constructions that we have presented thus far. To see this, we consider the

syntactic monoid M(L) and the syntactic morphism ϕ : Σ∗ → M(L). Observe that

ϕ(a) and ϕ(b) are idempotents, and ϕ(ab) 6= ϕ(ba), and therefore M(L) /∈ J−1 ∗G.

Now suppose ϕ(a) ≤ 1. This would imply ϕ(a)ϕ(b) ≤ ϕ(b), contradicting b ∈ L and

ab /∈ L.

Let t = 1√
3
, and let s = 3

4
t. Let M be the BPQFA with the trigger chain for

the language Σ∗aΣ∗bΣ∗. We claim that Ms recognizes the language L. We apply

Lemma 4.10. We first show that Ls = Σ∗aΣ∗bΣ∗∩Σ∗aΣ∗bΣ∗aΣ∗bΣ∗. The amplitudes

α0, α1, α2 of q0, q1, q2 are initialized to

[
0 t t

]T
and will remain at these values

until the first a is read. At this point, the amplitudes shift to

[
1
2
t 1

2
t t

]
until

the next b is read, setting the amplitudes to

[
1
2
t 3

4
t 3

4
t = s

]T
. We can similarly
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check that q2 will stay at value s until the subword abab is seen, at which point α3

will become 11
16
t. Thus taking δ = 1

16
in Lemma 4.10 we get the desired result.

We can generalize the construction above to the following language, which

seems to capture the class of languages which can be recognized by the technique of

Lemma 4.10.

Theorem 4.11 For a1 . . . ak ∈ Σ∗ let L(a1 . . . ak) = Σ∗a1Σ
∗ . . . akΣ

∗. Then for all

a1 . . . ak the language

L = L(a1 . . . ak) ∪

(⋃
i

L(a1 . . . aiai−1ai . . . ak)

)

is recognized by a BPQFA.

Proof: We apply the trigger extension to the machine M recognizing L(a1 . . . ak).

Let t = 1√
k+1

, the initial weights of q1, . . . , qk, and let s = (1− 1
2k )t.

First, suppose that w ∈ L. There are two cases. If a1 . . . ak /∈ w then f(w) =

t > s. Otherwise, suppose that a1 . . . ak ∈ w and there is some i such that

a1 . . . aiai−1ai . . . ak ∈ w.

Check that f(a1 . . . aiai−1ai . . . ak) < s, and thus by Claim 4,

f(w) ≤ f(a1 . . . aiai−1ai . . . ak) < s.

Let αj be the amplitude of qj and suppose w /∈ L. Then w can be decomposed

as w = w0a1w1 . . . akwk, with aj /∈ wj−1. After reading w0a1 the amplitude in q1

becomes 1
2
t, and after reading w0a1w1a2 the amplitude in q2 becomes 3

4
t. Suppose

that after reading w0a1 . . . wi−1ai we have αi = (1− 1
2i )t and αj = t for j > i. Now
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since ai+1 /∈ wi, αi will not change while reading wi unless ai−1ai ∈ wi, which is not

possible assuming w /∈ L. �

By taking unions and intersections of languages of the form in Theorem 4.11,

we can recognize e.g. the language L(ab)∪L((ab)n). We give a general construction

below.

Theorem 4.12 For all a1 . . . ak, n ∈ N the language

L(a1 . . . ak) ∪

(⋃
i

L(a1 . . . ai(aiai−1)
nai+1 . . . ak)

)

is recognized by a BPQFA.

Proof: We show that this language is a positive boolean combination of the lan-

guages in Theorem 4.11. We explicitly construct this boolean combination in an

iterative fashion. At every step we will have constructed a language of the form

L′ = L(a1 . . . ak) ∪
⋃
w∈W L(w) for some set W ⊆ Σ∗. We initially take W =

{a1 . . . aiai−1ai . . . ak : i ≤ k} so that the language is exactly the one obtained from

Theorem 4.11. We wish to grow the words in W so that each of them contain at

least one subword from the set {a1 . . . ai(ai−1ai)
nai+1 . . . ak : i ≤ k}. At each step

we remove a word w = w1 . . . wm of minimal length and then take the intersection

L′ ← L′ ∩ (L(w)
⋃
i L(w1 . . . wiwi−1wi . . . wm)). This effectively changes W to

W ← (W − {w}) ∪ {w1 . . . wiwi−1wi . . . wkw : i ≤ m}.

We continue this process until the length of each string in W is at least kn. At

this point, L′ will be such that every word in W contains at least one subword from

the set {a1 . . . ai(ai−1ai)
nai+1 . . . ak : i ≤ k} as a subword. Finally,
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L′ ← L′ ∪
⋃
i

L(a1 . . . ai(ai−1ai)
nai+1 . . . ak)

= L(a1 . . . ak) ∪
⋃
i

L(a1 . . . ai(ai−1ai)
nai+1 . . . ak),

which completes the construction. �.

The trigger chain can be used in a more subtle fashion to recognize languages

which seem to fall out of the scope of Theorem 4.12. We give an example below.

Theorem 4.13 BPQFA can recognize the language (L(cb) ∩ L(ca)) ∪ L(cab).

Proof: The construction of M recognizing this language contains two trigger chains

running in parallel. We divide the amplitude equally among both chains, so that if

pi,acc,w is the probability that the ith chain accepts, so that the probability that M

accepts is 1
2
(p1,acc,w + p2,acc,w). We use the letter q to denote states from the first

chain and we use r for the second chain.

The first chain accepts words in w ∈ L(cab) with bounded positive probability,

and words w /∈ L(cab) with probability 0. The second chain accepts words in L(cb)∩

L(ca) with bounded positive probability, and words w /∈ (L(cb)∩L(ca))∪L(cab) with

probability 0. Under these two conditions, all words in the language are accepted with

bounded probability, and words not in the language are accepted with probability 0.

To implement the first chain we simply run the original trigger chain construction

on the q states. The second chain uses only four states: r0, . . . , r3. The amplitudes

in r1, r2, r3 will be initialized to 1√
6
. On reading c the operation T0 is applied to r0,

r1, and likewise on reading b or a the operations T1 or T2 are applied. When the $
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operator is read, we apply a trigger operation on r2 and r3, but the excess amplitude

is sent to an accept state. If the amplitudes in r2 and r3 are different, then the

second chain accepts with nonzero probability. Furthermore, if a word containing cb

but not ca is read, there is a positive lower bound on the probability of acceptance.

Thus the two chains meet the required conditions, and M recognizes the language

as desired. �

Yet another modification of the trigger chain construction can recognize the

reversal of this language: (L(bc) ∩ L(ac)) ∪ L(bac). All of these languages that we

have introduced are examples of languages whose ordered syntactic monoid is in

Nil+ mOJ1. Consider for example the language L = (L(cb) ∩ L(ca)) ∪ L(cab). As

this is a boolean combination of subword languages, the syntactic monoid M(L)

satisfies the equations (xy)ωx = (xy)ω = y(xy)ω for the variety J. Furthermore,

we claim that M(L) satisfies xω ≤ x. Let w = w1w2w3 be any word contained in

L. We need to show that for sufficiently large i and for all j ≥ 0 w1(w2)
i+jw3 ∈ L

This is clearly true if w ∈ L(cab), suppose that this is not the case. Then clearly

w ∈ (L(cb)∩L(ca)), and powering w2 will put a c to the right of an a. Furthermore

w1 must not contain the letter c, otherwise w would contain the subword ca. Thus,

w1w
2
2w3 ∈ L(cab) and M(L) does indeed satisfy the equations of Nil+ mOJ1.

Our investigations seem to suggest the following:

Conjecture 4.1 Every language whose ordered syntactic monoid is in Nil+ mOJ1

can be recognized by BPQFA.

If we can show this, then by Theorem 4.5 this can immediately be extended

to the class of languages whose ordered syntactic monoid is in (Nil+ mOJ1) ∗G.
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In the next section we will see that we can use algebraic techniques to extend the

impossibility result in Section 4.2 to all languages whose ordered syntactic monoid

is not in (Nil+ mOJ1) mOG.

4.5 More Impossibility Results

Our first result is that can we can generate an algebraic condition for recogniz-

ability by BPQFA from the fact that BPQFA cannot recognize Σ∗aΣ∗bΣ∗.

Theorem 4.14 Let V be the positive variety of languages recognized by BPQFA, and

let V be the corresponding variety of ordered monoids. Then V satisfies the equation

(xωyω)ω ≤ xωyω.

Proof: Suppose that (M,≤) ∈ V does not satisfy this inequation. We use this to

show that V contains the ordered syntactic monoid of Σ∗aΣ∗bΣ∗, causing a contra-

diction. Since M does not satisfy the equation there are two idempotent elements mx

and my of M such that (mxmy)
ω 6≤ mxmy. Let (M ′,≤) be the submonoid generated

by mx and my. By Theorem 3.20 The ordered monoid M ′ is contained in BG and

so it satisfies (xωyω)ωxω = (xωyω)ω = yω(xωyω)ω. This implies that (mxmy)
ω 6≤ mx

and (mxmy)
ω 6≤ my.

Now consider the sequence of monoid elements defined by m1 = mxmy, m2 =

m1mx, m2i+1 = m2imy, m2(i+1) = m2i+1mx. Let n be the minimum index such

that mn = mn+1 = (mxmy)
ω. Furthermore let j be the maximal index such that

j < n and (mxmy)
ω 6≤ mj. Suppose j is even, the other case is similar. Then

we can express mj as a product mj = mLmR with mL = (mxmy)
i and mR = mx.

Then we can define an ordered congruence � on the elements of M ′ according to

the rule m � m′ if for all u, v ∈ M ′, mLumvmR ≤ mLum
′vmR Define M ′′ to be
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the quotient of that ordered congruence. Then we can recognizes Σ∗aΣ∗bΣ∗ by the

morphism ϕ : {a, b}∗ → M ′′ defined by ϕ(a) = [mx],ϕ(b) = [my], which contradicts

the assumption that V is the class of languages recognized by BPQFA. �

We can furthermore show the following:

Theorem 4.15 Let V be the positive variety of languages recognized by BPQFA, and

let V be the corresponding variety of ordered monoids. Then V ⊆ (Nil+ mOJ1) mOG

Proof: It is sufficient to show:

[[(xωyω)ωxω = (xωyω)ω = yω(xωyω)ω, (xωyω)ω ≤ xωyω]] ⊆ (Nil+ mOJ1) mOG.

For this, we use a consequence of Ash’s Type II theorem that was formulated

in [55]. First, we need a few definitions. We say that x is a weak inverse of x

if xxx = x. We say that a monoid M is closed under weak conjugation if for all

m ∈ M and all x, x ∈ M satisfying xxx = x we have xmx ∈ M and xmx ∈ M . For

a monoid M , define D(M) to be the smallest monoid closed under weak conjugation.

Theorem 4.16 ([55]) Let V be a variety of ordered monoids. Then M ∈ V mOG if

and only if D(M) ∈ V.

Since M ∈ BG = J mOG, we know that D(M) is J-trivial (i.e. it satisfies

(xy)ωx = (xy)ω = y(xy)ω), so it is sufficient to show that D(M) satisfies xω ≤ x.

By definition we know that D(M) is generated by taking all products of monoid

elements formed by the following context-free grammar G with rules S → 1, S → eS

and S → eS for all e = e2, and S → xSx|xSx for all x satisfying x = xxx. We

argue that for all w ∈ D(M)∗, eval(w)ω ≤ eval(w) by induction on length of w. To

simplify notation, for the remainder of the proof we drop the eval(w) function.
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For |w| = 1, w contains just one idempotent so we clearly have wω = w The

case |w| = 2 was shown above. For the inductive case |w| = k > 2, w must be of the

form w′e or ew′ for idempotent e, or of the form xw′x or xw′x.

For the first case, by the induction hypothesis we have w′e ≥ (w′)ωe ≥ (w′ωe)ω ≥

(w′e)ω, where the last inequality follows from the J -trivial equations. The second

case is similar. For the third case, observe that xx = (xx)2. w = xw′x. We then

have: xex = xexxx ≥ x(exx)ωx = x(exx)ωex = (xex)ω. Thus, D(M) satisfies the

equations for Nil+ mOJ1 and we are done. �

To summarize, our current results seem to point to the following conjecture:

Conjecture 4.2 Let V be the positive variety of languages recognized by BPQFAs,

and let V be the corresponding variety of ordered monoids. Then:

V = (Nil+ mOJ1) ∗G = (Nil+ mOJ1) mOG.

There are two components to this conjecture. The first component is the con-

jecture (Nil+ mOJ1) ∗G ⊆ V. To prove this, it would be sufficient to show that

Nil+ mOJ1 ⊆ V. The issue here is that we do not seem to have a sufficient combi-

natorial understanding of the class of languages recognized by ordered monoids in

Nil+ mOJ1 in order to prove this result. However, we have identified several non-

trivial examples of languages we have found to have ordered syntactic monoid in

Nil+ mOJ1, and our understanding of this language class continues to develop.

The second component is the conjecture (Nil+ mOJ1) ∗G = (Nil+ mOJ1) mOG.

While it is not true in general that V ∗G = V mOG, in the background sections we
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referred to several examples of this phenomena, including the case that V is equal to

J, to J+, or J−1 . It is also true whenever V is local. We believe that V ∗G = V mOG

holds for the case of V = Nil+ mOJ1. If so, then we will be very close to proving an

exact characterization of the languages recognized by BPQFA.
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CHAPTER 5
GQFA

We have seen that MOQFAs, which apply only a unitary transformation for

each input symbol, can recognize only those languages whose syntactic monoid are

groups. This is due to the inherent reversibility of unitary transformations. The

set of states {Uk|ψ〉 : k > 0} contains vectors which are arbitrarily close to |ψ〉, so

for arbitrary values of k it is impossible to tell with bounded precision whether the

matrix U was applied at all.

In this thesis we have considered two types of generalized transformations: one

is to allow measurements that introduce randomness to the state, and the other is

to allow the machine to halt before reading the entire input. LQFA can use only

the first type of generalization, KWQFA can use only the second, and generalized

QFA (GQFA) can use both. We know exactly the limits of LQFA, and a number

of important lower bounds are known for KWQFA. In this section, we combine our

knowledge of LQFA and KWQFA to prove lower bounds on GQFA.

KWQFAs are significantly more powerful than MOQFAs in that they are able to

perform subword tests. However, there are still quantifiable limitations on the power

of KWQFAs. The key issue is that reversible transformations can only be achieved by

halting before reading the full input word. In order to distinguish between prefixes of

arbitrary length with bounded probability, it is necessary that the entire input word
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be read with bounded probability. Thus, it is important to understand the trade-off

between reversibility and the probability of reading the entire input word. A key

result in this regard, which we refer to as the ergodic-transient lemma, was given by

Ambainis and Freivalds [4] (Lemma 3.22) and extended by Ambainis, Ķikusts and

Valdats [6]. The ergodic-transient lemma led to a series of results which gave lower

bounds on the probability of KWQFA recognizing certain languages L, in terms of

the minimal automaton for L.

In this chapter, we show a parallel result for the case of GQFA. As the probability

of halting while active tends to zero, in the limit a GQFA will behave exactly as an

LQFA. Combined with our recent characterization of the languages recognized by

LQFA, this give us a much clearer picture of the power of GQFA. In Section 5.1 we

review the known results for KWQFA, and compare them to the known results for

GQFA. In Section 5.2, we prove the generalization of the ergodic-transient lemma to

the case of GQFAs. In Section 5.3, we review the main consequences of the lemma.

5.1 Review of KWQFA Impossibility Results

In this section we review the impossibility results that have been obtained for

KWQFA. Since the languages recognized by KWQFA are closed under inverse mor-

phisms and word quotient, a proof that a single language L cannot be recognized

by KWQFA can immediately be extended to a class of languages. Furthermore, the

condition for the impossibility result can be stated succinctly in terms of structural

properties of the minimal automaton. Several results of this kind were demonstrated

in the literature [4, 5, 6, 20]. The conditions in this case are called forbidden con-

structions. We formalize this idea below.
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Figure 5–1: The forbidden construction of Theorem 5.1.

We will define a partially specified automaton P to be a tuple of the form P =

(Q, q0,Σ, δ, Qacc, Qrej) such that Q is a finite set of states, q0 ∈ Q is the initial state,

Σ is the input alphabet, δ : Q × Σ → Q is a partial transition function, and Qacc

and Qrej are disjoint subsets of Q. Let D = (Q′, q′0,Γ, δ
′, F ′) be a DFA. We say

that P occurs within D if there is a mapping η : Q → Q′ and η : Σ → Γ∗ such that

η(Q) ⊆ Q′, q′0 ∈ η(Q), η(Qacc) ⊆ F ′, η(Qrej) ⊆ Q′−F ′, and for all defined transitions

δ(q, σ) = q′ of D we have δ′(η(q), η(σ)) = η(q′). We call P a forbidden construction

if the occurrence of P within the minimal automaton for L implies an impossibility

result for L. The first result of this form was given by Brodsky and Pippenger:

Theorem 5.1 ([20]) If L is such that the forbidden construction in Figure 5.1 occurs

within the minimal automaton for L, then L is not recognizable by a KWQFA with

probability 1
2

+ ε for any ε > 0.

Proof Sketch: This is an immediate consequence of the proof that KWQFA cannot

recognize Σ∗a and the KWQFA closure properties. Let w be a word such that the

transition function δ of the minimal automaton for L satisfies δ(q0, w) = q1. If we

consider a morphism ϕ : {a, b}∗ → Σ∗ defined by ϕ(a) = xy and ϕ(b) = x, then

the quotient w−1ϕ−1(L)z−1 will equal Σ∗a, which cannot be recognized by KWQFA.

The same line of reasoning will also hold for GQFAs.
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Figure 5–2: The forbidden construction of Theorem 5.2.

We mentioned in Section 3.1.1 that there is no general strategy to a priori boost

the probability of recognizing a language L for KWQFA. The impossibility of such

a boosting construction follows from the theorem below. The proof of this theorem

relies on ergodic-transient lemma for KWQFA.

Theorem 5.2 ([4]) If L contains the forbidden construction given in Figure 5–2,

then L cannot be recognized by a KWQFA with probability p > 7/9.

There are languages whose minimal automaton contain this forbidden construction

yet can be recognized by KWQFA with bounded error, for instance the language

Σ∗aΣ∗bΣ∗. The bound on p was improved in [5] to (54 + 4
√

7)/81 ≈ 0.7726, and

this was shown to be tight. This result does not generalize to GQFAs since GQFAs

can implement the LQFA construction of Theorem 3.7 to recognize Σ∗aΣ∗bΣ∗ with

probability 1− ε for any ε > 0.

The next theorem is also a consequence of the ergodic-transient theorem. It was

key to proving that the class of languages recognized by KWQFA is not closed under

union.

Theorem 5.3 ([6]) If the minimal automaton for L contains states q, q1, q2 and

words x, y, z1, z2 such that

� reading x while in q brings you to q1,

� reading y while in q brings you to q2,
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Figure 5–3: The forbidden construction of Theorem 5.3.

� reading x or y while in q1 or q2 brings you back to the same state,

� reading z1 (z2) while in q1 brings you to a(n) accept (reject) state, and

� reading z1 (z2) while in q2 brings you to a reject (accept) state

(i.e. if the minimal automaton contains the forbidden construction of Figure 5.1),

then L cannot be recognized by KWQFA with probability 1/2 + ε.

We will now show how this result is used to prove that KWQFA are not closed

under union. Later in Section 5.3 we will see that a similar argument applies to

GQFA.

Theorem 5.4 ([6]) KWQFA are not closed under union.

Proof: We consider the languages L1 and L2 corresponding to the languages recog-

nized by automata D1 and D2 in Figure 5–4. We give a construction for L1; the con-

struction for L2 is similar. Our machine M will have six nonhalting states s1, . . . , s6.

The transformation for the ¢ symbol will initialize the state to 1√
3
(|s1〉+ |s2〉+ |s3〉).

Reading an a will swap the amplitudes in states s1, s2, and s3 for that of s4, s5, and

s6 respectively. When a b is read, the amplitude in s2, s3, and s5 will be sent to the
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Figure 5–4: The minimal automata for L1 and L2 in Theorem 5.4.

reject state, and s6 will be sent to the accept state. Finally, at the end of the input,

the amplitude in s1, s5, and s6 will sent to accept and the amplitude of s2, s3, and

s4 will be sent to reject. These transitions are injective so this swapping of states

can be implemented unitarily.

If no b’s are read, then it is easy to see that M will accept with probability 2/3

on reading an odd number of a’s. If a b is read after an even number of a’s, then

the machine rejects with probability at least 2/3. Finally, if b is read after an odd

number of a’s, then M rejects with probability at most 1/3 if the total number of

a’s is even, and with probability 2/3 if the total number of a’s is odd. On the other

hand, consider L3 = L1 ∪ L2. L3 consists of the set of strings containing no b or

an odd number of a’s after the first b. If we take the strings x = ab and y = ba,

we see that the minimal automaton for L3 contains the forbidden construction of

Theorem 5.3, and so L3 cannot be recognized. �

In the next section, we extend the ergodic-transient lemma to GQFAs.

5.2 Ergodic-Transient Lemma

We will adopt the following notation. Let M = (Q, q0,Σ, {Ua}, {Pa}, Qacc, Qrej)

be a GQFA, where Pa is the measurement {Pa,i : 1 ≤ i ≤ ma}. Let Sacc, Srej, Shalt,
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Figure 5–5: The minimal automaton for L3 = L1 ∪ L2 in Theorem 5.4.

Snon be the space spanned by states Qacc, Qrej, Qacc ∪ Qrej, and Q − Qacc ∪ Qrej

respectively.

Recall from chapter 3 that we require the density matrix formalism to describe

the behavior of a GQFA machine taken over all probabilistic choices induced by the

intermediate measurements. We will be using weighted density matrices,which are

density matrices scaled by a factor p ∈ [0, 1], to describe the GQFA state ρw on

reading some input prefix w. The factor p in this case will represent the probability

that the machine has not halted while processing the current prefix.

Let Aa be the mapping ρ 7→
∑

i Pa,i UaρU
†
a Pa,i, and let A′a = Pnon(Aaρ)Pnon.

Then A′aρ is a weighted density matrix such that Tr(A′aρ) = paTr(ρ) where pa is the

probability of not halting while reading a. Furthermore for w = w1 . . . wn ∈ Σ∗, we

define A′w = A′wn
· · ·A′w1

.

Lemma 5.5 For every w ∈ Σ∗ there exists a pair E1, E2 of orthonormal subspaces

of Cn such that Cn = E1 ⊕ E2 and for all weighted density matrices ρ over Cn we

have:

1. If supp(ρ) ⊆ E1, then supp(A′wρ) ⊆ E1 and Tr(A′wρ) = Tr(ρ).

2. If supp(ρ) ⊆ E2, then supp(A′wρ) ⊆ E2 and limk→∞Tr((A
′
w)kρ) = 0.
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Proof: The proof proceeds as in [4]. We first show how to do this for the case that

‖w‖ = 1, and then we sketch how to extend it to arbitrary length words. Let w = a.

We first construct the subspace E1 of Cn. E2 will be the orthogonal complement of

E1. Let

E1
1 = span({|ψ〉 : Tr(A′a|ψ〉〈ψ|) = Tr(|ψ〉〈ψ|)}).

Equivalently, E1
1 = span{|ψ〉 : supp(Aa(|ψ〉〈ψ|)) ⊆ Snon} where Snon is the nonhalt-

ing subspace. We claim that supp(ρ) ∈ E1
1 implies that supp(Aa(ρ)) ∈ Snon. By lin-

earity it is sufficient to show this for ρ = |ψ〉〈ψ|. Essentially, we need to show that the

condition of |ψ〉 satisfying Tr(A′|ψ〉〈ψ|) = Tr(|ψ〉〈ψ|) is closed under linear combina-

tions. Suppose that |ψ〉 =
∑

j αj|ψj〉, with |ψj〉 satisfying supp(Aa(|ψj〉〈ψj|)) ∈ Snon

and
∑

j |αj|2 = 1. Then:

‖
∑
i

PhaltPa,iUa(
∑
j

αj|ψj〉)‖2 ≤
∑
i,j

‖αjPhaltPa,iUa|ψj〉‖2 = 0,

and thus supp(Aa|ψ〉〈ψ|) ∈ Snon. Therefore, for mixed states ρ we have supp(Aaρ) ∈

Snon if and only if supp(ρ) ∈ E1
1 . For general i > 2, let:

Ei
1 = span({|ψ〉 : supp(Aa|ψ〉〈ψ|) ∈ Ei−1

1 ∧ Tr(A′a|ψ〉〈ψ|) = Tr(|ψ〉〈ψ|)}).

As before, for weighted density matrices ρ, we can interchange the condition

Tr(A′aρ) = Tr(ρ) for supp(Aaρ) ⊆ Snon.

Observe that Ei
1 ⊆ Ei+1

1 for all i. Since the dimension of each of these spaces is

finite, there must be an i0 such that Ei0
1 = Ei0+j

1 for all j > 0. We define E1 = Ei0
1 ,

and set E2 to be the orthogonal complement of E1.
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It is clear that the first condition of the lemma is true for mixed states with

support in E1. For the second part, it will be sufficient to show the following claim:

Claim 7 Let j ∈ {1, . . . , i0}. There is a constant δj > 0 such that for any |ψ〉 ∈ Ej
2

there is an l ∈ {0, . . . , j − 1} such that Tr(PhaltAa(A
′
a)
l(|ψ〉〈ψ|)) ≥ δj.

Proof: We proceed by induction on j. Let H =
⊕ma

k=1 Cn. Let Pk : E1
2 → H be

the projector into the kth component of H, and let T1 : E1
2 → H be the function

T1|ψ〉 =
∑

k PkPhaltPa,kAa|ψ〉. Observe that ‖T1|ψ〉‖2 is the probability of halting

when a is read while the machine is in state |ψ〉〈ψ|. By the previous discussion,

Tr(A′a|ψ〉〈ψ|) = 1 − ‖T1|ψ〉‖2. Define ‖T1‖ = min‖ |ψ〉‖=1‖T1|ψ〉‖. Note that the

minimum exists since the set of unit vectors in Cn is a compact space. Also, let

δ1 = ‖T1‖2. Then δ1 > 0, otherwise there would be a vector |ψ〉 ∈ E1
2 such that

supp(Aa|ψ〉〈ψ|) ∈ Snon, a contradiction.

Now assume that δj−1 has been found. We need to show that, for |ψ〉 ∈ Ej
2, either

a constant sized portion of |ψ〉 is sent into the halting subspace, or it is mapped to a

vector on which we can apply the inductive assumption. We construct two functions

Tj,halt, Tj,non : Ej
2 → H defined by:

Tj,halt|ψ〉 =
ma∑
k=1

PkPhaltPa,kAa|ψ〉,

Tj,non|ψ〉 =
ma∑
k=1

PkPEj−1
2
PnonPa,kAa|ψ〉.

Then the quantity ‖Tj,halt|ψ〉‖2 is the probability of halting while reading a, and

‖Tj,non|ψ〉‖2 = Tr(PEj−1
2
A′a|ψ〉〈ψ|). Note that for all vectors |ψ〉 ∈ Ej

2 we must have
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either ‖Tj,halt|ψ〉‖ 6= 0 or ‖Tj,non|ψ〉‖ 6= 0, otherwise |ψ〉 is in Ej
1, a contradiction.

This implies that ‖Tj,non ⊕ Tj,halt‖ > 0. Note also that ‖Tj,non ⊕ Tj,halt‖ ≤ 1.

Define δj = δj−1
‖Tj,non⊕Tj,halt‖2

2ma
. Take any unit vector |ψ〉 ∈ Ej

2. Then ‖(Tj,non ⊕

Tj,halt)|ψ〉‖ ≥ ‖Tj,non⊕ Tj,halt‖. Recall that the range of Tj,non⊕ Tj,halt is
⊕ma

k=1 Cn⊕⊕ma

k=1 Cn. In one of these subspaces, (Tj,non ⊕ Tj,halt)|ψ〉 has size at least 1√
2·ma

.

If it is in one of the last ma subspaces, corresponding to Tj,halt part, then there is

nothing further to prove. Otherwise, assume that this component is in one of the

subspaces corresponding to the Tj,non part. In particular, there is a k such that

|φ〉 = PnonPa,kAa|ψ〉 satisfies

‖PEj−1
2
|φ〉‖2 ≥ 1

2 ·ma

.

We can split |φ〉 into |φ1〉+ |φ2〉, with |φi〉 ∈ Ej−1
i . By the inductive hypothesis, there

is an l < j−1 such that Tr(PhaltAa(A
′
a)
l(|φ2〉〈φ2|)) ≥ δj−1Tr(|φ2〉〈φ2|). Furthermore,

the first condition of the lemma implies that for every choice of (k1, . . . , kl) ∈ [ma]l,

PhaltPa,kl
UaPa,kl−1

Ua · · ·Pa,k1Ua|φ1〉 = ~0.

This implies that Tr(PhaltAa(A
′
a)
l(|φ1〉〈φ1|)) = 0 and Tr(PhaltAa(A

′
a)
l(|φ1〉〈φ2|)) =

Tr(PhaltAa(A
′
a)
l(|φ2〉〈φ1|)) = 0. Together, we obtain:
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Tr(PhaltAa(A
′
a)
l|φ〉〈φ|)

= Tr(Phalt(A
′
a)
l(|φ1〉〈φ1|+ |φ1〉〈φ2|+ |φ2〉〈φ1|+ |φ2〉〈φ2|))

= Tr(PhaltAa(A
′
a)
l(|φ1〉〈φ1|)) + Tr(PhaltAa(A

′
a)
l(|φ1〉〈φ2|))

+Tr(PhaltAa(A
′
a)
l(|φ2〉〈φ1|)) + Tr(PhaltAa(A

′
a)
l(|φ2〉〈φ2|))

= Tr(PhaltAa(A
′
a)
l(|φ2〉〈φ2|)) ≥ δj−1

‖Tj,non ⊕ Tj,halt‖2

2ma

.

This concludes the proof of the claim. �

Proposition 5.6 Let Ua be the unitary transformation that is applied when a is

read. Then Ua = U1
a ⊕ U2

a , where U i
a acts unitarily on subspace Ei.

Proof: By the unitarity of Ua, it is sufficient to show that |ψ〉 ∈ E1 implies Ua|ψ〉 ∈

E1. By definition of E1, |ψ〉 ∈ E1 implies that all of the vectors Pa,iUa|ψ〉 are in E1.

But Ua|ψ〉 =
∑

i Pa,iUa|ψ〉, and thus Ua|ψ〉 ∈ E1 since E1 is a subspace. �

We are now ready to prove the second part of the lemma. We first show that

|ψ〉 ∈ E2 implies supp(Aa|ψ〉〈ψ|) ⊆ E2. Let |ψ′〉 = Ua|ψ〉. Then Aa|ψ〉〈ψ| =∑
i |ψi〉〈ψi|, where |ψi〉 = Pa,iUa|ψ〉. Split |ψi〉 into vectors |ψi,1〉+ |ψi,2〉, with |ψi,1〉 ∈

E1 and |ψi,2〉 ∈ E2. We claim that either |ψi,1〉 or |ψi,2〉 are trivial vectors. Suppose

‖|ψi,1〉‖ 6= 0, and consider the intersection of the image of Pa,i in the space spanned

by |ψi,1〉 and |ψi,2〉. Now |ψi,1〉 implies that U−1
a |ψi,1〉 ∈ E1 and thus Pa,i|ψi,1〉 ∈ E1,

which implies |ψi〉 ∈ E1.
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Now since each |ψi〉 satisfies |ψi〉 ∈ E1 or |ψi〉 ∈ E2, then we are done since the

fact that the |ψi〉’s are orthonormal and sum to Ua|ψ〉 ∈ E2 implies that |ψi〉 ∈ E2

for all i. Thus, |ψ〉 ∈ E2 implies span(Aa|ψ〉〈ψ|) ⊆ E2.

To complete the proof of the second part of the lemma, for any ρ with supp(ρ) ∈

E2, we can repeatedly apply Claim 7 to show that Tr((A′a)
k(ρ))→ 0 as k →∞.

To construct E1 and E2 for w = w1 . . . wn, we define E0
1 = Snon and Ek

1 to be

the set of all vectors |ψ〉 such that Tr(A′a|ψ〉〈ψ|) = 1 and supp(A′a|ψ〉〈ψ|) ∈ Ek−1
1 ,

where a = wk mod n+1. We can then follow the proof as above. The proof of the first

part of the theorem and of Claim 7 will generalize since the proof does not make use

of the fact that the transformation and measurement defining Ej
1 is the same as that

of Ej+1
1 . Proposition 5.6 will apply to wi for all i. �

The ergodic-transient lemma can be extended in the following way:

Lemma 5.7 Let M be an n-state GQFA over alphabet Σ, and let x, y ∈ Σ∗. Then

there exists a pair E1, E2 of orthonormal subspaces of Cn such that Cn = E1 ⊕ E2

and for all weighted density matrices ρ over Cn we have:

1. If supp(ρ) ⊆ E1, then for all w ∈ (x ∪ y)∗, supp(A′wρ) ⊆ E1, and Tr(A′wρ) =

Tr(ρ).

2. If supp(ρ) ⊆ E2, then supp(A′wρ) ⊆ E2 and for all ε > 0 there exists a word

w ∈ (x ∪ y)∗ such that Tr(A′wρ) ≤ ε.

Proof: Let Ew
1 be the subspace constructed as in Lemma 5.5. Let E1 = ∩w∈(x∪y)∗E

w
1 ,

and let E2 to be the orthogonal complement of E1.

Suppose that supp(ρ) ⊆ E2. If there is a w ∈ (x∪y)∗ such that supp(ρ) ⊆ Ew
2 , we

can directly apply the argument from the previous lemma to show that Tr((A′w)jρ)→
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0 as j → ∞. However such a w may not exist so a stronger argument is necessary.

As the application of an A′w transformation can only decrease the trace of ρ, for any

ε there exists a t ∈ (x ∪ y)∗ such that for all w ∈ (x ∪ y)∗, Tr(A′tρ) − Tr(A′tw) ≤ ε.

For all i let ti be a such a string for ε = 1
2i . Consider the sequence ρ1, ρ2, . . . defined

by ρi = A′tiρ. The set of weighted density matrices form a compact, closed space

with respect to the trace metric, and so this sequence of must have a limit point ρ.

We claim that Tr(ρ) = 0. Suppose not. The support of ρ is in E2, so there

must be some word w ∈ (x ∪ y)∗ such that Tr(A′wρ) < Tr(ρ). This contradicts the

assumption that ρ is a limit point. �

Finally we note a very simple fact that will allow us to extend impossibility

results for LQFA to GQFA:

Fact 1 Let M be a GQFA. Let E1 be the subspace defined as in Lemma 5.7, and

suppose that the state of the machine ρ on reading the ¢ character satisfies supp(ρ) ∈

E1. Then there is an LQFA M ′ such that, for all w ∈ (x ∪ y)∗ the state of M on

reading w is isomorphic to the state of M ′ on reading w.

We are now ready to apply these technical results to prove several fundamental

properties of GQFAs.

5.3 Results

Recall that the nonclosure of KWQFA under union was shown in [6]. Using

the results of the previous section, we can follow a similar proof outline to show

nonclosure of GQFA under union. Our first result gives a necessary condition for

recognition by GQFAs.
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Theorem 5.8 If the minimal automaton for L contains the forbidden construction

for Theorem 5.3, then L cannot be recognized by GQFA with probability p > 1
2
.

Proof: Suppose that M recognizes L containing the forbidden construction of The-

orem 5.3 with probability p > 1
2
. By closure under left quotient, we can assume

that the state q0 in the forbidden construction is also the initial state of the minimal

automaton for L.

Let ρ be the initial state of the machine and let ρw = A′wρ. The basic outline

of the proof is that we will use Lemma 5.7 and Theorem 3.13 to find two words

w1 ∈ x(x ∪ y)∗, w2 ∈ y(x ∪ y)∗ such that ρw1 and ρw2 have similar output behavior.

We then analyze the acceptance probabilities of the words w1z1, w1z2, w2z1, and

w2z2 to arrive at a contradiction.

Let E1 and E2 be subspaces which meet the conditions of Lemma 5.7 with

respect to x and y. We claim that for all ε > 0 there exists u, v ∈ (x ∪ y)∗ such

that ‖Tr(PE1ρxu − PE1ρyv)‖t ≤ ε. Suppose to the contrary that there exists ε > 0

such that ‖Tr(PE1ρxu − PE1ρyv)‖t > ε for all u, v. Then by Fact 1, there exists an

LQFA that can recognize the language x(x ∪ y)∗ with bounded error, contradicting

Theorem 3.13. Let δ = p− 1
2
, and choose ε = δ

4
.

By Lemma 5.7, for all ε′ we can find u′ ∈ (x ∪ y)∗ such that Tr(PE2ρxuu′) <

ε′. Furthermore we can find v′ ∈ (x ∪ y)∗ such that Tr(PE2ρxuu′v′) < ε′ and

Tr(PE2ρyvu′v′) < ε′. Let w1 = xuu′v′ and w2 = yvu′v′, and choose ε′ = δ
4

Let pi,acc (pi,rej) be the probability with which M accepts (rejects) while reading

wi. Furthermore let qij,acc (resp qij,rej) be the probability that M accepts if the state

of the machine is ρw1 and the string zj$ is read. Since ‖ρw1 − ρw2‖t ≤ ‖ρxu− ρyv‖t =
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δ
2
≤ ε, q1j,acc (and likewise q1j,rej) can be different from q2j,acc by a factor of at most δ

2
.

As a consequence, one of the words w1z1, w1z2, w2z1, or w2z2 must not be classified

correctly. Suppose, for instance that w1z1, w1z2, and w2z1 are classified correctly.

Since q11,rej differs from q21,rej by a factor of at most δ
2
, the fact that w1z1 is accepted

and w2z1 is rejected implies that p2,rej > p1,rej + δ. since q12,rej differs from q22,rej

by at most a factor of δ
2
, will be rejected with probability greater than 1 − p, a

contradiction. The other cases are similar. �

Corollary 5.1 GQFA are not closed under union.

Proof: The languages L1 and L2 in Theorem 5.4 were shown to be recognizable

by KWQFAs, thus they can also be recognized by GQFA. On the other hand, the

minimal automaton of L1 ∪L2, contains the forbidden construction of Theorem 5.8.

�

By the argument of Theorem 3.3 in [6], the nonclosure of GQFAs under union

immediately implies that there exists languages L which are recognized with prob-

ability 1
2
≤ p < 1 but not with probability arbitrarily close to 1. Using a technique

similar to that of Theorem 5.8, we can give a forbidden construction which implies

an upper bound of 2/3 on the acceptance probability. The constructions of language

L1 and L2 in Theorem 5.4 shows that this value is tight.

Theorem 5.9 If the minimal DFA ML for L contains states q1, q2, q3, words x, y, z1,

z2 such that δ(x, q1) = δ(x, q2) = q2, δ(y, q1) = δ(y, q2) = q3.,

� reading x while in q1 brings you to q2,

� reading y while in q1 brings you to q3,

� reading x or y while in q2 or q3 brings you back to the same state,
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Figure 5–6: The forbidden construction of Theorem 5.9.

� q3 is not all accepting or all-rejecting.

Then L cannot be recognized by GQFA with probability p > 2
3
.

Proof: Since q2 6= q3 and by closure under complement, without loss of generality,

there exists a word z3 such that xz3 ∈ L and yz3 /∈ L. We also assume that q1 is the

initial state. Let ρ be the state of M after reading the ¢ symbol. As in Lemma 5.7,

split Cn into subspaces E1 and E2 with respect to x and y.

For all ε, we can find w1 ∈ x(x∪y)∗ and w2 ∈ x(x∪y)∗ such that ‖ρw1−ρw2‖t ≤ ε,

Tr(PE2ρw) < ε, Tr(PE2ρw) < ε. let pi be the probability thatM rejects while reading

wi and wi respectively, and let qi3 be the probability of rejecting when M is in state

wi and reads z3. By setting ε, the difference between q13 and q23 can be made

arbitrarily small, so p1 + q13 ≤ 1/3 and p1 + q23 ≥ 1/3 imply that p3−p1 > 1/3. This

further implies that M accepted while reading w1 with probability greater than 1/3,

contradicting the assumption that w1z1 is rejected with probability at least p. �

Comparing KWQFA and GQFA, we see that both types of QFA can recog-

nize any language whose syntactic monoid is in BG. This comes from the fact

128



that KWQFA and hence GQFA can recognize boolean combinations of languages

recognized by BPQFA [3]. However GQFA can use the LQFA constructions to

achieve a much higher probability of correctness. While GQFAs can recognize L

with M(L) ∈ BG with probability 1 − ε for all ε > 0, the maximum probabil-

ity of correctness for recognizing L by a KWQFA construction diminishes rapidly

as the complexity of L increases. This shows that allowing arbitrary intermediate

measurements can make QFAs more expressive.

However, we see a different picture if we consider languages L such that M(L) /∈

BG. In this case we see that the known lower bounds for KWQFA recognizing

languages with syntactic monoid outside of BG apply in almost exactly the same

way to GQFA. This suggests that the arbitrary intermediate measurements of GQFA

do not help for recognizing these languages. It is an interesting open problem to

determine whether or not there exists languages which can be recognized by GQFA

but not KWQFA. The results of this chapter bring us much closer to answering this

question.
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CHAPTER 6
MOQFA Succinctness

So far in this thesis, we have seen many results which emphasize the fact that

quantum finite automata are less expressive than deterministic finite automata. In

this chapter, we will see that QFAs can outperform DFAs in the sense that they can

recognize languages using much fewer states than the equivalent DFA. The literature

contains several results regarding the asymptotic behavior of the size of MOQFA

versus the size of the minimal deterministic automata for certain language classes.

For example, an early QFA result [4] showed that, for languages of the form Lp =

{w : |w| mod p = 0} for prime p, the size of the smallest MOQFA is O(log p).

In this chapter, we will be considering the asymptotic behaviour, for a given class

W of languages (not necessarily a variety), the size of the smallest MOQFA recog-

nizing L ∈ W with probability p as a function of the size of the minimal automaton

and p. While we know exactly which languages can be recognized by MOQFA, it is

not yet understood which classes of languages can be recognized succinctly. We will

give an overview of known results in this area and outline our recent work.

It is important to note that, in many relevant computational settings, it is

not possible to obtain storage improvements by moving from classical to quantum

memory. As a consequence of Holevo’s Theorem, we know that the outcome of

any measurement on an n-qubit quantum state will have entropy at most n, which

implies that at most n bits of information can be reliably stored in a system of
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n qubits. Ambainis et al. [7] showed that even in the simpler case of encoding a

classical bit string so that a single but arbitrarily chosen bit can be extracted with

high probability, quantum bits are only modestly more efficient than classical bits.

We will focus our attention on the size of MOQFAs recognizing the word problem

LG over a group G. Let G∗ be the free monoid with alphabet G. For w ∈ G∗ we

define eval(w) to be the product of the group elements. Then we define LG = {w :

eval(w) = 1}. The word problem is good candidate for the exponential succinctness

property in light of the following results. Bertoni, Mereghetti, and Palano [16] showed

that the word problem over Zh
n can be recognized by an MOQFA with probability

p = 1
3
(2 − δ) using O( 1

δ2
log |Zh

n|) = O( 1
δ2
h log n) states. On the other hand, there

exists a class of languages L such that each M(L) is a cyclic, and the size of the

smallest MOQFA is Ω(
√

|M(L)|
log |M(L)|) [14].

The succinct constructions in [4, 16] involve Fourier techniques. In Section 6.1,

we suggest a strategy for generalizing these constructions by moving to general

abelian and nonabelian Fourier transforms. In Section 6.1.3 we highlight a key

obstacle to generalizing Fourier techniques beyond abelian groups. Nevertheless, we

show that there are exponentially succinct constructions for some interesting classes

of nonabelian groups, such as the class of dihedral groups.

Let us denote by D(L) the size of the minimal automaton for L, and by DQ(L, δ)

the size of the smallest MOQFA recognizing L with probability 1
2
+ δ. We denote by

LG the word problem over a group G. In this case, we have D(LG) = |M(LG)| = |G|.

Known results suggest that DQ(L, δ) depends upon the algebraic properties of G.

To prove lower bounds on DQ(LG) for groups with specific algebraic properties, we
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need to argue that algebraic properties of G imply particular structural properties

of any MOQFA M recognizing LG. One way to do this is to consider the algebraic

properties of the mapping µM : Σ∗ → GL(n) from input words to state transition

operators. In Section 6.2, we look at techniques for normalizing the transformations

of a given MOQFA so that they have desirable properties (in particular, so that

µM(Σ∗) is a finite group with similar algebraic properties to G).

In related work, the question of automata size has been considered for random-

ized finite automata, and exponentially succinct probabilistic automata have been

constructed for certain languages [30, 2]. It has been shown that some of these con-

structions can be adapted to the case of KWQFA [4]. On the other hand, the Lp

languages mentioned earlier require Ω(
√
p) states to be recognized by probabilistic

automata.

Some work has been done to understand the space complexity of MOQFA in

the special case of languages such that M(L) is a cyclic group. It was shown that

DQ(L) = O(
√
|D(L)|) for this class of languages [43]. Furthermore, there is an

infinite sequence of these languages which satisfy DQ(Ln) = Ω(
√

n
logn

) [14], whereas

the word problem over Zn requires only O(log n) states.

The literature contains a number of papers which use algebra to obtain results

about MOQFAs. These papers use the fact that there is a natural metric on the set

of unitary matrices for which the closure µ(Σ∗) of µ(Σ∗) forms a compact group [24].

This property has been used to show the decidability of certain questions regarding

MOQFA [66, 17], and to give a simple proof of the fact that languages recognized by

MOQFA with bounded error are regular [17].
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6.1 Succinct Constructions

Before we begin, we note that QFAs are only able to recognize languages more

succinctly than DFAs when the probability p of correctness is strictly less than 1.

Suppose for example that M recognizes the word problem over G with probability 1,

and let |ψg〉 be the state reached on reading g. For all h 6= g, there would a measure-

ment which would distinguish |ψh〉 from |ψg〉 with certainty, which further implies

that |ψh〉 ⊥ |ψg〉. Since there are |G| pairwise orthogonal states, the dimension of

the state space and hence the number of QFA states must be at least |G|. So, for

the case of p = 1, the natural construction is optimal.

It is helpful to adopt the following point of view on MOQFAs. For an MOQFA

M over Σ∗, define ηM : Σ∗ → [0, 1] so that ηM(w) is the probability that M accepts

w. We call ηM the characteristic function of M . In general we will call any function

f : Σ∗ → [0, 1] a probability assignment.

All of the known exponentially succinct constructions for MOQFAs have a sim-

ilar basic construction. The goal is to approximate a target probability assignment.

First, a collection of small MOQFAs inducing probability assignments are defined,

with each of these small MOQFAs tracking a different aspect of the syntactic group.

Then a probabilistic argument shows that there is a small subset of this set such

that, for all inputs words, a significant fraction of the probability assignments from

the subset will agree with the target function. Finally, a MOQFA is built from this

subset to recognize the desired language.

The following well-known construction can be used to take a weighted sum of

the outputs of several MOQFA:

133



Lemma 6.1 Let M1, . . . ,Mk be MOQFA such that Mi is of size ni and has character-

istic function ηi. Then for any set {p1, . . . , pn} of positive reals satisfying
∑

i pi = 1,

there is a MOQFA M of size
∑

i ni with characteristic function given by:

η(w) =
∑
i

piηi(w).

Proof: The strategy will be to run the k machines in parallel, and choose the final

measurement so that the output of machine i is given with probability pi. We define

the state set of M to be the disjoint union of the state sets Qi of the machines

Mi. This naturally partitions the state space into the direct sum
⊕

i Cni . Let us

denote by Uσ,i the unitary operator corresponding to reading the letter σ on the ith

machine. We define A¢ of M to be the matrix that, for all i, places
√
pi amplitude

in the state corresponding to the initial state of Mi, and then applies the operation⊕
i U¢,i. For σ ∈ Σ ∪ {$}, we define the operator Aσ =

⊕
iAσ,i. We choose the

set F of final states to be the disjoint union of the final sets Fi. Let |ψw$〉 be the

state of M after reading w and the $ symbol. The total length of the component of

|ψw$〉 in the accepting subspaces is (
∑

i(
√
pi
√
ηi(w))2)1/2, so the characteristic of M

is
∑

i piηi(w) as required. �

We will be interested in approximating probability assignments in the following

sense:

Definition 6.1 We say that probability assignment f δ-approximates the assignment

g if |f(w) − g(w)| ≤ δ for all w ∈ W . If M is such that ηM = f we say M

δ-approximates g.
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If the characteristic function η of M 0-approximates the assignment g, we say

that M simulates g.

6.1.1 Abelian Case

We adopt the following notation for complex numbers. We define Θ(z) = z
|z| .

Also, let real[z] (comp[z]) be the real (complex) component of z. Finally, let φ(z) =

real[z]
|z| be the phase of z. Recall that z = |z|eiφ(z), and z = |z|(cos(φ(z)) + i sin(φ(z)))

by Euler’s formula.

Theorem 6.2 For G ∈ Ab and δ > 0, the word problem over G is recognizable by

an MOQFA with probability p = 1
3
(2− δ) using O( 1

δ2
log |G|) states.

Proof: This is a straightforward generalization of the construction for recognizing Zh
n

in [16]. The key difference is that we show that we can replace the Fourier transform

over Zh
n with the general abelian Fourier transform. The construction in [16] is in

turn a natural generalization of the succinctness proof for Zp in [4].

We would like to construct an MOQFA which succinctly approximates the prob-

ability assignment ηG : Σ∗ → [0, 1] defined by:

ηG(w) =


1 if eval(w) = 1,

0 otherwise.

To show that LG is recognized with probability p = 1
3
(2 − δ), it is sufficient to

show the following:
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Lemma 6.3 For G ∈ Ab, there exists a MOQFA construction M such that the

probability assignment η′ = 1
2

+ 1
2
η can be δ-approximated by an O( 1

δ2
log |G|) state

QFA.

This construction can be modified to recognize the word problem over G with

probability p = 1
3
(2 − δ) as follows. Let η0 be the characteristic function defined

by η0(w) = 0 for all w ∈ Σ∗. This is simply the characteristic function of an

MOQFA which always rejects its input. We can construct a 1-state MOQFA with

this property. Using Lemma 6.1 we can construct a machine M ′ using |M |+1 states

with characteristic function 2
3
ηM + 1

3
η0. One can easily check that a machine with

this characteristic will recognize the word problem over G with probability p. It

remains to prove the lemma.

Proof: As in [15], the first step of the succinct QFA construction is to express the

function η in terms of the Fourier basis. We define f : G→ [0, 1] as:

f(g) =


1 if g = 1,

0 otherwise.

Let f̂ be the Fourier transform of f . Also define ‖f̂‖1 =
∑

χ |f̂(χ)|. Let w ∈ Σ∗

and let eval(w) = g. Finally, let n = |G|. Then we can express η(w) as:
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η(w) = f(g) =
1

n

∑
χ

f̂(χ) · χ(g−1)

=
1

n

∑
χ

real[f̂(χ) · χ(g−1)]

=
1

n

∑
χ

cos(φ(f̂(χ) · χ(g−1)))

=
1

n

∑
χ

(
2 cos2

(
φ(f̂(χ) · χ(g−1))/2

)
− 1
)

=
1

n

∑
χ

2 cos2
(
φ(f̂(χ) · χ(g−1))/2

)
− 1.

And so:

1

n

∑
χ

cos2
(
φ(f̂(χ) · χ(g−1))/2

)
=

1

2
+

1

2
η(w).

We claim that the left hand side is a weighted sum of probability assignment

which can each be computed by MOQFAs of small size. For a fixed χ ∈ Ĝ let

ηχ(w) = cos2(φ(f̂(χ) · χ(g−1))/2), where g = eval(w). This assignment can be

simulated by a QFA Mχ of size 2. Recall that complex numbers of unit magnitude

correspond exactly to 2× 2 matrices of the form:

A(z) =

 real[z] −comp[z]

comp[z] real[z]

 =

 cos(φ(z)) − sin(φ(z))

sin(φ(z)) cos(φ(z))

 .
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We set the initial state of Mχ to be
[
cos(φ(f̂(χ))/2), sin(φ(f̂(χ)/2)

]
, and for all

g ∈ G we define Ag = A(φ(χ(g−1))/2). Then if we choose the accepting state to be

the space spanned by the first coordinate, Mχ will accept w with probability ηχ(w).

In the remainder of the proof, we show that the assignment η′ = 1
n

∑
χ ηχ can

be δ-approximated by the assignment induced by a MOQFA with O(log n/δ2) states.

We exactly follow the proof of Theorem 3 in [15]. In particular, this shows that the

theorem is not restricted to groups of the form Zh
n.

We will need Hoeffding’s inequality, which states that for set S of i.i.d. random

variables over [0, 1] with expected value µ:

P

[∣∣∣∣∣ 1

|S|
∑
s∈S

s− µ

∣∣∣∣∣ ≥ δ

]
≤ 2e−2δ2|S|.

Let S ⊆ Ĝ and let ηS be the assignment 1
|S|
∑

s∈S ηs. By Lemma 6.1, this

assignment can be simulated by an MOQFA using O(|S|) states. Note that the

value of η′(w) and ηS(w) depend only on eval(w). Using Hoeffding’s inequality we

find that:

P

[
sup
w∈G∗

{ηS(w)− η′(w)} ≥ δ

]
≤ n · P

[
sup
g∈G
{ηS(g)− η′(g)} ≥ δ

]
≤ n2e−2δ2|S|.

We select |S| to be O(log n/δ2), so that n2e−2δ2|S| < 1 for suitably large |S| and

so there exists a suitable choice of S so that ηS will δ-approximate η′. �

138



In the hope of extending these results to nonabelian groups, it is natural to look

at representations, which are the analogous structure to abelian group characters.

6.1.2 Representation Theory

We will now recall some basic facts about the representation theory of finite

groups. A fuller treatment can be found in [31, 58]. The general linear group of

dimension n over field F is the group of invertible linear operators on an F-vector

space of dimension n. We will denote by GL(n) the general linear group over Cn.

A representation of a group G is a group morphism ρ : G → GL(n). The

morphism ρ will satisfy ρ(1) = I and there exists an inner product of Cn for which

each ρ(g) will be unitary. A subspace W of Cn is said to be stable under ρ if ρ(g)W ⊆

W for all g. If W is a strict subset of Cn, it can be shown that the orthogonal

complement W of W will also be stable under ρ, and so ρ can be decomposed into

a direct sum ρ1 ⊕ ρ2 of two representations acting independently on subspaces of

Cn. In this case we say that ρ is reducible. If no such decomposition is possible

we say that ρ is an irreducible representation or an irrep. The dimension of an

irrep is the dimension of the space on which the irrep operates. We say that two

representations ρ1 and ρ2 are isomorphic if there exists a linear transformation A

such that Aρ1(g) = ρ2(g)A for all g ∈ G.

For a representation ρ, the character of ρ is the function χρ : G → C defined

by χρ(g) = Tr(ρ(g)). For functions of the form f : G → C let us define an inner

product (f, f ′) = 1
|G|
∑

g f(g)f ′(g).
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Theorem 6.4 Let τ be a representation and let τ = τ1⊕· · ·⊕τm be a decomposition

of τ into irreducible representations. If the irreducible representation ρ occurs k times

within the decomposition of τ , then (χτ , χρ) = k.

In particular, the number of occurrences of an irrep within a representation is

independent of the choice of decomposition.

Representations occur naturally in the construction of MOQFAs. For instance,

in the construction of Theorem 3.3, the mapping ϕ : G → GL(n) defined by

ϕ(g) = Ag is a representation. Likewise, the construction in Section 6.1.1 induces a

representation. In fact the construction Theorem 3.3 corresponds to a special canon-

ical representation called the regular representation. The regular representation is of

particular interest since all of the information about the structure of a finite group’s

irreducible representations can be extracted from the regular representation and it’s

associated character.

The Regular Representation

Fix a group G with |G| = n. Suppose that we define an orthonormal basis

{eg}g∈G of Cn. let ρ be the representation over GL(n) defined by ρ(g)eg′ = eg′g. We

call this the regular representation of G. By considering the character of the regular

representation we can obtain some fundamental properties of representations.

Theorem 6.5 If ρ is an irreducible representation of dimension d and τ is the reg-

ular representation then (χτ , χρ) = d.

Since the regular representation contains an occurrence of each irreducible rep-

resentation, it follows that there are at most n irreducible representations of a group

of size n. Furthermore if ρ1, . . . , ρk are a complete set of irreducible representations
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and the dimension of ρi is di, then
∑

i d
2
i = n. With respect to an appropriately

chosen basis, the regular representation will be a block diagonal matrix with subma-

trices of size d1, . . . , dk. In fact we can think of the Fourier transform of a group G

as a function which maps the canonical basis e1, . . . , en of the regular representation

to one in which the regular representation is block diagonal.

For the special case of abelian groups, all of the representations have dimension

one. This implies that there are exactly n representations of an abelian group of size

n, and in this case the characters are equal to the representations.

6.1.3 Nonabelian Case

In this section, we will discuss a few ideas for generalizing Theorem 6.2 to the

nonabelian case. We first recall a few facts regarding the discrete Fourier transform

for nonabelian groups.

Let G be a finite group, and let us denote by Ĝ = {ρ1, . . . , ρk} be the set of

irreducible representations of G, and for all i let di be the dimension of representation

ρi. Let f : G → C. Then the Fourier transform of f is a function which maps each

irrep ρi to GL(i) as follows:

f̂(ρi) =
∑
g

f(g)ρi(g).

In the case of abelian groups the ρi matrices are dimension 1 and we obtain the

abelian Fourier transform as a special case. Fix an arbitrary basis for the matrices

and let us denote by [M ]j` the j`th coordinate of a matrix. It can be shown by an

application of Schur’s lemma [58] that for all i, j, ` the set of functions hi,j,` : G→ C

defined by hi,j,l(g) = [ρi(g)]j` are linearly independent and form an orthogonal basis
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with respect to the inner product (h, h′) =
∑

g∈G h(g)h
′(g−1). Furthermore, the

following inversion formula holds:

f(g) =
∑
i

di
n
Tr(f̂(ρi)ρi(g

−1)).

Let us apply this idea in order to express ηG (c.f. Section 6.1.1) as a linear

combination of probability assignments.

ηG(w) = f(g) =
∑
i

di
n
Tr(f̂(ρi)ρi(g

−1))

=
∑
i,j,`

di
n

[f̂(ρi)]j`[ρi(g
−1)]`j

=
∑
i,j,`

di
n
real[[f̂(ρi)]j`[ρi(g

−1)]`j].

As in the previous case, this gives us a linear combination of functions fi,j,` :

G → C. It is tempting to think that these functions can be computed by a small

sized QFA. In this case, we could prove the existence of a small MOQFA recognizing

G.

It is possible to construct an MOQFA of size 2·i for which one of the coordinates

of the final state vector has value real[[f̂(ρi)]j`[ρi(g
−1)]`j]. This is a simple matter of

maintaining the vector ρi(w)ej as the state of the machine (ej being the basis vector

for coordinate ej), and then updating according to the rule ρi(wa)ej = ρi(a)ρi(w)ej.

The factor two is required to separate the real component of each vector from the
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complex coordinate. At the end, the amplitude in the `th coordinate is equal to the

desired value.

This does not solve the problem however, as the measurement outcome will be

the norm of this value squared. This was overcome in the abelian case by taking the

square root of each χi(g) individually. This cannot work in the nonabelian setup as

the square root function on unitary matrices does not distribute.

While the technique of [16] cannot be immediately applied to nonabelian groups,

there are indeed classes of nonabelian groups which can be recognized succinctly.

Certainly, it is immediate from [16] that the set of all groups of the form Zn × S3,

where S3 is the group of permutations of three elements, can be recognized using

O(log n) states. The next lemma can be used to show that there are more interesting

classes of nonabelian groups which can be recognized succinctly:

Lemma 6.6 Suppose that G is a semidirect product of S and T , with |T | = t, and

suppose that there exists an MOQFA M = (Q, q0,Σ, {Uσ}, F ) recognizing the word

problem over S with probability p ≥ 1
2

using m states. Then there exists an MOQFA

M ′ recognizing the word problem over G with probability p using m · |T | states.

Proof: Let ∗ be the left action associated with the semidirect product of S and T ,

so that (s1, t1)(s2, t2) = (s1 ·S (t1 ∗ s2), t1 ·T t2).

Let Q×T be the set of states of M ′. We split the state space is into |T | subspaces

of size m, each corresponding to the subset of states Q × {t} for some fixed state.

The initial state of M ′ will be |q0, 1〉. For t ∈ T , let Rt be the unitary matrix that,

that maps |qi, t′〉 to |qi, t′t〉. This is just a permutation of the basis elements, so Rt is
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unitary. On input (s, t), M ′ will apply the matrix Rt

⊕
t′∈T Ut′·Gs, where each Ut′·Gs

acts on the subspace Q× {t′}. The set of final states of M ′ is F × {1}.

The transitions are constructed so that all of the amplitude will be contained

in one of the |T | subspaces. After w = (s1, t1) . . . (sn, tn) is read, the amplitude will

be in the subspace corresponding to eval(t1 . . . tn). Furthermore, it is easy to show

by induction that the state within that subspace will be exactly the that would be

reached by M upon reading a string of elements of S that evaluates to

s1 ·S (t1 ∗ s2) ·S · · · ·S ((t1 ·T · · · ·T tn−1) ∗ sn).

Suppose that M ′ has read w such that eval(w) = (s, t). If t 6= 1, then the state

after reading w will be orthogonal to the accepting subspace of M ′. Now consider

the case that t = 1. The state within the subspace Q × t corresponds to a state

reached by M after reading a sequence of elements that evaluates to s, and thus M ′

will accept w with probability p if s = 0, otherwise reject with probability at least

p. �

Let us now give some examples of nonabelian groups which can be recognized

succinctly using this lemma. First, we consider the dihedral group Dn, which is

the set of reflections and rotations of an n-gon. This is isomorphic to a semidirect

product of S = Zn with T = Z2, where the left action defined by:

t · s =


s if t = 0

-s if t= 1.
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Note that this is indeed an abelian group, since (0, 1)(s, 0) = (−s, 1), while

(s, 0)(0, 1) = (s, 1). In this case S has an MOQFA of size O(log n) and |T | = 2, so

Dn also has a QFA of size O(log n). In general.

Corollary 6.1 For any fixed group T , let ST be the set of all semidirect products

of A and T such that A ∈ Ab. Then for any δ > 0, the word problem over group

G ∈ ST can be recognized by an MOQFA with probability of correctness p = 1
3
(2− δ)

using O( 1
δ2

log |A|) states.

This includes the set of groups of the form A× T as a special case.

6.2 Algebraic Structure of MOQFAs

It is likely that, for many groups, there are nontrivial lower bounds on size of

MOQFAs recognizing the word problem. We would like to begin an investigation

into lower bound results for these machines.

Suppose that MOQFA M recognizes LG. Without any further condition, we can

say very little about the algebraic structure of µM(G∗). However, we can say that

the metric closure of µM(G∗) forms a compact group [24]. A natural metric d can be

defined on µM(G∗) as d(X, Y ) = min|ψ〉 ‖(X − Y )|ψ〉‖. Then the closure µM(G∗) of

µM(G∗) with respect to this metric is a compact group. Using characterizations of

compact groups, this fact has been used to construct algorithms for several decision

problems related to MOQFA [66, 17].

However, we will need stronger properties to prove lower bounds on specific

groups, since properties of G do not immediately extend to µ(G∗). For at least some

cases, this is possible. The following result was implicitly stated in [17]. We prove it

here in order to discuss generalizations to less restricted classes of groups.
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Theorem 6.7 If MOQFA M recognizes the word problem over Zn, then there is an

MOQFA M ′ of the same size as M such that µM ′(Σ∗) is a finite cyclic group which

has Zn as a divisor.

Proof: Let M be an MOQFA recognizing LZn with probability p > 1
2
. Let A = µ(1),

where 1 is the generator of Zn. We can assume for i ∈ Zn that µ(i) = Ai, for if not

we can construct a machine M ′ with this property with the same size as M , and

necessarily M ′ will also recognize LZn with probability p.

Recall again that A =
∑

j λj|φj〉〈φj| by the spectral theorem. Let θj ∈ [0, 1)

be the unique number such that e2πiθj = λj. If θj is rational we will say that λj is

rational, otherwise we say λj is irrational. We view each θj as an element of R\Z.

A collection of reals ξ1, . . . , ξk is linearly independent in Q if there are no set of

rationals q1, . . . , qk such that
∑

i qiξi = 0. We now recall Kronecker’s theorem.

Theorem 6.8 Let (ξ1, . . . , ξk) ∈ Rk/Zk = T (T is the k-dimensional torus), and

let T ′ = {j(ξ1, . . . , ξk) : j ∈ N}. If ξ1, . . . , ξk are rational then T ′ is a finite set.

Otherwise, T ′ forms a dense subset of T whose metric closure is a subtorus of T .

Finally, if ξ1, . . . , ξk are irrational and linearly independent then the closure of T ′ is

T .

Consider the case where all eigenvalues are irrational. Then the set R =

{µ(w)|q0〉 : w ∈ Z∗
n} of reachable points will be such that, for every pair |ψ1〉, |ψ2〉 ∈ R

and for all ε > 0, there are a sequences of vectors |v1〉, . . . , |vm〉 such that |v1〉 = |ψ1〉,

|vm〉 = |ψ2〉, and 〈vi|vi+1〉 ≥ 1 − ε. This implies that M cannot recognize Zm with

bounded probability.
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Now suppose that there are some rational eigenvalues. Then there is some n′

such λn
′
i = 1 for every rational λi. Let us consider the output probabilities on input

1z+bn
′
for fixed z < n′. Let Pacc =

∑
i |pi〉〈pi|. Let |ψ`〉 = PaccA

`|q0〉.

PA`|q0〉 = (
∑
i

|pi〉〈pi|)(
∑
j

λ`j|φj〉〈φj|)|q0〉

=
∑
i,j

λ`j|pi〉〈pi|φj〉〈φj|q0〉

=
∑
i,j

λ`jcij|pi〉,

Where cij is the complex number 〈pi|φj〉〈φj|q0〉 So then:

〈ψ`|ψ`〉 =
∑
i,j,j′

λ`j′cij′λ
`
jcij.

Now consider this sum for ` = z + bn′ for growing b. For the rational λj’s, the

quantity λz+bn
′

j will be constant. I claim that for all fixed z either {1z+bn′ : b ∈ N}

are each accepted with probability at least p or rejected with probability at least p.

Suppose not. Then A must contain irrational eigenvalues, otherwise {〈ψ`|ψ`〉 : ` ∈

z + bn′} would be a singleton, implying that all of {1z+bn′ : b ∈ N} are accepted

with the same probability. By Kronecker’s theorem the metric closure of the set

T ′ = {j(θ1, . . . , θm)} is a connected torus which implies that there is some b for

which 1 − p ≤ |{〈ψ`|ψ`〉 : ` ∈ z + bn′}|2 ≤ p, a contradiction. If we replace the

irrational θis with 0 we obtain a limit point of T ′, so we can replace the irrational

λjs with the value 1 and still get a machine which recognizes Zn with bounded error.

147



This machine M ′ will be such that µ(Z∗
n) forms a finite cyclic group whose order

divides n. �

This naturally raises the question of what other kinds of normalization results

we can obtain. The proof suggests that the irrational eigenvalues in a transformation

are not useful in recognizing the word problem, so they may be eliminated. However,

this intuition has yet to be made formal for the word problem over general groups.

It seems that, at the least Theorem 6.7 should be extendable to abelian groups in

the following sense:

Conjecture 6.1 If MOQFA M recognizes the word problem over an abelian group

G, then there is an MOQFA M ′ of the same size as M such that µM ′(Σ∗) is a finite

commutative group which has G as a divisor.

It would be sufficient to show that for two noncommuting operations A and

B we can construct modified operations A′ B′ which do commute. We may be

able to do this by looking at the commutator of A and B. Suppose that w is a

word which is accepted by M with probability at least p. Then for all i, measuring

(ABA−1B−1)i|ψw〉 will cause the machine to accept with probability at least p. This

seems to suggest that there is no space advantage to be gained allowing A and B to

be noncommutative.

Suppose we could show in general that for the word problem over any group G

we can normalize µM(Σ∗) to a finite µM ′(Σ∗). This would mean that µM ′(Σ∗) would

be a representation of some group G′ for which G is a divisor, and so the structure

of µM ′(Σ∗) would depend on the structure of the irreducible representations of G. It

seems likely that the size of the smallest MOQFA recognizing the word problem over
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G is related to the size of the largest irreducible representations. Supporting this idea

is the fact that, for every class of groups which is known to have O(log |G|) sized MO-

QFAs, there is a constant upper bound on the size of the irreducible representations

for this class.

It would also be interesting to determine whether we can tighten the normal-

ization result. While we have shown that we can normalize the transformations in

the cyclic case so that µM(Σ∗) is finite and cyclic, it is possible that µM(Σ∗) is a

much larger group than Zn. We wonder if this is an artifact of the proof, or if we

can construct smaller MOQFAs by choosing µM(Σ∗) to be a larger group.
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CHAPTER 7
Conclusion

In this thesis, we have shown that one can successfully apply techniques from

algebraic automata theory to prove meaningful results about QFAs. Our investiga-

tion has identified the languages whose syntactic monoid is in BG as central. We

have seen that this class of languages corresponds exactly to the class of languages

recognized by LQFA, and to the boolean closure of languages recognized by BPQFA.

This implies that both KWQFA and GQFA can also recognize every language with

syntactic monoid in BG. Furthermore, we have shown that for KWQFA and GQFA

there are strong impossibility results for languages whose syntactic monoid is outside

of BG.

We have made considerable progress in characterizing the class of languages

recognized by BPQFA. Again, the algebraic perspective has helped us to identify the

most relevant possibility and impossibility results to work on. We have left open the

problem of the exact characterization of BPQFA. The key missing link seems to be in

our incomplete understanding of the language variety corresponding to Nil+ mOJ1.

It is an interesting open problem to obtain a combinatorial characterization of this

class.

We have developed a number of technical results regarding QFAs which highlight

the structure which can be found in QFAs on the condition that they recognize certain

languages. We have shown that in the case of BPQFAs, the transformations for
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letters which map to idempotents in the syntactic monoid can be ‘normalized’ so that

they have special structure, and we have shown that cyclic languages recognized by

MOQFAs can be normalized so that they generate a finite group. We have seen that

the transition functions for a GQFA, as in the case of KWQFA, can be decomposed

into an ergodic and transient component, and this result identifies a key limit to the

power granted by halting before the end.

Our difficulty in characterizing KWQFA and GQFA may be due to the lack

of good tools for characterizing language classes which are not closed under union.

In the thesis we recalled how the Eilenberg theory can be generalized to deal with

nonclosure under complement. There has been recent work successfully extending

the Eilenberg theory to language classes which are closed under a restricted class of

inverse morphisms [53], so perhaps there is an algebraic way to deal with language

classes which are not closed under boolean operations.

Finally, there is much more work to do in the area of MOQFA succinctness. On

one hand, the lower bounds on MOQFA size for recognizing the word problem are

very limited. While it is not expected, it is still possible that, for the class of all

finite groups G, we can recognize the word problem over G ∈ G in O(log |G|) states.

On the other hand, there are classes of ‘nearly’-abelian groups for which we are not

known to have space efficient constructions, such as the class of nilpotent groups of

class two. In recent work we have identified the nonabelian groups of order pq for

prime p, q, p < q, as being good candidates for proving lower bounds. These groups

have a relatively simple structure, having a semidirect product decomposition and

having only two generators, yet these groups have large representations and they are
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non-nilpotent. A nontrivial lower bound for these groups would give us considerable

insight into the succinctness question.
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[33] Marats Golovkins and Jean-Éric Pin. Varieties generated by certain models of
reversible finite automata. In Proceedings of COCOON 2006, volume 4112 of
Lecture Notes in Computer Science, pages 83–93, 2006.

[34] G.H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, 1960.

[35] A. S. Holevo. Statistical problems in quantum physics. In proceedings of the
second Japan-USSR Symposium on Probability Theory, volume 330 of Lecture
Notes in Mathematics, pages 104–119. Springer-Verlag, 1973.

[36] John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley Publishing, Reading Massachusetts, 1979.

[37] Alexi Kitaev and John Watrous. Parallelization, amplification, and exponential
time simulation of quantum interactive proof systems. In Proceedings of the
32nd ACM Symposium on Theory of Computing, pages 608–617, 2000.

[38] Attila Kondacs and John Watrous. On the power of quantum finite state au-
tomata. In 38th Annual Symposium on Foundations of Computer Science, pages
66–75. IEEE, IEEE Computer Society Press, 20–22 October 1997.
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Appendix A

G Groups

Ab Abelian groups

A Aperiodic monoids

J J -trivial monoids

R R-trivial monoids

Nil Nilpotent semigroups

J1 Semilattices

BG Block groups

V ∗W Wreath product

V mOW Malcev product

Other Symbols

R,C real, complex numbers

supp(ρ) Support of ρ

Tr(ρ) Trace of ρ

S(ρ) Von Neumann Entropy of ρ

H(p), H(X) Shannon entropy

≡L Syntactic congruence

M(L) Syntactic monoid

� Division (of monoids)

J , H, R, L Green’s relations
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