
Linear Circuits, Two-Variable Logic and Weakly

Blocked Monoids

Christoph Behle, Andreas Krebs, and Mark Mercer

WSI - University of Tuebingen, Sand 13, 72076 Tuebingen, Germany

Abstract. Following recent works connecting two-variable logic to circuits
and monoids, we establish, for numerical predicate sets P satisfying a certain
closure property, a one-to-one correspondence between FO[<, P]-uniform
linear circuits, two-variable formulas with P predicates, and weak block
products of monoids. In particular, we consider the case of linear TC0, ma-
jority quantifiers, and finitely typed monoids. This correspondence will hold
for any numerical predicate set which is FO[<]-closed and whose predicates
do not depend on the input length.

1 Introduction

The computational power of boolean circuits are of great interest as they are among
the most powerful classes of computation devices for which we can prove nontrivial
lower bounds [7]. To understand the power granted by nonuniformity in this setting,
we often consider circuit families which can be generated under bounded resources.

In the case of small depth circuits, we are particularly interested in circuit fam-
ilies whose structure can be described in terms of some restricted class of logical
formulae (Barrington, Immerman, and Straubing [2]). Such circuit families can of-
ten be characterized in terms of logical formulas. For instance, the languages recog-
nized by FO[+, ∗]-uniform AC0 circuits are exactly those which are expressible by
FO[+, ∗] formulas. Likewise ACC0 and FO + MOD[+, ∗] formulas correspond to
ACC0circuits, and FO +MAJ [+, ∗] formulas correspond to TC0. This establishes
a strong connection between circuit classes and logical formulas.

The class of languages recognized by logical formula can be also be characterized
in terms of algebra. For instance, the class of languages recognized by FO[<] formula
corresponds exactly to the class of languages recognized by star-free languages,
which are exactly those which are recognized via morphisms to finite aperiodic
monoids, or equivalently, block products of U1 (list some more relevant logic to
algebra connections). This gives us a three-fold connection between circuits, logic
and algebra.

In the case of AC0 and ACC0, restricting to linear size corresponds in logic to a
restriction to using only two variables. This was shown by Lautemann et al. [9], and
corresponds in algebra to weakly-blocked monoids. In [21] Therién and Wilke gave
for first order formulas over two variables with the order predicate an algebraic
characterization as the variety DA. By an result of Straubing and Therién [20]
this variety, and thus FO2[<], can be characterized as weakly blocked monoids of
U1. Analogously, FO + MOD2[<] was shown in [19] to correspond to the variety
DO � Gsol, which is the closure of DA under weak block products of abelian
groups.

The notion of finitely typed monoids was introduced in [8] to obtain an algebraic
characterization for TC0 = L(MAJ [<,Sq]) in terms of finitely typed monoids. It is
clear that general numerical predicates, as well as linear TC0, need the use of infinite
monoids. In this paper, we show that types can be used to algebraically characterize
logical formulas for many types predicate sets in a uniform way. Second, we apply

these results to give matching logical and algebraic characterizations to a broad
class of uniformity conditions for linear TC0, which include the FO[<]-closure of
the predicate sets {<}, {<,+}, and {<, arb}.

In particular we show, subject to a closure property of P, that the following prop-
erties of a language L are equivalent: (1) that it is recognized by a FO[<,P]-uniform
family of TC0 circuits of linear size and linear fan-in, (2) that it can be described

by a FO +MÂJ2[<,P] formula, and (3) that it is recognized by a restricted type
of morphism into a particular type of finitely typed group, constructed from weak
block products of simpler groups. Recent results suggest that this characterizations
can be used to prove lower bounds on linear sized circuits [5].

The remainder of the paper is structured as follows. In Sections 2 we review
circuit and logic and in Section 3 give the algebra definitions that we will require
in the exposition. In Section 4 we state the main result of this paper, and in the
remaining sections we prove threewe review the circuit, logic, inclusions that give
us the result.

2 Definitions

2.1 Logic

Following the conventions of Straubing’s book [17], we express words w ∈ Σ∗ of
length n as structures over the universe [n] in the following way. For each σ ∈ Σ we
have a unary relation Qσ such that Qσ(x) is true when the value of w at the position
x is σ. A formula φ over a set of free variables V is interpreted over V-structures,
which are strings w = (w1,V1)(w2,V2) . . . (wn,Vn) over Σ × 2V , where the Vis are
disjoint and

⋃
i Vi = V . We define Σ∗ ⊗V to be the set of all V-structures over Σ∗,

while we use (Σ × 2V)∗ to denote the set of arbitrary strings over Σ × 2V .
A predicate is called numerical if its truth value does not depend on the input.

(See Definition 2.2) Let P be a set of numerical predicates. A first-order formula
over V is a first order formula built from the atomic formulas {Qσ(x)}∪{P | P ∈ P}
and free variables V .

Let Lφ,V be the set of all V-structures modelling φ. Then for any first-order
sentence ψ we can we can associate a language Lψ = Lψ,∅.

There are several cases in the literature where a new quantifier has been define
to obtain a correspondence between logic and algebra. For example, Mod x φ(x) [18]
has been used to connect FO+MOD formulas to ACC0 circuits. Likewise, TC0 was
shown to correspond to logical formulas using the majority quantifier Maj xφ(x),
which is true iff for more than half of the positions of x the formula φ(x) evaluates
to true. This construction requires that we can use the logic to simulate counting
quantifiers ∃=yxφ(x) [10], which are true iff iff there are y many positions for x
where φ(x) is true. But since a counting quantifier is defined with two variables,
one has difficulties to apply this result in the case of two-variable logic. This leads
to the following definition, which is equivalent in power to counting quantifiers and
thus majority quantifiers if the number of variables is not restricted, but gives the
right expressibility in the case of two variables to capture linear TC0.

Definition 1 (Extended Majority Quantifier). Let φ1(x), . . . , φc(x) be formu-
las with one free variable. Then Maj x 〈φ1(x), . . . , φc(x)〉 is a formula. We de-
fine the semantics so that the formula is true if wx=i |= φj for the majority of
(i, j) ∈ [n] × [c]. In other words,

w |= Maj x 〈φ1, . . . , φc〉 ⇔ 0 <

n∑

i=1

c∑

j=1

{
1 if wx=i |= φj

−1 otherwise

In the case of c = 1 we have the old definition of the majority quantifier.

Definition 2. FO+MÂJ2[<,P] is the class of two-variable logical sentences over
words which are constructed from atomic formulas, the order predicate, numerical
predicates from the set P, and the extended majority quantifier.

2.2 Numerical Predicates

A c-ary predicate P is called numerical if the truth value of P (x1, . . . , xc) depends
only on the the numeric value of x1, . . . , xc and the length of the input word. An
assignment to a c-ary predicate can be expressed as a V-structure over a unary
alphabet with V = {x1, . . . , xc}. A predicate is said to be expressible in logic Q[P]
if the corresponding V-structures are expressible in first order with quantifiers Q
and predicates P. We can naturally represent such predicates as subsets of N

c+1.
For a predicate P we have the subset P = {(i1, . . . , ic, n) | anx1=i1,...,xc=ic

|= P}.

Definition 3 (Shifting Predicates). A numerical c-ary predicate P is a shift
of a numerical predicate P ′, if there exists integers v1, . . . , vc+1 such that P =
{(i1, . . . , ic, n) | (i1 + v1, . . . , ic + vc, n+ vc+1) ∈ P ′}.

Now we define the closure properties of predicates we need in this paper. For
a set P of numerical predicates, we say that a numerical predicate P is FO[<]-
constructible from P if P can be expressed by a FO[<,P] formula.

Definition 4. We denote by P the smallest set of predicates that contains P and
is closed under FO[<]-constructions and shifting.

In the case of {<}, {<,+}, {<,+, ∗} we have that {<}, {<,+}, {<,+, ∗} are
the FO[<] closure of these predicate sets, i.e. the shifting closure does not introduce
new predicates. Shifting may, in general, add extra predicates for predicates that
depend on the length of the word.

2.3 Circuits

In this paper we consider circuits which compute functions f : Σn → {0, 1}. Our
circuits will consist of majority gates and input query gates. A majority gate is true
when more than half of the inputs are true and an Inpσ(i) query gate will output
true when the ith letter of the input is σ.

A family {Cn}n∈N of such circuits can be said to recognize a language in the usual
way. The complexity class TC0 consists of those languages recognized by families
of threshold circuits of constant depth and polynomial size. We define LTC0 to be
the class of languages recognized by TC0 circuit families of linear size and linear
fan-in.

We consider the class of LTC0 circuits with a uniformity condition that is ex-
pressed in terms of first order formulas over words. As in [6], we need the following
definition in order to construct a uniformity language that can be accessed by FO[<]
formulas: For v = (v1, . . . , vc) ∈ [n]c, the unary shuffled encoding 〈v1, . . . , vc〉 of v
is the word w of length n over alphabet {α, β}c defined by πj(wi) = α⇔ vj ≤ i.

Definition 5 (Uniformity language). Let C = {Cn} be an LTC0 circuit family.
Fix c ∈ N, a labeling of the gates of each Cn with tuples (x1, x2) ∈ [n] × [c], and a
unique identifier from [|Σ|+1] for each possible type of gate (i.e. Inpα or majority).
Additionally, we require (1, 1) to be the output gate of the circuit. Then a uniformity
language of C is the set of all shuffled encodings 〈x1, x2, y1, y2, t〉 such that if t
denotes majority gate, then the gate (x1, x2) is a majority gate and has gate (y1, y2)
as an input gate, or if t denotes an Inpσ gate, then (x1, x2) is an Inpσ(y1) query
gate (y2 is arbitrary).

Using the definition of an uniformity language we can easily define uniform circuits
for our setting.

Definition 6 (Uniform LTC0). FO[<,P]-uniform LTC0is the class of languages
recognizable by a family of LTC0circuits with a uniformity language expressible in
FO[<,P].

3 Finitely Typed Groups

In this section we recall the definition of finitely typed groups. The motivation for
finitely typed groups arises from the fact that the syntactic monoid of the majority
function is infinite, yet the majority gates have a finite output. The typed groups
allows us to model majority gates as morphisms in a meaningful way.

Let T be a group. A type of T is a collection of disjoint subsets T = {Ti | i ∈ I}
for finite I . A finitely typed group is a group T equipped with a type T. We call the
elements of the boolean closure of T the extended types of T . If the type set T of T
is understood we often simply write T instead of (T,T). Note that a finite monoid T
can be regarded as a finitely typed monoid equipped with the type T = {{t} | t ∈ T}.

We define the direct product (S,S)× (T,T) of finitely typed monoids (S,S) and
(T,T) as the usual Cartesian product equipped with S×T = {S ×T | S ∈ S, T ∈
T}.

In the following we extend the notion of block products to finitely typed groups.
Let (S,S), (T,T) be finitely typed monoids. Recall that the ordinary block product
of S with T is defined as the bilateral semidirect product ST×T ∗ ∗ T of ST×T , the
set of all functions from T × T to S, with T , where the right (resp. left) action
of T on ST×T is given by (f · n) (t1, t2) = f(t1, t t2)(t · f) (t1, t2) = f(t1t, t2),
t, t1, t2 ∈ T, f ∈ ST×T . Note that this set may be uncountable in the case that S
and T are infinite. As in [8], a discrete version of the block product is defined. We
begin by defining a set of qualified functions:

Definition 7 (Type respecting functions). A function f : (T,T)× (T,T) → S,
where S is any set, is called type respecting if it has a finite image and, for each
s ∈ S, the preimage f−1(s) can be described by a finite boolean combination of
conditions of the form t1 · c1 ∈ T1, c2 · t2 ∈ T2, t1 · c3 · t2 ∈ T3 where c1, c2, c3 are
constants in T and T1, T2, T3 are types in T.

The definition of the block product is the same as in the finite case but restraining
the functions used to type respecting functions.

Definition 8 (Block product). Let (S,S), (T,T) be finitely typed monoids and
let V be the set of all type respecting functions with respect to T . The finitely typed
block product (X,X)=(S,S) � (T,T) of (S,S) with (T,T) is defined as the bilateral
semidirect product V ∗ ∗ T of V with T (with respect to the actions given above).
The type set X of X consists of all types Ŝ = {(f, n) ∈ X | f(eN , eN) ∈ S}, where
S ∈ S. We also write π1X , with X ∈ X, for the type S ∈ S, such that Ŝ = X .

Note that for finite M and M ′ equipped with the type sets as above, every
function f : M ×M → M ′ will be type respecting. Thus we have the ordinary
definition of block product as a special case.

As usual we write the operation in V additively to provide a more readable
notation. Note that this does not imply that V is commutative. By definition of the
bilateral semidirect product we have:

(∗) (f1,m1) . . . (fn,mn) = (

n∑

i=1

m1 . . .mi−1 · fi ·mi+1 . . .mn,m1 . . .mn).

The neutral element of (S,S) � (T,T) is (e, e) where e is the function mapping all
elements to the neutral element of S.

We also have the equivalence:

(f1,m1) . . . (fn,mn) ∈ X ⇔
n∑

i=1

fi(m1 . . .mi−1,mi+1 . . .mn) ∈ π1X ,

where π1X is the base type as in the Definition 8 above.

Definition 9. We say that a finitely typed monoid (T,T) recognizes the language
L ⊆ Σ∗ if there is a morphism h : Σ∗ → T and a subset {T1, . . . , Tk} ⊆ T of types

of T such that L = h−1(
⋃k
i=1 Ti).

Now we turn our attention to how we can characterize predicates via morphisms.

Theorem 1. For each binary numerical predicate P (x, y) there exists a finitely
typed group (T,T) and a distinguished element m ∈ T with the following properties:

1. there is a morphism h : ({a}×2{x,y})∗ → T with h((a, ∅)) = m and an extended
type T such that anx=i,y=j |= P (x, y) if and only if h(anx=i,y=j) ∈ T .

2. for all extended types T ∈ T and all morphisms h : ({a} × 2{x,y})∗ → T with
h((a, ∅)) = m the predicate corresponding to the language h−1(T)∩{a}∗⊗{x, y}
is in {P}.

We call m the incremental element.

If P is a set of predicate that are unary and binary the previous lemma is
also true if we transform an unary predicate P (x) into a binary predicate P ′(x, x).
In following we always assume all predicates in the two-variable logic are binary
predicates.

Definition 10 (Predicate group). The tuple of a finitely typed group (T,T) and
incremental element m is called a predicate group of P if it satisfies the conditions
of Theorem 1.

In the following we denote by (TP ,TP) and mP the predicate group and re-
stricted element for the predicate P . We define now the algebraic variety which
corresponds to FO +MÂJ2[<,P].

Definition 11. Let P be a set of predicates. We let WZ(P) be the smallest variety

closed under weak block products with ×c

k=1((Z,Z
+) � (×c′k

l=1(Tkl,Tkl))) for
c, c′1, . . . , c

′
c ∈ N , e.g.

G ∈ WZ(P) =⇒ G � (
c

×
k=1

((Z,Z+) �

c′k

×
l=1

(Tkl,Tkl))) ∈ WZ(P).

We now introduce restricted elements to ensure that the predicate groups that
appear in the structure of groups of our variety cannot be “abused”. If we do not
restrict the class of allowable morphisms, then the typed monoids above can simulate
counting quantifiers by using the predicate group to simulate an quantor which
should not be possible with two-variable majority logic. To assure the predicate
groups are used in the designated way we start with the following definition:

Definition 12 (Restricted Element). We define inductively the set of restricted
elements:

1. All elements of (Z,Z+) are restricted.

2. For each predicate group (TP ,TP) only the incremental element mP is restricted.
3. An element x ∈ A×B is restricted iff π1(x) and π2(x) are restricted.
4. An element x ∈ A � B is restricted iff all elements in the image of π1(x) are

restricted and π2(x) is restricted.

Definition 13. A morphism h : Σ∗ → G is restricted if all elements of h(Σ) are
restricted.

The following definition yields the characterization of the languages that we deal
with in this paper.

Definition 14. For a variety V, H−1
R (V) is the set of all languages that are rec-

ognized by a some (T,T) ∈ V with a restricted morphism.

4 Results

The following theorem translates the well known connections between two-variable
logic, weak blocked monoids, and linear size circuits [21, 19, 9] to the case of majority.
By establishing a similar uniformity result as in [6], we can show how the predicates
used in logic have their counterparts in algebra and circuits in terms of uniformity.

Theorem 2. Let P be a set of predicates closed under FO[<] constructions and
shifting. The following are equivalent:

1. L ∈ FO[<,P]-uniform LTC0,

2. L ∈ L(FO +MÂJ2[<,P]),
3. L ∈ H−1

R (WZ(P)).

Proof. First we show that we can express a circuit family by a logic formula (Theo-
rem 4). Then we show that a language in this logic can by recognized by a restricted
morphism (Theorem 5). Finally, we show how to construct a circuit family for a
restricted morphism (Theorem 6).

It is unknown whether TC0 is a hierarchy in the depth of the circuits. The
following theorem connects the circuit depth of FO[<,P]-uniform LTC0 to the

quantifier depth of FO +MÂJ2[<,P].

Theorem 3. Let P be a set of predicates closed under FO[<] constructions and
shifting. FO[<,P]-uniform LTC0circuits form a hierarchy in the circuits depth iff

FO +MÂJ2[<,P] form a hierarchy in the quantifier depth.

Proof. The proof of Theorem 4 translates a circuit of depth d into a formula of
depth d+ c for a constant c. Similarly the proof for Theorem 5 translates a formula
of quantifier depth d in a homomorphism into a group of weak block depth d + c.
The construction of a circuit in Theorem 6 from a group of weak block depth d

yields a circuit of depth c · d.

5 Circuits to Logic

In this section we show how we can transform a circuit into a logical formula. We
proceed inductively, starting with the input gates.

The following lemma helps us to express the uniformity:

Lemma 1. Let φ be a formula in FO[<,P] such that Lφ is the uniformity language
of a family of LTC0 circuits. Then the following predicates are in P:

1. for all x2, y2 ∈ [c] the binary predicate Cx2,y2(x1, y1) which is true iff the gate
labeled (x1, x2) is connected to (y1, y2) in C;

2. for all σ ∈ Σ, x2 ∈ [c] the binary predicate Inpσ,x2(x1, y1) which is true iff the
gate labeled (x1, x2) is an input gate that checks if there is an σ at position y1

in the input; and
3. for all x2 ∈ [c] the unary predicate Mx2(x1) which is true iff the gate labeled

(x1, x2) is a majority gate.

Now we show that, given a subset of positions by a formula φ(x), we can express
if a formula ψ(x) is true for the majority of these positions.

Lemma 2 (Relativization). Let φ(x) and ψ(x) be formulas in FO+MÂJ2[<,P]

with one free variable. Then there exists a sentence in FO + MÂJ2[<,P] that is
true iff

|{i | wx=i |= φ(x) ∧ wx=i |= ψ(x)}| > |{i | wx=i |= φ(x) ∧ ¬wx=i |= ψ(x)}|.

Proof. The formula Maj x 〈φ(x)∧ψ(x),¬φ(x)∨ψ(x)〉 will do. If φ(x) is false, both
formula add to 0 in the evaluation of the extended majority quantifier. If φ(x) is
true, the contribution of the two formulas to the sum will be +2 or −2 depending
on the value of ψ(x).

Theorem 4. If L is recognized by a FO[<,P]-uniform family of LTC0-circuits,

then L can be expressed as a formula in FO +MÂJ2[<,P].

Proof. The construction we use is standard (see e.g. [17, 6]) but must be modified
to work with two variables. Let (Cn)n∈N be the LTC0-circuit family recognizing L.
By the assumption there is an FO[<,P] formula φ that recognizes the uniformity
language of (Cn)n∈N. As shown above we can assume that we have the predicates
Cx2,y2(x1, y1), Mx2(x1), and Inpσ,x2(x1, y1) in P.

We now recursively construct a sentence ψ in FO+MÂJ2[<,P] which describes

the same language as (Cn)n∈N. We construct formulas ψ
(d)
x2 such that ψ

(d)
x2 (x1) is

true iff gate (x1, x2) outputs true and has depth at most d. For d = 0, (x1, x2)
outputs true iff it is an input gate which outputs true, so:

ψ(0)
x2

(x1) =
∨

σ∈Σ

∃ y1 (Inpσ,x2(x1, y1) ∧Qσ(y1)).

Now let G
(d)
x2 (x1) =

Maj y1 〈 Cx2,1(x1, y1) ∧ ψ
(d−1)
1 (y1),¬Cx2,1(x1, y1) ∨ ψ

(d−1)
1 (y1), . . . ,

Cx2,c(x1, y1) ∧ ψ
(d−1)
c (y1),¬Cx2,c(x1, y1) ∨ ψ

(d−1)
c (y1) 〉.

This is the essential step. Observe that G
(d)
x2 (x1) models a majority gate at depth d.

By Lemma 2 it evaluates to true iff the number of true predecessors is larger than

the number of false predecessors. With the help of the formula G
(d)
x2 (x1), we define:

psi
(d)
x2 (x1) = Mx2(x1) ∧G

(d)
x2 (x1) ∨ ψ

(0)
x2 (x1). Finally, we define ψ to be the value of

the gate labeled (1, 1), thus ψ = ψ
(d)
1 (1) where d is the depth of the circuit family.

6 Logic to Algebra

We will show that we can replace a logic formula over two variables by applying the
weak block product principle a finite number of times. This extends the construction
of [20].

Definition 15 (weak block product principle). Let α : Σ∗ → (T,T) be a
morphism, Γ be a finite alphabet and r : T × Σ × T → Γ be a function such that
rσ(t1, t2) = r(t1, σ, t2) is a type respecting function for all σ ∈ Σ. Then we define
a length-preserving mapping τr,α : Σ∗ → Γ ∗ by τr,α(v1 · · · vn) = w1 · · ·wn, where
wi = r(α(v1 · · · vi−1), vi, α(vi+1 · · · vn)). If α is a restricted morphism, then we say
τr,α is restricted.

As in the usual case [20], τr,α is not a morphism. Without loss of generality
we can assume an innermost formula of quantifier depth one to always be of the
form Maj x 〈Qσi

(x) ∧ Pi(x, y)〉i=1,...,c. First predicates using only y can be moved
out of the scope of the quantifier. Further the formulas inside the quantifier can be
assumed to have the form Qσi

(x) ∧ Pi(x, y) since the predicate set is closed under
boolean combinations.

In the next lemma we show that we can replace such a formula by a Q-predicate
over an enhanced alphabet.

Lemma 3. Let φ be a formula in FO + MÂJ2[<,P] with an innermost formula
ψ of quantifier depth one over the alphabet Σ, and Γ = Σ × {0, 1}. We let φ′

be the formula over Γ , which is φ if we replace Qσ(y) by Q(σ,0)(y) ∨ Q(σ,1)(y)
and ψ(y) by

∨
σ∈Σ Q(σ,1)(y). Then there exists a morphism α : Σ∗ → (T,T) =

(Z,Z+) � ×c

l=1(TPl
,TPl

) and type respecting function r : T × Σ × T → Γ such
that τ−1

r,α(Lφ′) = Lφ.

Lemma 4. Let φ be a formula in FO + MÂJ2[<,P] of quantifier depth d > 1
over the alphabet Σ. Then there exists a finite alphabet Γ and a restricted mapping
τr,α : Σ∗ → Γ ∗ and a formula φ′ in FO + MÂJ2[<,P] of quantifier depth d − 1
such that Lφ = τ−1

r,α(L′
φ).

Lemma 5. Let τr,α be a restricted mapping with α : Σ∗ → (T,T) and let L ⊆ Γ ∗

be a language recognized by a morphism to (S,S). Then τ−1
r,α(L) is recognized by a

morphism to (S,S) � (T,T).

Theorem 5. For each L ∈ FO + MÂJ2[<,P] there is a (T,T) in WZ(P) and a
restricted morphism h such that L = h−1(T) for a T ∈ T.

Proof. Let φ be a FO+MÂJ2[<,P] formula of depth d with L = Lφ. By applying
Lemma 4 inductively we get a chain of mappings:

Σ∗ τr1,α1−−−−→ Γ ∗
1

τr2,α2−−−−→ Γ ∗
2 −· · ·→ Γ ∗

d−2

τrd−1,αd−1
−−−−→ Γ ∗

d−1

and a FO +MÂJ2[<,P] formula φ(d−1) of depth one such that
L = τ−1

r1,α1
◦ · · · ◦ τ−1

rd−1,αd−1
(Lφ(d−1)).

The remaining formula φ′ is of depth 1 and has no free variable
φ′ = Maj x 〈P1(x) ∧ Qσ1(x), . . . , Pc(x) ∧ Qσc

(x)〉. hence it is easy to apply the
construction of lemma 3 for the morphism α. Since we do not have a free variable y
we replace ax by axy in the construction that simulates a variable y at the position
x but is ignored by the formula φ′.

Now we have a morphism h′ and a type T such that Lφ(d−1) = h′−1(T). By
applying lemma 5 inductively to τrd−1,αd−1

up to τr1,α1 , we will get a morphism
h : Σ∗ → (···((T � Sd−1) � Sd−2) · · ·) � S1, and a type X with L = h−1(X).

7 Algebra to Circuits

In order to model a morphism by a circuit, we will first split the morphism into
mappings.

Lemma 6. Let h : Σ∗ → (S,S) � (T,T) and L = h−1(X) for some type X of
(S,S) � (T,T). Then there is a finite alphabet Γ and a map τr,α : Σ∗ → Γ ∗ with
α : Σ∗ → (T,T) and a morphism h′ : Γ ∗ → (S,S) such that τ−1

r,α(h′−1(S)) = L for
some S ∈ S. If h is restricted, then τr,α and h′ are also restricted.

So if L is recognized by restricted morphism into a group WZ(P), then there is
a finite chain of mappings τ1, . . . , τd such that L = τ−1

1 ◦· · ·◦τ−1
d (h−1(T)), where all

the morphisms map to a group of the form ×c

k=1

(
(Z,Z+) � ×c′k

l=1(TPl
,TPl

)

)
.

Lemma 7. A FO[<,P]-uniform LTC0 circuit can compute the function τr,α where

α : Σ∗ → (T,T) = ×c

k=1

(
(Z,Z+) � ×c′k

l=1(TPl
,TPl

)

)
is restricted. We require

here for each letter γ ∈ Γ the corresponding output gates to be labeled by (i, γ).

Theorem 6. Let (T,T) ∈ WZ(P) recognize L then L is in FO[<,P]-uniform
LTC0.

Proof. Let h : Σ∗ → (T,T) be a restricted morphism with L = h−1(T), where
T ∈ T. By applying lemma 6 inductively we get a chain of mappings τrk ,αk

and a
morphism h′:

Σ∗ τr1,α1−−−−→ Γ ∗
1

τr2,α2−−−−→ Γ ∗
2 −· · ·→ Γ ∗

d−2

τrd−1,αd−1
−−−−→ Γ ∗

d−1
h′

−−−−→ T ′

where T ′ = ×c

k=1

(
(Z,Z+) � ×c′k

l=1(TPl
,TPl

)

)
and there is a T ′ ∈ T′ such that

L = τ−1
r1,α1

◦ · · · ◦ τ−1
rd−1,αd−1

(h′−1(T ′)).

In order to recognize h′−1(T ′) we will construct τrd,αd
with r(t1, σ, t2) = 1 iff

t1 · t2 ∈ T , r(t1, σ, t2) = 0 otherwise and α = h. Then τrd,αd
= 1n iff w ∈ L and 0n

otherwise. Hence we can apply lemma 7 to construct a circuit with only one output
gate.

Now for each τrk,αk
we can construct a circuit as in Lemma 7, by connecting

these circuits together and also append the circuit for h′ that we just created, we
get a circuit that recognized L. To see that this circuit has a uniformity language in
FO[<,P], we label the gates (x1, x2) that belong to τrk,αk

with (x1, (k, x2)) and
the gates (x1, x2) that belong to h′ by (x1, (d, x2)). Since we now that the unifor-
mity language for the individual circuit layers is in FO[<,P], also the uniformity
language for all layers is in FO[<,P]. The interconnection between these circuits is
FO[<]-uniform since we always connect a series of output gates labeled by a tuple
(y1, (dk, y2)) where y2 is a fixed constant to an input gate (x1, (dk+1, x2)) where
x1 = y1 and x2 is a fixed constant.

8 Discussion

In this paper we extend the known connections between linear circuits, two-variable
logic, and weakly blocked algebra from the case of linear AC0 and linear ACC0 to
the case of linear TC0. This algebraic characterization can be used to prove that
the word problem over A5 (known to be complete for NC1 [1]) is not in uniform
LTC0 [5].

FO2[<] (resp. FO+MOD2[<]) was linked to weakly blocked U1 (resp. Zp) but
no connection to circuits is known. On the other hand FO2[arb] (resp.
FO + MOD2[arb]) corresponds to linear AC0 (resp. linear ACC0). We obtain
a three-way correspondence for predicate sets respecting certain closure properties.
Our proofs also hold for the case of FO2 and FO+MOD2: The group (Z,Z+), which

simulates the quantifier, can be substituted by U1, or by U1 and Zp to get results for
those cases. In this way we obtain the possibility to handle predicate sets between
the order predicate and arbitrary numerical predicates, e.g. {<,+}, {<,+, ∗}.

We want to thank Klaus-Jörn Lange and Stephanie Reifferscheid for helpful
comments.

References

1. D. A. Barrington. Bounded-width polynomial-size branching programs recognize ex-
actly those languages in NC1. J. Comp. System Sci., 38:150–164, 1989.

2. D.A. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. J.
Comp. System Sci., 41:274–306, 1990.

3. D. Barrington, N. Immerman, C. Lautemann, N. Schweickardt, and D. Thérien. The
Crane Beach Conjecture. In Proc. of the 16th IEEE Symposium On Logic in Computer
Science, pages 187–196, 2001.

4. D. Barrington. and D. Thérien. Finite Monoids and the Fine Structure of NC1. Journal
of ACM, vol. 35, no.4, 1988, 941-952.

5. C. Behle, A. Krebs, and Stephanie Reifferscheid A5 not in FO+MOD+MAJ2[reg]. To
appear. (http://www-fs.informatik.uni-tuebingen.de/publi/a5notinltc0.pdf)

6. C. Behle and K.-J. Lange. FO[<]-Uniformity. IEEE Conference on Compuatational
Complexity, 2006.

7. M. Furst, J. B. Saxe, and M. Sipser. Parity circuits and the polynomial-time hierarchy.
In Proc. 22th IEEE Symposium on Foundations of Computer Science, 260-270, 1981.

8. A. Krebs, K.-J. Lange und St. Reifferscheid. Characterizing TC0 in terms of Infinite
Groups. Proc. of the 22nd STACS 2005,LNCS 3404, pages 496-507,2005.

9. M. Koucký, C. Lautemann, S. Poloczek, and D. Thérien Circuit lower bounds
via Ehrenfeucht-Fraissé games. In Proc. 21st Conf. on Compuatational Complexity
(CCC’06). 2006

10. K.-J. Lange. Some results on majority quantifiers over words. In Proc. of the 19th
IEEE Conference on Computational Complexity, pages 123–129, 2004.

11. C. Lautemann, P. McKenzie, T. Schwentick, and H. Vollmer. The descriptive com-
plexity approach to LOGCFL. J. Comp. System Sci., 62:629–652, 2001.

12. M. Lawson. Finite Automata. Chapman & Hall/CRC, 2004.
13. J. Rhodes and B. Tilson. The Kernel of Monoid Morphisms. J. Pure Applied Alg.,

62:227–268, 1989.
14. A. Roy and H. Straubing. Definability of Languages by Generalized First-Order For-

mulas over (N,+). In Proc. of the 23rd STACS 2006, to appear.
15. M. Ruhl. Counting and addition cannot express deterministic transitive closure. In

Proc. of 14th IEEE Symposium On Logic in Computer Science, pages 326–334, 1999.
16. N. Schweikardt. On the Expressive Power of First-Order Logic with Built-In Predi-

cates. Dissertation, Universität Mainz, 2001.
17. H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser,

1994.
18. H. Straubing, D. Thérien, and T. Wilke.
19. H. Straubing, D. Thérien. Regular Languages Defined by Generalized First-Order

Formulas with a Bounded Number of Bound Variables. STACS 2001: 551-562
20. H. Straubing, D. Thérien. Weakly Iterated Block Products of Finite Monoids. LATIN

2002: 91-104
21. D. Thérien, T. Wilke. Over Words, Two Variables are as Powerful as One Quantifier

Alternation, Proc. 30th ACM Symposium on the Theory of Computing 256-263 (1998).

A Proofs

Theorem 1. For each binary numerical predicate P (x, y) there exists a finitely
typed group (T,T) and a distinguished element m ∈ T with the following properties:

1. there is a morphism h : ({a}×2{x,y})∗ → T with h((a, ∅)) = m and an extended
type T such that anx=i,y=j |= P (x, y) if and only if h(anx=i,y=j) ∈ T .

2. for all extended types T ∈ T and all morphisms h : ({a} × 2{x,y})∗ → T with
h((a, ∅)) = m the predicate corresponding to the language h−1(T)∩{a}∗⊗{x, y}
is in {P}.

We call m the incremental element.

Proof. We can associate to each binary predicate P the subset P ⊆ Z
3 where

(i, j, n) ∈ P iff anx=i,y=j |= P . We choose T = (Z3, {P ,Z\P}) � ((Z,Z+)×(Z,Z+)).
We first show the existence of an appropriate morphism. The suitable morphism h

we construct will satisfy h(a, ∅) = (f∅, (0, 0)), h(a, {x}) = (fx, (1, 0)), h(a, {y}) =
(fy, (0, 1)), h(a, {x, y}) = (fxy, (1, 0)), so the position of the variables x and y will
be encoded in the second parameter. It remains to define m and the fS functions.

In the following we use 111 and 000 to denote the constant 1 and 0 function respec-
tively. Define gx : Z

2 × Z
2 → Z by:

gx(m1,m2) =





1 if (m1,m2) = ((0, 0), (0, 0)), ((0, 1), (1, 0)),

or ((0, 0), (1, 1))

0 otherwise

Likewise define gy by inverting the role of the x and y position. Lastly we define:

f∅ = gx × gy × 111
fx = (gx + 111) × gy × 111
fy = gx × (gy + 111) × 111
fxy = (gx + 111) × (gy + 111) × 111

and set m = (f∅, (0, 0)). Consider the value of h(w) on a word w ∈ an ⊗ 2x,y.
Recalling equation (*), it is easy to check that π1(h(a

n))(e, e) = (i, j, n), where i
and j are the positions of x and y respectively.

On the other hand, let h be an arbitrary restricted morphism defined by h((a, 0)) =
m = (f, (0, 0)), h((a, {x})) = (fx,mx), h((a, {y})) = (fy,my), h((a, {x, y})) =
(fxy,mxy). The value of π1(h(a

n))(e, e) falls into a finite number cases, depending
on the position of x relative to y and the values of mx, my, and mxy. For instance,
consider π1(h(a

n
x=i,y=j)) for i < j. The sum in the equation (*) evaluates to:

(i−1) · ((0, 0)f(mx +my)) + (0, 0)fxmy + (j−i−1) · (mxfmy) +mxfy(0, 0)

Observe that mxfmy(e, e) has nonzero value if and only if mx = (1, 0) and my =
(0, 1), or vice versa. Likewise (0, 0)f(mx+my)(e, e) has a nonzero value if and only
if mx + my evaluates to (1, 0), (0, 0), (0, 1) or (1, 1). This finite set of cases can

be checked by a boolean combination of queries of {P}, and so by definition the
predicate evaluated by h is in {P}.

B Proofs for Circuits to Logic

Lemma 1 Let φ be a formula in FO[<,P] such that Lφ is the uniformity language
of a family of LTC0 circuits. Then the following predicates are in P:

1. for all x2, y2 ∈ [c] the binary predicate Cx2,y2(x1, y1) which is true iff the gate
labeled (x1, x2) is connected to (y1, y2) in C;

2. for all σ ∈ Σ, x2 ∈ [c] the binary predicate Inpσ,x2(x1, y1) which is true iff the
gate labeled (x1, x2) is an input gate that checks if there is an σ at position y1

in the input; and
3. for all x2 ∈ [c] the unary predicate Mx2(x1) which is true iff the gate labeled

(x1, x2) is a majority gate.

Proof. From φ we construct a new formula φ′(z1, . . . , z5) in the following way: take φ

and substitute every occurrence of a Q(σ1,σ2,σ3,σ4,σ5)(x) by
∧5
i=1

{
x ≤ zi, if σi = α

x > zi, if σi = β
.

From the definition of the uniformity language it follows easily that, for a word
w = 〈i1, . . . , i5〉 ∈ Σn:

anz1=i1,...,z5=i5 |= φ′(z1, . . . , z5) iff w |= φ.

Now for all constants x2, y2, σ, we can express Cx2,y2(x1, x2), Inpσ,x2(x1, y1),
and Mx2(x1) as:

Cx2,y2(x1, y1) = ∃t φ′(x1, x2, y1, y2, t),

Inpσ,x2(x1, y1) = ∃y′2 φ′(x1, x2, y1, y
′
2, Inpσ),

Mx2(x1) = ∃y′1∃y
′
2 φ′(x1, x2, y

′
1, y

′
2,Maj).

These formulae are in the FO[<]-closure of P.

C Proofs for Logic to Algebra

Lemma 3.Let φ be a formula in FO + MÂJ2[<,P] with an innermost formula
ψ of quantifier depth one over the alphabet Σ, and Γ = Σ × {0, 1}. We let φ′

be the formula over Γ , which is φ if we replace Qσ(y) by Q(σ,0)(y) ∨ Q(σ,1)(y)
and ψ(y) by

∨
σ∈Σ Q(σ,1)(y). Then there exists a morphism α : Σ∗ → (T,T) =

(Z,Z+) � ×c

l=1(TPl
,TPl

) and type respecting function r : T × Σ × T → Γ such
that τ−1

r,α(Lφ′) = Lφ.

Proof. Assume ψ = Maj x〈Qσl
(x) ∧ Pl(x, y)〉l=1,...,c. By definition of (TPl

,TPl
) we

know that for each predicate Pl we have a type morphism hl and a type Pl such
that LPl

= h−1
l (Pl). We let

a = (h1((a, ∅)), . . . , hc((a, ∅))) ∈
c

×
l=1

(TPl
,TPl

),

ax = (h1((a, x)), . . . , hc((a, x))) ∈
c

×
l=1

(TPl
,TPl

),

and ay and axy are defined likewise. We define α(σ) = (gσ, a), where

gσ, g̃σ :

(
c

×
l=1

(TPl
,TPl

)

)
×

(
c

×
l=1

(TPl
,TPl

)

)
→ Z

are defined as

gσ(m1,m2) = |{l | σ = σl ∧ πl(m1)πl(ax)πl(m2) ∈ Pl}|,

g̃σ(m1,m2) = |{l | σ = σl ∧ πl(m1)πl(axy)πl(m2) ∈ Pl}|.

Also we define r : T × Σ × T → Γ by r(t1, σ, t2) = (σ, 1) iff t1(g̃σ , ay)t2 ∈ Z
+ and

r(t1, σ, t2) = (σ, 0) otherwise.
We show that this definition of τr,α ensures that τ−1

r,α(Lφ′) = Lφ. Let w ∈ Σ∗,
it suffices to show that for all j = 1, . . . , n we have wy=j |= ψ iff τr,α has the letter
(wj , 1) at the position j. This depends on the value of

r(α(w1 . . . wj−1), wj , α(wj+1 . . . wn)).

By the definition of r, this value is (wj , 1) iff

(gw1 , a) . . . (gwj−1 , a)(g̃wj
, ay)(gwj+1 , a) . . . (gwn

, a) ∈ Ẑ
+.

By a small computation we get that this is equal to:

j−1∑

i=1

gwi
(ai−1, aj−i−1aya

n−j) + g̃wj
(aj−1, an−j)

+

n∑

i=j+1

gwi
(aj−1aya

i−j−1, an−i) > 0

The value of gwi
(ai−1, aj−i−1aya

n−j) is the number of l’s such that

πl(a
i−1axa

j−i−1aya
n−j) ∈ Pl

and wi = σl. This is the case if wx=i,y=j |= Pl ∧ Qσl
(x). Hence, the value of

gwi
(ai−1, aj−i−1aya

n−j) is the number of l such that wx=i,y=j |= Pl ∧Qσl
(x).

Similarly we can show this for g̃wj
(aj−1, an−j) and gwi

(aj−1aya
i−j−1, an−i),

hence the sum is positive iff for the majority of the tuples (i, l) we have wx=i,y=j |=
Pl∧Qσl

(x), but this is iff ψy=j |= w. So τr,α(w) has (wj , 1) at position j iff ψy=j |= w.
It is now easy to see that the claim is fullfilled by the choice of τr,α.

Lemma 4.Let φ be a formula in FO + MÂJ2[<,P] of quantifier depth d > 1
over the alphabet Σ. Then there exists a finite alphabet Γ and a restricted mapping
τr,α : Σ∗ → Γ ∗ and a formula φ′ in FO + MÂJ2[<,P] of quantifier depth d − 1
such that Lφ = τ−1

r,α(L′
φ).

Proof. The proof is similar to that of the previous lemma. Let {ψ1, . . . , ψc} be
the set of innermost formulas of quantifier depth one that appear inside another
quantifier, and Γ = Σ×{0, 1}c. The idea is to apply the previous lemma in parallel
for all ψk. Let τrk ,αk

be the mapping of the previous lemma for the formula ψk,

where αk : Σ∗ → (Z,Z+) � ×c′k

l=1(TPkl
,TPkl

). We define a mapping τr,α, where

α : Σ∗ →
c

×
k=1

(
(Z,Z+) �

c′k

×
l=1

(TPkl
,TPkl

)
)

α(σ) = (α1(σ), . . . , αc(σ))

and the function

r(t1, σ, t2) = (σ, π2(r1(π1(t1), σ, π1(t2))), . . . , π2(rc(πc(t1), σ, πc(t2))))

So the mapping τr,α adds a bit vector to each letter of the input word, where
the bits are 1 if the corresponding formula ψk is true at this position.

If we adopt all Q of φ to the alphabet Γ and replace all formulas ψk by Q-
predicates as in the previous lemma, then the resulting formula φ′ has quantifier
depth one less that φ and τ−1

r,α(Lφ′) = Lφ.

Lemma 5.Let τr,α be a restricted mapping with α : Σ∗ → (T,T) and let L ⊆ Γ ∗

be a language recognized by a morphism to (S,S). Then τ−1
r,α(L) is recognized by a

morphism to (S,S) � (T,T).

Proof. Let h : Γ ∗ → S be a morphism with L = h−1(S), and we define fσ : T×T →
S by fσ(t1, t2) = h(r(t1, σ, t2)). We define h′ : Σ∗ → S � T by h′(σ) = (fσ, α(σ)).
We claim τ−1

r,α(h−1(S)) = h′−1(Ŝ). For arbitrary w ∈ Σ∗, we have:
Pick w ∈ Σ∗.

w ∈ τ−1
r,α(h−1(S)) ⇐⇒ h(τr,α(w)) ∈ S

⇐⇒
n∏

i=1

h(r(α(w1 . . . wi−1), wi, α(wi+1 . . . wn))) ∈ Ŝ

⇐⇒
n∏

i=1

fwi
(α(w1 . . . wi−1), α(wi+1 . . . wn))) ∈ Ŝ

⇐⇒
n∏

i=1

fwi
(α(w1) · · ·α(wi−1), α(wi+1) · · ·α(wn))) ∈ Ŝ

⇐⇒ h(w) ∈ Ŝ .

D Algebra to Circuits

Lemma 6.Let h : Σ∗ → (S,S) � (T,T) and L = h−1(X) for some type X of
(S,S) � (T,T). Then there is a finite alphabet Γ and a map τr,α : Σ∗ → Γ ∗ with
α : Σ∗ → (T,T) and a morphism h′ : Γ ∗ → (S,S) such that τ−1

r,α(h′−1(S)) = L for
some S ∈ S. If h is restricted, then τr,α and h′ are also restricted.

Proof. Let (fσ ,mσ) = h(σ). Since all fσ have a finite image we can define Γ =⋃
σ∈Σ im fσ, note that we treat the elements in the image of fσ simply as symbols

and not as group elements here. We let r(t1, σ, t2) = fσ(t1, t2) and α(σ) = mσ .
Here the morphism α is restricted if h was restricted. Let w ∈ Σ∗, then w ∈ L iff
h(w) ∈ X which reduces to evaluating

∏n

i=1 fwi
(m1 . . .mi−1,mi+1 . . . wn) ∈ π1X ,

but by the definition of r and α, the i-th factor of this product is the i-th letter
of τr,α. Hence we simply define h′ : Γ ∗ → S, which maps a symbol of Γ to the
corresponding group element of S. Then we pick S = π1X .

Lemma 7.A FO[<,P]-uniform LTC0 circuit can compute the function τr,α where

α : Σ∗ → (T,T) = ×c

k=1

(
(Z,Z+) � ×c′k

l=1(TPl
,TPl

)

)
is restricted. We require

here for each letter γ ∈ Γ the corresponding output gates to be labeled by (i, γ).

Proof. The idea is to construct a layer of circuits with gates for each element
(gw1 . . . gwi−1 , rc, gwi+1 . . . gwn

), each letter σ ∈ Σ, and every possible value 1 ≤
i ≤ n. The input of these gates is wired to the input gates according to the predi-
cates computed n the predicate groups. Then the output gates are just a boolean
combination of those gates.

We first split the function r into rσ : (T,T) × (T,T) → Γ , where rσ(t1, t2) =
r(t1, σ, t2). The idea is to create gates for each position j = 1, . . . , n and all s ∈ Σ

and all γ ∈ Γ that are true iff wj = σ and rs(α(w1 . . . wj−1), α(wj+1 . . . wn)) = t.
We assume for the moment that c = 1.

So fix a position j and assume wj = σ. We create a constant size circuit that
checks if the value of rσ is the letter γ ∈ Γ . The function rσ is type respecting, thus
the statement rσ(t1, t2) = γ can be reformulated as a finite boolean combination

of conditions of the forms: (V1) t1 · tr ∈ T , (V2) tr · t2 ∈ T , (V3) t1 · tr · t2 ∈

T , where t1, t2 ∈ (Z,Z+) � ×c′k

l=1(TPl
,TPl

) are the arguments of rσ , and tr ∈

(Z,Z+) � ×c′k

l=1(TPl
,TPl

) is a constant of rσ . Since we can easily compute a finite
boolean closure, it suffices to show we can construct gates that are true if one of
the conditions is true.

Assume we want to check a condition t1 · tr · t2 ∈ T . The other cases can be
proven similar. By plugging in t1, t2 we get h(w1 . . . wj−1)·tr ·h(wj+1 . . . wn) ∈ T , let
h(σ) = (gσ, a) (we know that h is restricted hence a is the incremental element and

does not depend on σ) and (gy, ay) := tr, then we get
∏j−1
i=1 (gwi

, a) · (gy, ay) ·∏n

i=j+1(gwi
, a) ∈ T . By computation one gets

∑
i=1 gwi

(ai−1, aj−i−1aya
n−j) +

gy(a
j−1, an−j) +

∑n

i=j+1 gwi
(aj−1aya

i−j−1, an−i) ∈ π1T . This sum is computed

in the finitely typed group (Z,Z+), hence we need to check if the sum is positive or
not. Let m the maximum absolute value in the image of any gσ′ for σ′ ∈ Σ and gy.
We can compute the sum by a weighted majority gate, where the weight is the value
of the summand plus m. Weighted majority gates with integer weights in the range
0 to 2m can be simulated my a majority gate with multiple wires corresponding to
the weight to the inputs, and additional true or false inputs for shifts.

So for a given value of i and a letter σ′ ∈ Σ we have an input gate that is
true if wi = σ′. It remains to show that we can wire the input gates correctly to
our input gate. For each value v in the finite image of gσ′ we will find a predi-
cate P (i, j) that is true iff gσ′(ai−1, aj−i−1aya

n−j) = v or gy(a
j−1, an−j) = v or

gσ′(aj−1aya
i−j−1, an−i) = v. By the definition of the block product gσ′ is type re-

specting since the value of gσ′(m1,m2) depends on a finite number of conditions of
the forms: (V1) m1 · ax ∈ T ′, (V2) ax ·m2 ∈ T ′, (V3) m1 · ax ·m2 ∈ T ′. The com-
putation of these product is in a predicate group and since compute only products
of the kind ai−1axa

j−i−1aya
n−j where we the factors are the incremental element

a except for the position i and j by theorem 1 there is a predicate P for each type
P that is true iff this product evaluates to an element in P .

Hence we created a FO[<, P̄]-uniform LTC0 circuit in the case c = 1. For the
case c > 1 we split T in the c many factors, and create a circuit for each factor.
By the definition of the direct product, a boolean combination of the output gates
of these circuits creates the correct value. Since we need only the i-th output gates
of these circuits to compute the i-th output this boolean combination is finite and
results in a finite circuit for each i.

