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Abstract

In sequential decision making under uncertainty, as in
many other modeling endeavors, researchers observe a dy-
namical system and collect data measuring its behavior
over time. These data are often used to build models that ex-
plain relationships between the measured variables, and are
eventually used for planning and control purposes. How-
ever, these measurements cannot always be exact, systems
can change over time, and discovering these facts or fixing
these problems is not always feasible. Therefore it is im-
portant to formally describe the degree to which the model
can tolerate noise, in order to keep near optimal behavior.
The problem of finding tolerance bounds has been the fo-
cus of many studies for Markov Decision Processes (MDPs)
due to their usefulness in practical applications. In this pa-
per, we consider Partially Observable MDPs (POMDPs),
which is a more realistic extension of MDPs with a wider
scope of applications. We address two types of perturba-
tions in POMDP model parameters, namely additive and
multiplicative, and provide theoretical bounds for the im-
pact of these changes in the value function. Experimental
results are provided to illustrate our POMDP perturbation
analysis in practice.

1 Introduction

Partially Observable MDPs (POMDPs) [4], as a natu-
ral extension of MDPs for sequential decision making and
planning under uncertainty are becoming popular in differ-
ent application domains. For instance in the medical field,
researchers have proposed these models to support disease
treatment decisions [7, 13, 12], drug infusion [11], epidemic
control [17], and biosurveillance decision making [9]. The
acceptance of these models has been limited in practice,
however, due to factors such as the use of qualitative re-
search to build decision models, the uncertainty involved
in fixing some modeling assumptions, and the computa-
tional inefficiency of solution methods. Increasing the ac-
ceptance of these models will require addressing several
issues including: developing an improved quantitative un-

derstanding of the domains being modeled in order to de-
crease uncertainties(e.g. progression of a disease or effects
of treatments); improving solution methodologies to effi-
ciently overcome computational difficulties of finding good
solutions; and formally characterizing properties of these
models which support uncertainties involved in real settings
and stability of solutions provided. Demonstrating the ef-
fects of various parameter and initial value changes on sys-
tem behavior is an important issue for model builders and
model users in all disciplines. Sensitivity analysis is used
to determine the sensitivity of model outputs to changes in
the structure of the model or to changes in the value of the
model parameters. This is a critical issue as models of dy-
namical systems may represent quantities that are very diffi-
cult, or even impossible, to measure with complete accuracy
in the real world. Moreover, it is possible that small changes
in parameter values occur dynamically over time.

While there has been some consideration of sensitiv-
ity analysis on model structure and model parameters
for MDPs, few research have examined sensitivity of the
POMDP value function. Perturbation analysis on model
parameters has been previously developed for Markov pro-
cesses [3], MDPs [18], and semi-MDPs [2]. These results
show that when small additive noise (with respect to some
parameters) is introduced into the transition functions of a
Markov model the value function remains nearly optimal.

Research on MDPs and POMDPs in the areas of aggre-
gation and dimensionality reduction [15, 5, 6, 16] can be
thought of as sensitivity analysis with respect to the struc-
ture of the model. In this type of approaches, a restricted
model which contains a small set of states, a set of high
level actions, or a mapping of the model to a smaller model
is considered. To ensure good quality of the solutions, the
reduced model should provide results that are very similar
to those produced by the original model of the environment.
These studies normally provide methods to compute partial
or suboptimal plans in the reduced model and evaluate the
effect of resulting structural changes on the value function.
Sensitivity analysis of value function with respect to pertur-
bation of its parameters has been studied implicitly in the
areas of generalization and knowledge transfer [19, 14, 10].
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In these studies, the goal is to use a single value function
that generalizes across many similar tasks or the same task
under different conditions. Most of the work in this area
has focused on designing strategies or representations that
are empirically shown to be robust to environmental noise
or imprecise world knowledge and can be applied to new
scenarios.

Perturbation analysis for a general case POMDP is very
complex. In this paper, we focus on the uncertainty with
respect to POMDP model parameters. We address the in-
stability of the value function caused by perturbation of
POMDP parameter values. Since a random and arbitrary
types of noise are difficult to handle and perhaps not very
likely to happen in real world, we narrow our focus to pa-
rameter sensitivity with respect to some structured types of
noise, namely additive and multiplicative. We investigate
cases in which either transition functions, observation func-
tions, and /or reward functions are slightly different at the
execution time than the planning time and try to show that
near optimality can be preserved up to some bounds.

2 POMDPs

Formally, a POMDP is defined by the following compo-
nents: a finite set of hidden states S; a finite set of actions
A; a finite set of observations Z; transition functions T a :
S×S → [0,1] for all a ∈ A, such that T a(s,s′) is the proba-
bility that the agent will end up in state s′ after taking action
a in state s; an observation function O : A×S×Z → [0,1],
such that O(a,s′,z) gives the probability that the agent re-
ceives observation z after taking action a and getting to state
s′; a reward function R : S×A→ℜ, such that r = R(s,a) is
the immediate reward received when the agent takes action
a in hidden state s and ends up in state s′; a discount factor,
γ ∈ (0,1); and an initial belief state b0, which is a probabil-
ity distribution over the set of hidden states S. The belief at
time t +1 can be computed using Bayes rule. Each compo-
nent of bt+1 corresponding to state si can be determined as
follows:

bt+1(si|at ,zt+1) =
O(at ,si,zt+1)∑s∈S T at (s,si)bt(s)

∑s′∈S O(at ,s′,zt+1)∑s∈S T at (s,s′)bt(s)
(1)

The goal of a POMDP agent is to find a long term plan
or policy for acting in such a way as to maximize the total
expected reward received. The best such plan is called an
optimal policy or an optimal solution for the POMDP. The
belief state is known to be a sufficient statistic for comput-
ing an optimal policy in POMDPs [1]. Hence a policy is a
mapping π : B → A. The amount of total expected reward
that an agent can accumulate over its lifetime as given by
the horizon h and following a policy π is called the value
function of π. The optimal policy π∗, in particular, is the
one that maximizes the total expected future reward from

any given belief state b:

π∗(b) = arg max π E[
h−1

∑
t=0

γtrt+1|b] (2)

Associated with each policy π is a set of conditional plans
of the form πp. Each such plan has an α-vector αp. Each
α-vector defines a hyperplane in belief space. The value of
executing a conditional plan πp from a belief state b is:

Vπp(b) = ∑
s∈S

Vπp(s)b(s) (3)

Therefore, in terms of the α-vectors we can write: Vπp(b) =
αp ·b. Finding good policies for POMDPs is generally diffi-
cult. POMDPs with as few as two states can have an op-
timal value function which needs an exponential number
of α-vectors in their parsimonious set. The optimal value
function for a POMDP is defined as:

V ∗(b) = maxa∈A ∑
s∈S

R(s,a)b(s)+ γ ∑
z∈Z

P(z|a,b)V ∗(baz), (4)

where ∑s∈S R(s,a)b(s) is the immediate reward at belief
state b, and baz is the next belief state after taking action
a and making observation z form belief b.

3 Parameter Perturbations in POMDPs

In this section, we provide a general lower bound on
the performance of the optimal policy computed from an
approximate POMDP model M̂, when executed in the ex-
act POMDP model M, using M̂ to maintain its belief. We
study how this lower bound carries to different perturba-
tions in the model, such as additive and multiplicative per-
turbations of the transition/observations probabilities and
rewards. Such perturbations are common in practice, as of-
ten we do not know exactly the true values for T , O and R,
and approximations T̂ , Ô and R̂ are constructed from sam-
pled data or imperfect domain knowledge. In such cases, we
can often guarantee that the absolute error (related to addi-
tive noise) or relative error (related to multiplicative noise)
on each parameter is smaller than some threshold with high
probability, e.g. using the Hoeffding or Chernoff bounds.
Given these thresholds, the following bounds can be use-
ful to guarantee that the performance of the agent will not
be too far from the optimal if it computes its policy and
maintains its belief from the approximate model based on
T̂ , Ô and R̂. Such guarantees can be very important for
the adoptions of POMDP solution methods to critical real-
world applications. In the following sections we show how
the alpha vectors representing the optimal value function
might diverge with respect to T , O, R, and then deduce how
the value function and the value of the corresponding policy
also diverge.
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3.1 General Bound

We first derive a general bound on the difference be-
tween the value functions obtained with the exact model M
and approximate model M̂. To achieve this, we first bound
the difference between the state-values computed for any
α-vector, and then use this bound to bound the difference
in value functions. We then provide a general lower bound
on the performance of the optimal policy computed from M̂
when executed in M.

Let M = (S,A,Z,T,O,R) be the exact POMDP model
and M̂ = (S,A,Z, T̂ , Ô, R̂) be an approximate POMDP
model where the transition function T̂ , observation function
Ô and reward function R̂ differ respectively from T , O, and
R in the exact model. Let us also denote the joint transition-
observation probabilities Ps,a(s′,z) = T a(s,s′)O(a,s′,z) and
similarly P̂s,a(s′,z) = T̂ a(s,s′)Ô(a,s′,z).

Recall that any α-vector αt ∈ Γt represents the expected
value obtained by a particular t-step conditional plan πt ∈
Πt , which can be specified by an immediate action a and a
mapping ft−1 : Z → Πt−1 associating to every possible ob-
servation z ∈ Z a (t−1)-step conditional plan πt−1 ∈Πt−1.
The value of such α-vector, denoted αa, ft−1

t , is then defined
as:

αa, ft−1
t (s) = R(s,a)+ γ ∑

s′∈S,z∈Z
Ps,a(s′,z)α ft−1(z)(s

′), (5)

where απ denotes the α-vector associated to conditional
plan π. We now bound the difference between the values of
the two α-vectors απt and α̂πt representing the same condi-
tional plan, but where απt is computed with the exact model
M and α̂πt is computed with model M̂.

Lemma 1 For any horizon t, supπt∈Πt
||απt − α̂πt ||∞ ≤

||R−R̂||∞
1−γ + γ||R̂||∞

(1−γ)2 sups∈S,a∈A ||Ps,a− P̂s,a||1.

Proof: Consider any πt ∈ Πt and its corresponding imme-
diate action a and mapping ft−1. Then for any state s ∈ S:

|απt (s)− α̂πt (s)|
= |αa, ft−1

t (s)− α̂a, ft−1
t (s)|

= |R(s,a)+ γ∑s′∈S,z∈Z Ps,a(s′,z)α ft−1(z)(s
′)− R̂(s,a)

−γ∑s′∈S,z∈Z P̂s,a(s′,z)α̂ ft−1(z)(s
′)|

≤ |R(s,a)− R̂(s,a)|
+γ∑s′∈S,z∈Z |Ps,a(s′,z)α ft−1(z)(s

′)− P̂s,a(s′,z)α̂ ft−1(z)(s
′)|

= |R(s,a)− R̂(s,a)|
+γ∑s′∈S,z∈Z |Ps,a(s′,z)α ft−1(z)(s

′)−Ps,a(s′,z)α̂ ft−1(z)(s
′)

+Ps,a(s′,z)α̂ ft−1(z)(s
′)− P̂s,a(s′,z)α̂ ft−1(z)(s

′)|
≤ |R(s,a)− R̂(s,a)|+ γ∑s′∈S,z∈Z Ps,a(s′,z)|α ft−1(z)(s

′)− α̂ ft−1(z)(s
′)|

+γ∑s′∈S,z∈Z |Ps,a(s′,z)− P̂s,a(s′,z)||α̂ ft−1(z)(s
′)|

≤ |R(s,a)− R̂(s,a)|+ γ||R̂||∞
1−γ ||Ps,a− P̂s,a||1

+γsupπt−1∈Πt−1
||απt−1 − α̂πt−1 ||∞

Thus we have that:

supπt∈Πt
||απt − α̂πt ||∞

≤ ||R− R̂||∞ + γ||R̂||∞
1−γ sups∈S,a∈A ||Ps,a− P̂s,a||1

+γsupπt−1∈Πt−1
||απt−1 − α̂πt−1 ||∞

For t = 1, since π1 is just an immediate action a, αa(s) =
R(s,a) and we have that supπ1∈Π1

||απ1 − α̂π1 ||∞ = ||R−
R̂||∞. Unfolding the previous recurrence up to t = 1, we
find that:

supπt∈Πt
||απt − α̂πt ||∞ ≤ (∑t−1

i=0 γi)||R− R̂||∞
+(∑t−2

i=0 γi) γ||R̂||∞
1−γ sups∈S,a∈A ||Ps,a− P̂s,a||1

Thus for all t:

supπt∈Πt
||απt − α̂πt ||∞ ≤ ||R−R̂||∞

1−γ

+ γ||R̂||∞
(1−γ)2 sups∈S,a∈A ||Ps,a− P̂s,a||1

2 Note that as R̂→ R, T̂ → T and Ô→ O, the bound for
supπt∈Πt

||απt − α̂πt ||∞ → 0. Hence we believe this bound
is fairly tight for very small perturbations. We now use this
bound to bound the difference between the value functions
Vπ and V̂π of any policy π, where Vπ is computed with the
exact model M and V̂π is computed with model M̂.

Theorem 1 For any policy π, ||Vπ − V̂π||∞ ≤ ||R−R̂||∞
1−γ +

γ||R̂||∞
(1−γ)2 sups∈S,a∈A ||Ps,a− P̂s,a||1.

Proof: Consider any horizon t, policy πt ∈Πt , and belief b,
then:

|Vπt (b)−V̂πt (b)| = |∑s∈S b(s)απt (s)−∑s∈S b(s)α̂πt (s)|
≤ ∑s∈S b(s)|απt (s)− α̂πt (s)|
≤ ||απt − α̂πt ||∞
≤ ||R−R̂||∞

1−γ + γ||R̂||∞
(1−γ)2 sups∈S,a∈A ||Ps,a− P̂s,a||1

Taking the limit as t → ∞ proves the theorem. 2 Now,
let π∗ be the optimal policy for model M and π̂∗ the optimal
policy computed from model M̂. The following theorem
bounds the performance of the agent if it executes π̂∗ in the
true model M, using M̂ to maintain its belief.

Theorem 2 For any belief b, Vπ̂∗(b)≥Vπ∗(b)− 2||R−R̂||∞
1−γ −

2γ||R̂||∞
(1−γ)2 sups∈S,a∈A ||Ps,a− P̂s,a||1.

Proof: Consider any horizon t and belief b.
Let π∗t = argmaxπt∈Πt ∑s∈S b(s)απt (s) and π̂∗t =
argmaxπt∈Πt ∑s∈S b(s)α̂πt (s), be the optimal t-step
conditional plans starting in belief b for model M and
model M̂ respectively.

To prove this lower bound, we consider that b is the ini-
tial belief, and that the agent executes its conditional plan
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π̂∗t using the history of action/observation to follow its plan.
This is equivalent to first executing the immediate action
specified π̂∗t , computing the next belief b̂′ with M̂ and then
proceeding with the conditional plan π̂∗t−1 that is optimal for
belief b̂′ in M̂. Hence looking at conditional plans allow us
to ignore the fact that the belief maintained with M̂ differs
from the exact belief maintained with M after the first step
if we bound Vπ̂∗t (b) by bounding ∑s∈S b(s)απ̂∗t (s), as απ̂∗t im-
plicitly takes this into account.

We know that for all s ∈ S:

απ̂∗t (s)≥ α̂π̂∗t (s)−||απ̂∗t − α̂π̂∗t ||∞
and also we have:

α̂π∗t (s)≥ απ∗t (s)−||απ∗t − α̂π∗t ||∞
It follows that

∑
s∈S

b(s)απ̂∗t (s)≥
(

∑
s∈S

b(s)α̂π̂∗t (s)

)
−||απ̂∗t − α̂π̂∗t ||∞

and that

∑
s∈S

b(s)α̂π∗t (s)≥
(

∑
s∈S

b(s)απ∗t (s)

)
−||απ∗t − α̂π∗t ||∞

Since π̂∗t was considered better than π∗t in M̂, then

∑
s∈S

b(s)α̂π̂∗t (s)≥ ∑
s∈S

b(s)α̂π∗t (s)

Thus it follows that:

∑
s∈S

b(s)απ̂∗t (s)≥
(

∑
s∈S

b(s)απ∗t (s)

)
−2 sup

πt∈Πt

||απt − α̂πt ||∞

By Lemma 1 we have:

Vπ̂∗t (b)≥Vπ∗t (b)− 2||R− R̂||∞
1− γ

− 2γ||R̂||∞
(1− γ)2 sup

s∈S,a∈A
||Ps,a−P̂s,a||1

Taking the limit as t → ∞ proves the theorem. 2 This
result provides a general bound for any perturbations that
we may have in the approximate model M̂. The following
sections consider particular noise models, such as additive
and multiplicative noise, and show how this general bound
can be applied to such perturbations. It should be noted that
this bound is much tighter than the known worst case bound
of R̂||∞

1−γ .

3.2 Additive Bound

Definition: Let M and M̂ be POMDPs with same sets of
states, actions and observations. We say M̂ is an (α,β,δ)-
additive approximation of M if:

1. ∀s,a,s′ : T a(s,s′)−α≤ T̂ a(s,s′)≤ T a(s,s′)+α.

2. ∀a,s′,z : O(a,s′,z)−β≤ Ô(a,s′,z)≤ O(a,s′,z)+β.

3. ∀s,a : R(s,a)−δ≤ R̂(s,a)≤ R(s,a)+δ.

We show using the previous general bound that if two
POMDPs with the same structure for states, actions, and
observations are sufficiently close in the (α,β,δ)-additive
sense, then for any policy, the value function is similar in
both POMDPs.

Theorem 3 Let M̂ be an (α,β,δ)-additive approximation
of POMDP M. Then for any policy π, ||Vπ−V̂π||∞ ≤ δ

1−γ +
γ||R̂||∞
(1−γ)2 min{2,α|S|+β|Z|}.

Proof: By definition of M̂, ||R− R̂||∞ ≤ δ. Furthermore, we
have that sups∈S,a∈A ||Ps,a− P̂s,a||1 ≤ |S|α+ |Z|β:

||Ps,a− P̂s,a||1
= ∑s′∈S,z∈Z |Ps,a(s′,z)− P̂s,a(s′,z)|
= ∑s′∈S,z∈Z |T a(s,s′)O(a,s′,z)− T̂ a(s,s′)Ô(a,s′,z)|
= ∑s′∈S,z∈Z |T a(s,s′)O(a,s′,z)−T a(s,s′)Ô(a,s′,z)

+T a(s,s′)Ô(a,s′,z)− T̂ a(s,s′)Ô(a,s′,z)|
≤ ∑s′∈S,z∈Z T a(s,s′)|O(a,s′,z)− Ô(a,s′,z)|

+∑s′∈S,z∈Z O(a,s′,z)|T a(s,s′)− T̂ a(s,s′)|
≤ β|Z|+α|S|

Note, however, that in all cases ||Ps,a − P̂s,a||1 ≤ 2, so
we know that sups∈S,a∈A ||Ps,a − P̂s,a||1 ≤ min{2,α|S| +
β|Z|}. Thus by Theorem 1, we get ||Vπ − V̂π||∞ ≤ δ

1−γ +
γ||R̂||∞
(1−γ)2 min{2,α|S|+β|Z|}. 2

The following result lower bounds the performance of the
optimal policy π̂∗ computed from an (α,β,δ)-additive ap-
proximation of POMDP M, when executed in model M.

Theorem 4 Let M̂ be an (α,β,δ)-additive approximation
of POMDP M. Then for any belief b, Vπ̂∗(b) ≥ Vπ∗(b)−

2δ
1−γ − 2γ||R̂||∞

(1−γ)2 min{2,α|S|+β|Z|}.

Proof: The proof proceeds similarly to Theorem 2, but uses
the bounds on ||R− R̂||∞ and ||Ps,a− P̂s,a||1 derived in The-
orem 3 to bound the bound given by Lemma 1 at the last
step. 2

3.3 Multiplicative Bound

Definition: Let M and M̂ be POMDPs with same sets of
states, actions and observations. We say M̂ is an (α,β,δ)-
multiplicative approximation of M if:

1. ∀s,a,s′ : (1−α)T a(s,s′)≤ T̂ a(s,s′)≤ (1+α)T a(s,s′).
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2. ∀a,s′,z : (1 − β)O(a,s′,z) ≤ Ô(a,s′,z) ≤
(1+β)O(a,s′,z).

3. ∀s,a such that R(s,a) ≥ 0 : (1− δ)R(s,a) ≤ R̂(s,a) ≤
(1+δ)R(s,a).

4. ∀s,a such that R(s,a) < 0 : (1 + δ)R(s,a) ≤ R̂(s,a) ≤
(1−δ)R(s,a).

We show using the previous general bound that if two
POMDPs with the same structure for states, actions,
and observations are sufficiently close in the (α,β,δ)-
multiplicative sense, then for any policy, the value function
is similar in both POMDPs.

Theorem 5 Let M̂ be an (α,β,δ)-multiplicative approxi-
mation of POMDP M. Then for any policy π, ||Vπ−V̂π||∞ ≤
||R̂||∞
(1−γ)

(
δ

1−δ + γ(α+β)
1−γ

)
.

Proof: By definition of M̂, we have that |T a(s,s′) −
T̂ a(s,s′)| ≤αT a(s,s′), |O(a,s′,z)−Ô(a,s′,z)| ≤ βO(a,s′,z)
and |R(s,a)− R̂(s,a)| ≤ δ|R(s,a)|. Furthermore, |R(s,a)| ≤
|R̂(s,a)|

1−δ , so |R(s,a)− R̂(s,a)| ≤ δ|R̂(s,a)|
1−δ . Hence ||R− R̂||∞ ≤

δ||R̂||∞
1−δ . To bound ||Ps,a− P̂s,a||1, we consider a similar proof

as in the previous bound for the additive case:

||Ps,a− P̂s,a||1
= ∑s′∈S,z∈Z |Ps,a(s′,z)− P̂s,a(s′,z)|
≤ ∑s′∈S,z∈Z T a(s,s′)|O(a,s′,z)− Ô(a,s′,z)|

+∑s′∈S,z∈Z O(a,s′,z)|T a(s,s′)− T̂ a(s,s′)|
≤ β∑s′∈S,z∈Z T a(s,s′)O(a,s′,z)

+α∑s′∈S,z∈Z O(a,s′,z)T a(s,s′)
= α+β

Thus by Theorem 1, we get

||Vπ−V̂π||∞ ≤ δ||R̂||∞
(1−δ)(1−γ) + γ||R̂||∞

(1−γ)2 (α+β)

= ||R̂||∞
(1−γ)

(
δ

1−δ + γ(α+β)
1−γ

)

2 As in the additive case, we can bound
the performance of the optimal policy π̂∗ computed from an
(α,β,δ)-multiplicative approximation of POMDP M, when
executed in model M.

Theorem 6 Let M̂ be an (α,β,δ)-multiplicative approxi-
mation of POMDP M. Then for any belief b, Vπ̂∗(b) ≥
Vπ∗(b)− 2||R̂||∞

(1−γ)

(
δ

1−δ + γ(α+β)
1−γ

)
.

Proof: The proof proceeds similarly to Theorem 2, but uses
the bound on ||R− R̂||∞ and ||Ps,a− P̂s,a||1 derived in The-
orem 5 to bound the bound given by Lemma 1 at the last
step. 2 It is

natural to think that a POMDP model can tolerate a relative
noise (in the dynamics) better than an absolute noise of the
same amount, since the transition and observation functions
are all probability functions. However, this is not always
true for the rewards. In the special case of δ = 0, it is noted
that the bound for multiplicative error in theorem 6 is tighter
than the bound for an additive error in theorem 4 ( with the
same magnitude of α and β), even if the amount of noise is
the same. More precisely, when δ = 0:

additiveerror ≤ 2γ||R̂||∞
(1− γ)2 min{2,α|S|+β|Z|} (6)

and

multiplicativeerror ≤ 2γ||R̂||∞(α+β)
(1− γ)2 (7)

We can also observe that the additive bound can be tighter
than the general bound from theorem 2 depending on the
value of α and β.

4 Experimental Results
Here we examine the noise in the transition functions,in

the observation functions, and in rewards on one of the
POMDP benchmarks, as a proof of concept. We study
the precision of our bounds on a 4x4 grid described in the
POMDP repository. In this 16-state problem, there is a sin-
gle goal state which has perfect observability and there are
15 other states which look exactly the same. A decision
making agent receives a reward value of 1 when it reaches
the goal by choosing any of the available actions: move
up, down, left, or right. Transition functions for all actions
in all states are deterministic, except for the goal state, in
which taking any action leaves the agent randomly in any
other state. Therefore, for the case of this example, if we
introduce noise in the dynamics of the model (and only in
non-goal states) then the additive and multiplicative noises
are the same amount. For the purpose of this paper, we can
also assume that rewards can only have a real value between
zero and one, so that additive and multiplicative noises in
the reward have also the same amount.

We try to summarize the results of our evaluations for
POMDP transition function in three scenarios: (1) goal be-
comes slower or harder to reach, in which the agent can
gave a slight chance to jump back to states farther from the
goal; (2)goal becomes easier or faster to reach, in which
under some actions from some states the agent can have a
slight chance to jump into states closer to the goal; (3) a
fixed but random noise is introduced for all actions.

Figure 1 compares the performance of a perturbed
POMDP model in the two scenarios (1) and (2) with a ref-
erence value obtained from the original 4x4 model for noise
values between 10% to 40% of the original probabilities (i.e
α ∈ [0.1,0.4]). In each scenario, we started the evaluation
from the same given initial belief state and computed the to-
tal discounted reward after 1000 time steps. The results in

5



Figure 1. Comparison of the performance of POMDP
policies in original and perturbed versions of 4x4 grid in
scenarios 1 and 2.

this figure are averages over 250 such runs. Under the same

Figure 2. Comparison of the performance of POMDP
policies in original and perturbed versions of 4x4 grid in
scenario 3.

experimental setup, we also investigated the changes in the
value function for the third scenario. This time we tried a
small range of α in [0.01,0.05]. Our results in Figures 1
and 2 confirm the linearity of value function error in terms
of perturbation in transition functions in all three scenarios.

To investigate and compare the precision of different
bounds, we used theorem 2 for the especial case of R = R̂,
and equations 6 and 7 to compute the general, additive, and
multiplicative bounds respectively. For a particular value
of α = 0.2, table 1 shows these values. This table shows
that multiplicative noise is the closest to the actual error
achieved through our experiments. Different values of α
will linearly scale the values presented in this table, accord-
ing to theorems 2, 4, and 6 and our empirical results in fig-
ures 1 and 2.

Table 2 presents our experimental results with different
perturbation in the observation functions, and the results
of experiments with several values of noise in the reward

Table 1. The noise bounds comparison in transition func-
tion of 4x4 POMDP problem.

bound value for α = 0.2
general 24.96
additive 15.6
multiplicative 1.56
empirical error 1.12

Table 2. The noise bounds comparison in transition func-
tion of 4x4 POMDP problem.

parameter noise value expected reward
observation

0 3.73
0.01 3.74
0.02 3.74
0.05 3.75
0.1 3.83

reward
0 3.73

0.05 3.55
0.1 3.36

1 (goal reward in state 14) 15.13
1 (goal reward in state 5) -

function. We tried a wide range of noise values and special
cases, however, we can not present all the results here due
to space constraint. In summary these results show that the
reward functions of 4x4 grid were the most sensitive param-
eters of the model. A large value of noise can dramatically
change the problem in a huge range. Here we tried to in-
troduce new goal states in the 4x4 grid and observed a large
variance in the solution both in terms of the time to find the
solution and the value function.

5 Discussion
Instability in the POMDP models can occur in different

situations when used in real settings. In many application
the actual value of parameters for some action transitions
and/or observation probabilities would not be known for
certain and can be determined for instance by the accuracy
of lab tests, recognition of true associations in noisy data,
degree of reliability of detection devices,or sensitivity of
sensors. The cost associated with different actions can also
change depending on environmental factors such as popula-
tion or temperature. In practice, although the exact level of
accuracy is not known, the instability is not usually random
either. Therefore, the idea of structured noise, investigated
in this paper, can be crucial in using POMDPs in practical
applications.
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We anticipate that the discount factor γ plays an impor-
tant role in the computation of all the bounds developed in
this paper. However, we did not considered changing this
parameter in relation to other parameters and its effect on
the value function stability. In this paper we did not discuss
the time complexity that a noise value can introduce, how-
ever, we would like to mention that in some cases (in par-
ticular for observations and rewards) even a slight change
in parameters can dramatically increase the time to solve a
perturbed version of the original POMDP. The last row of
table 2 shows this effect. This is an important area of future
investigation as well.

Our results show that the bounds can have a good preci-
sion for an arbitrary POMDP problem. It might be possible
that for some problems the bounds are reached in special
cases. We plan to expand our empirical evaluation to other
POMDP benchmarks and real applications.

6 Conclusion
In this paper we addressed sensitivity analysis in

POMDP value functions. We considered two types of per-
turbation, additive and multiplicative, in the parameters of
a POMDP model. The error of the value function in the
resulting perturbed models in both cases are bounded by a
linear factor of the noise. We examined our theoretical anal-
ysis on an arbitrary POMDP problem and illustrated that the
linearity presented in the bounds with respect to the value
of the noise parameter, is achieved in our empirical evalua-
tions. Future research in this area will be very important in
the practicality of POMDP models in real applications.
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