Typing
Brigitte Pientka
April 14, 2007

So far, we only have considered syntax (i.e. what expressions are syntactically well-
formed?) and operational semantics (i.e. how are we executing an expression?). However,
there are many expressions which cannot be evaluated and our interpreter would get stuck.
Examples of such expressions include : if O then 45 else 33, 0 + true, (fn x = x + 1) true,
etc.

How can we statically check whether an expressions would potentially lead to a runtime
error? — We already encountered types in the language SML. Types approximate the runtime
behavior and provide an effective light-weight tool for reasoning about programs. They allow
us to detect errors statically and early on the development cycle. More generally, a type
system is a tractable syntactic method for proving the absence of certain program behaviors.
This is done by classifying expressions according to the kinds of values they compute.

In this note, we will briefly describe how this can be done, and what issues arise. We
will start by considering our Nano-ML language which consisted of numbers, booleans, if-
expressions and primitive operations. Next, we will considering an extension where we have
variables and let-expressions. Finally, we will include functions and function application.

1 Basic Types

We begin by considering Nano-ML which includes numbers, booleans, if-expressions and
primitive operations. Recall our inductive definition of these expressions:

Operationsop == + | —|x|<|=
Expressions e = n|e; op ey | true | false | if e then e; else e,

This grammar inductively specifies well-formed expressions. We will now concentrate on
the questions: What expressions do we consider well-typed? How do we assign an expression
a type?

As mentioned earlier, types classify expressions according to their value. So what are
the values in Nano-ML? Values in Nano-ML are numbers and booleans. Therefore we will
only have two basic types which suffice to approximate the run-time behavior of NanoML
expressions. The type int characterizes number and the type bool describes the booleans
true and false. In other words, the expressions true and false are elements of the type BOOL ,

and number n are elements of the type int. We also sometimes say true and false inhabit the
type bool, or similarly number n inhabit the type int. We will write the capital letter T" for

types.
Types T ::= int | bool

Next, we formally describe when an expression is well-typed using the following judgment:

e: T expression e has type T’

We will define when an expression is well-typed inductively on the structure of the ex-
pression. A term is typable if there is some type T s.t. e : T. We start by considering
numbers and booleans.

T-NUM ———— T-TRUE ——— T-FALSE
nt true : bool false : bool

n i

Next, let us consider the if-expression. When is if e then e; else e well-typed? And what
should its type be? — Intuitively, we can assign if e then e; else ey a type T', if

e expression e has type bool (i.e. expression e evaluates eventually to a boolean)
e expression e; has some type T’
e expression e, has the same type T'

This can be formalized using inference rules as follows:

e:bool e :T e:T
if e then e else eq : T

T-1F

Finally, we consider the rules for primitive operations. We only show the rules for addi-
tion, multiplication, equality but the others are straightforward and follow similar principle.
ep:int eg:int ep:int eg:int e1r:1T e :T

e1 + ey :int e1 % €9 :int T e1 = ey : bool

2 Typing for tuples and projections

In a similar fashion, we can introduce types for tuples and projections.

Expressions e == ...|(ej,ez) |fste |snde

We can create tuples via (e, ez) and we can take them apart via fst e which extracts
the first component of a tupel e, and snd e will extract the second component of a tupel e.
Considering the evaluation rules for tuples, it is clear we have now not only numbers and
booleans as values, but a tuple is also a possible value.

The type classifying tuples is called product and written as T} x Ty. The rules for tuples
and projections are then in fact straightforward.

€1ZT1 GQZTQ €ZT1><T2 €2T1XT2
T-PAIR ——— T-FST — = T-SND
(61, 62) . T1 X T2 fst e ITl snd e ITQ

3 Typing for variables and let-expressions

In this section, we would like to extend our typing rules to handle variables and let-
expressions. The first observation is that we need to be able to reason with assumptions
about variables. For example, consider the following let-expressions: let z =5in x4+ 3 end .
We would like to argue as follows:

e 5 has int. Therefore the variable z will be bound at runtime to a value of type int.

e Assuming that = has type int, x + 3 has type int, because each subexpression has type
int.

More generally, the expression let = e in e end has type T, if
e ¢, has type T}
e assuming x has type T}, the expression e, has type 7.

To handle bound variables and be able to reason about them, we introduce a context I,
which keeps track of our assumptions. The assumptions “variable x has type T” is written
x:T. We can define a context I' inductively as follows:

Context I' := - |, x:T

- describes the empty context, i.e. there are no typing assumptions. If we have a context
[’ then I',2:T is also a context. Sometimes we also call x:T" a typing declaration. Every
typing declaration x:T" occurs uniquely, i.e. for any two declarations x:T" and z’:T”, we have
x#£a.

Next, we will generalize our typing judgment to take into account the context I' (the set
of assumptions available).

I'Fe:T Expression e has type T using the typing declarations in I

In the previous rules, the set of assumptions does not change, and hence we simply carry
it as an extra parameter.

: T-NUM -1 I-TRUE T-FALSE

I'-n:int I' I true : bool I' - false : bool
I'ke;:int Fl—egzintT+ I'kFe:int I'Feg:int N I'be : T Fl—engT_
I'Fe +ey:int I'Fexey:int T I'Fe; =es: bool o

I'e:bool T'key:T T'key: T
' if e then eg else eg : T

T-IF

The more interesting question is how to formally deal with variables and describe the
recipe for assigning a type to a let-expression. If we have an assumption z:7" in I', then
we can conclude that a variable x has type T. The recipe for the let-expression is directly
translated into an inference rule.

W;TTVAR Fl_el:Tl F7x:T1|_€2:T b
TFz:-T F|_|etl’=61in62end:TT_LETxmuSt e new

We note that £ must be new to ensure that the declaration z:77 does not clash with any
other declaration in I'. This can always be achieved by appropriately renaming the bound
variable z in the expression es.

To check whether an expression e has a type T, we construct a proof for - e : T. Here
is an example, how we can check whether let x = 5 in © + 2 end has type int. We leave out
the name of the rules so it fits on the page.

zintF 2 cint zintF 2 -int x:int,yiint 2 cint zint, yiint oy cint
rintbEx +2:int rint,yiint E xxy :int
-F5:int xintkFlety =2+ 2inzxyend:int
Fletzx=5inlety=2+2inz+yendend:int

Note that we can have unused assumptions in some branches.

Type-checking vs Type inference So far we mainly have talked about assigning a type
to an expression. In practice however we often distinguish between type checking and type
inference. In type checking, we give an expression e and a type 1" and we check whether
e : T, i.e. expression e indeed has type T. However, we may not always have both the
expression and the type. For example, in the rule T-LET, we cannot simply check whether
expression e; has the type T}, because we don’t know what it is. We must infer a type for
expression ej.

In type inference, we give the expression e and infer a type T s.t. the expression has type
T. The next question, we can ask is, whether we can always infer a unique type corresponding
to an expression. In the language we have encountered so far, this is the case. This is a
property about our type system and can be stated more formally as follows:

Uniqueness If 'Fe: T and 'Fe: T’ then T =1T".

In fact it is quite easy to see that the typing rules are deterministic. At any given point,
there is exactly one rule applicable for an expression.

4 Typing for functions and function application

Next we extend our type system to include functions and function application. We have seen
that functions are first-class values, and since types classify values we will add a new type
to our NanoML types, the function type T} — T5.

Types T' ::= int | bool | T} — T

A function fn z = e has type T} — T5 if assuming z has type T, we can show that the
body e, has type T5. An application e; e; has type T' if expression e; has type To — T and
es has type T5. In other words, expression e, is a suitable input to the function computed
by e;. More formally,

F,x:Tll—e:TQ F|_€13T2—>T F|_€23T2

Fl—fnm:>e:T1—>T2T_FN I'Fejey: T T-APP

In interesting question to ask whether it is still true that every function has a unique
type. This is no longer true. For example,

fn x = x has type int — int
fn x = x has type bool — bool
fn z =z has type (int — int) — (int — int)

In fact, the identity function has infinitely many types! How can we recover that every
expression has a unique type? — There are two solutions to this problem. The easiest is to
allow type annotations to resolve ambiguity. As a consequence, we would write fn z:T = ¢
and annotate the input variable x with its type. So to use the identity function as a function
for booleans we would need to write fn x : bool = = and when we would like to use it for
integers we would need to write fn x : int = = . This is unfortunate, because the function is
generic and can be executed with integers and with booleans. A remedy to this problem is
to allow type variables a.. Instead of requiring that every expression has a unique type, we
allow that an expression may have multiple types, but it must have a principal type, a type
which is more general from which all others can be derived. We will come back to how to
infer that a given expression has a principal type T later. So our types include now:

Types T ::= int | bool | T} — T, | «

5 References

In this section, we briefly highlight how to extend our syntax and types to include references.
expression e = ...|ej:=eqs|le|refe| ()
types T = ... | T ref | unit

Just to consider the typing for this extension is in fact fairly straightforward. However,
we do not consider extending the operational semantics with references which would require
us to model formally the heap.

e :Tref I'key: T I'ke:T ref I'kFe: T
['Fep:=es:unit LHle:T [t ref e: Tref [() : unit

6 Properties of type systems

As we mentioned earlier, type systems approximate the run-time behavior and we designed
the typing rules in such a way that certain expressions which could potentially cause problems
during run-time are considered as ill-typed. For example, true + 5 would lead to an error
during runtime and the type systems identifies this expression as ill-typed. The intention is
that if an expression e has a type T', then evaluation of e will not get stuck. Moreover, if
expression e has type 7' and e evaluates to some value v then v will have the same type T
In other words types are preserved during evaluation. Both of these two properties together
are called type safety:

Safety If expression e has type T, then either e is already a value or we can evaluate it in
one step to another expression ¢’ and €’ has type T.

Safety incorporates really two properties which we merged together in the previous state-
ment. The first one, called progress, says if an expression e is well-typed, then either it is a
value or we can evaluate it to some other expression €¢’. The second property, called preser-
vation, says that if an expression e has type T' and e evaluates some expression €’ then ¢’
has type T.

The operational semantics we have introduced previously is a big-step semantics, and
evaluates expressions to values in one big step. Hence we do not have the ability to reason
about intermediate expressions which may occur during evaluation. To prove progress, we
need a more fine grained model of evaluation, namely a small-step semantics. However,
on property we can even prove about our big-step semantics is type preservation. If an
expression e has type T and e evaluates to some final value v, then v will have the same type
T. More formally this can be stated as follows:

Preservation If e | v and e: T then v :T.

These meta-theoretic properties ensure that in fact the typing rules do what we intended
them to do. Or in other words, if a program type checks, then it will not go wrong during
evaluation. Remarkably this property even holds in the presence of references, exceptions
and other features we find in real programming languages. In the presence of references
for example we can guarantee statically that we will never try to access a memory location
which wasn’t created appropriately earlier. This in essence guarantees that the program
when executed will not core dump.

