
Subtyping: An introduction

Brigitte Pientka

March 30, 2007

We will briefly describe the basics about subtyping. Up to now, we have shown how to
enrich a language by adding in new language constructs together with their type. As a very
important property we maintained that every expression had a unique type. In contrast, we
will now consider subtyping, a feature which cross-cuts across all other language construct
and affects our basic principles. In particular, we will not be able to maintain that an
expression will have a unique type – an expression can have more than one type.

The goal of subtyping is to refine the existing typing rules so we can accept more pro-
grams. Consider the following simple program:

fun area r = 3.14 * r * r

The type of area will be real -> real. Hence, we would raise a type error, if we apply
this function to an integer. This seems quite annoying, since we should be able to provide
an integer where a real is required.

So how can we enrich our type system to handle subtyping? What effect will this have?
Will type checking still be decidable?

Remark : This will be a purely theoretical discussion. SML does not offer subtyping.

To extend a type system with subtyping, we first add an inference rule, called subsump-

tion:

Γ ⊢ e : S S ≤ T

Γ ⊢ e : T
T − Sub

The rule says that an expression e is of type T if the expression e has type S and S

is a subtype of T . So for example, 4 is of type real because 4 has type int and int is a
subtype of the type real. The intuition of subtyping can be made precise with the subtyping
principle.

Basic subtyping principle: S ≤ T

S is a subtype of T if we can provide a value of type S

whenever a value of type T is required.

1



or

Every value described by S is also described by T .

We will now try to formalize this subtyping relation between S and T . We consider each
form of type (base types, tuples, functions, references, etc.) separately, and for each one we
will define formally when it is safe to allow elements of one type of this form to be used
where another is expected.

First, some relations between base types. Let us assume that in addition to real and
int, we also have a base type pos, describing positive integers. We can then define the basic
subtyping relations between the base types as follows.

int ≤ real pos ≤ int

Clearly, we should be able to provide a positive integer whenever a real is required, but
our inference rules do not yet allow us to conclude this. To reason about subtyping relations,
we will stipulate that subtyping should be reflexive and transitive.

T ≤ T
S−ref

S ≤ T ′ T ′ ≤ T

S ≤ T
S−trans

Product

First, we will consider pairs and cross-products. Let’s consider some examples.

int ∗ int ≤ real ∗ real yes
int ∗ int ≤ int ∗ real yes
int ∗ int ≤ real ∗ int yes
int ∗ real ≤ int ∗ real yes
int ∗ real ≤ real ∗ int NO!

From these examples, we can conclude that the following subtyping relation between
products seems sensible.

S1 ≤ T1 S2 ≤ T2

S1 ∗ S2 ≤ T1 ∗ T2
S−Prod

The subtyping rule for products is co-variant.

Records

We have seen records, which essentially were n-ary labeled tuples. Hence we can generalize
the rule for products to records as follows:

S1 ≤ T1 . . . Sn ≤ Tn

{x1 : S1, . . . , xn : Sn} ≤ {x1 : T1, . . . xn : T}
S−RDepth

2



Since we compare each element of the record, this is also called depth subtyping.
However, we often would like to have a more powerful rule for records. Let us consider

an example again, where we apply a function fn r:{x:int} => #x r which extracts the
x-component of a record r is applied to a record which contains an x-component and a
y-component.

(fn r:{x:int} => #x r) {x=0, y=1}

Clearly, this should be safe, since the function just requires that its argument is a record
with a field x and its body never even access the y-component! In other words, it should
always be safe to pass an argument {x=0, y=1} whenever a value of type {x:int} is required.
Hence, it is always safe to forget some fields This seems to indicate the following subtyping
rule for records.

n < k

{x1 : T1, . . . , xk : Tk} ≤ {x1 : T1, . . . , xn : Tn}
S−Width

It may be surprising that the subtype (the type considered “smaller”) is actually the one
with more fields. The easiest way to understand this is to view the record type {x:int} as
describing the “set of all records with at least a field x of type int”. Therefore, {x=0} is an
element of this type, and so is for example {x=0, y=1} and {x=0, y=true}

A longer record constitutes a more informative and more demanding specification, and
hence describes a smaller set of values.

This rule is also called width subtyping.
Finally, we do not care about the order of elements in a record, since every element has

a unique label. Hence it should not matter whether we write {x=0, y=1} or {y=1, x=0}.
This leads us to the third subtyping rule for records.

where φ is a permutation

{x1 : T1, . . . , xk : Tk} ≤ {xφ(1) : Tφ(1), . . . , xφ(n) : Tφ(n)}
S−Perm

Functions

Since we are working with functions, and functions can be passed as arguments and returned
as results, it is natural to ask when a function of type T → S can be used in place of a function
of type T ′ → S ′. Let’s consider again some examples.

let

(* areaSqr: real -> real *)

fun areaSqr (r:real) = r * r

(* fakeArea: int -> real *)

fun fakeArea (r:real) = 3

in

areaSqr 2.2

end

3



The expression areaSqr 2.2 has type real and areaSqr has type real -> real. Clearly,
we should be able to replace the function areaSqr with the function fakeArea:real -> int,
since whenever a real is required it suffices to provide an int. This seems to suggest the
following rule for functions:

S2 ≤ T2

S → S2 ≤ S → T2
S−Fun−Try1

Let’s modify the program from above a little bit.

let

(* areaSq: int -> int *)

fun areaSq (r:int) = r * r

(* fakeArea: real -> int *)

fun fakeArea (r:real) = 3

in

areaSq 2

end

The expression areaSq 2 has type intand areaSq has type int -> int.
What happens if we replace areaSq with the function fakeArea? Clearly this is safe,

because it is always safe to pass an integer to a function of type real -> int. This seems
to suggest that we can provide a function of type real -> int whenever a function of type
int -> int is required. This seems to suggest the following rule for functions.

T1 ≤ S1

S1 → S ≤ T1 → S
S−Fun−Try2

Notice that the sense of subtyping is reversed (contra-variant) for the argument type!
Combining the two rules into one, we derive at our subtyping rule for functions.

T1 ≤ S1 S2 ≤ T2

S1 → S2 ≤ T1 → T2
S−Fun

Subtyping for functions is contra-variant in the input argument and co-variant in the
result.

References

References are slightly tricky, since we can use a value of type ref T for reading and writing.
Let us repeate the subtyping principle:

Suppose the program context expects a value of type T , then we
can provide a value of type S where S ≤ T .

4



Example 1 If we have a variable x of type ref real, then we know that whenever we
read from x we will have !x:real.

let

val x = ref 2.0

val y = ref 2

in

(!x) * 3.14

end

But intuitively, we it should be safe to replace !x with (!y):int, since whenever a value
of type real is required it suffices to provide a value of type int. This seems to suggest that
whenever we need a value of type real ref it suffices to provide a value of type int ref.

S ≤ T

S ref ≤ T ref
S−Ref−Try1

On the other hand, we can not only use references for reading but also for writing.

let

val x = ref 2.0

val y = ref 2

in

y := 4

end

Intuitively, it should also be safe to replace the assignment y := 4 with the assignment
x := 4, since x is a reference cell containing values of type real it should be safe to store a
value of type int. But this suggests that when we require a value of type int ref, it suffices
to provide a value of type real ref. So in other words this suggest the following rule:

T ≤ S

S ref ≤ T ref
S−Ref−Try2

However, now we have a problem. The two suggested rules are (almost) contradictory!
To achieve a sound rule for subtyping in the presence of references, we cannot allow any
subtyping to happen.

T ≤ S S ≤ T

S ref ≤ T ref
S−Ref

This means references are co-variant and contra-variant, in other words they are invariant.
S and T must really be the same type.

It is worth pointing out that the analysis of reading and writing applies to any mutable
data-structure. Therefore, it also applies for example to arrays.

T ≤ S S ≤ T

Sarray ≤ Tarray
S−Array

5



Unfortunate fact: In Java we omit the first premise during type checking. This is gener-
ally considered a flaw. Java fixes this flaw by inserting a runtime check for every assignment
to an array thereby achieving type safety. This leads to a serious performance penalty.

Final remarks

Subtyping is characteristically found in object-oriented languages and is often considered es-
sential. Generally, we find nominal subtyping in object-oriented systems, which is in contrast
to structural subtyping, the subtyping we have considered here. In nominal subtyping, the
user specifies what type (class) extends another type (class).

In Java, we often abuse subtyping. For example, elements in lists belong to the maximal
type object in order to provide operations on for all lists, no matter what their elements are.
If we add an element x:int to a list, we promote it to type object (upcast). If we take it
out again, we unfortunately also only know it is an object. To do reasonable things with it,
we must downcast it to the appropriate type. This however is an abuse of subtyping and
often considered a “poor man’s polymorphism”. Newer versions of Java include some form
of polymorphism, named generics, to avoid this kind of situation.

Up and down casts

Earlier we saw the subsumption rule.

Γ ⊢ e : S S ≤ T

Γ ⊢ e : T
T − Sub

This rule is completely unguided, and will always be applicable if we are trying to check
or infer a type for an expression e. Moreover, it is not obvious that the subtyping relation
itself is decidable. One easy way to achieve decidability, is to annotate the subsumption rule
with a type. Typically, we have upcasts and downcasts.

Γ ⊢ e : S S ≤ T

Γ ⊢ (T )e : T
T−Up Γ ⊢ e : S

Γ ⊢ (T )e : T
T−Down

In an upcast, we ascribe a supertype of the type the type-reconstruction algorithm would
find. This is always safe. It is useful if we want to hide some information in a record for
example. In a downcast, we have no demand on the relationship between S and T . For
example, we can write the following code:

fn (x:real) => (int)x + 1

This is in general dangerous, because not all values of type real can be safely cast to
an integer. In effect, the programmer says, “I know why this can’t happen – trust me!”. To
remain safe, a compiler must verify the typing constraint during run-time.

6


