
Polymorphism and Type Inference

Brigitte Pientka

April 14, 2007

So far we have mainly been concerned with assigning a type to a given piece of code
or checking that an expression has a given type. In these notes we will explain how to
infer a type for a given expression. We will not only be able to infer some type for a given
expression, but the principal type, i.e. the most general type.

Before we discuss type inference more deeply, we will first concentrate on the role of
polymorphic types and type variables. For example, we can check that the function

double = fn f ⇒ fn x ⇒ f(f(x))

has the type : (α → α) → α → α. Intuitively this means we can use this function in
multiple ways for example, when we use it in

double (fn x ⇒ x + 2) 3

the type variable α will get instantiated to int. When we use it in

double (fn x ⇒ x) false

the type variable α will be instantiated to bool. We would like to emphasize that the
same code will get executed in both expression.

1 Type variables

We will begin by clarifying the use of type-variables. First, let us extend the definition for
types with type variables:

Types T ::= int | bool | T1 → T2 | T1 × T2 | α

What do we mean by “instantiating a type variable α with a concrete type bool in the
type α → α?” – Essentially we mean we apply a substitution to the type α → α which
replaces all free occurrences of the type variable α with the type bool. Defining substitution
is in fact straightforward:

1

[T/α](α) = T
[T/α](β) = β
[T/α](int) = int
[T/α](bool) = bool
[T/α](T1 × T2) = [T/α]T1 × [T/α]T2

[T/α](T1 → T2) = [T/α]T1 → [T/α]T2

We will write σ for the simultaneous substitution [T1/α1, . . . Tn/αn].

A crucial property of type substitutions is that they preserve the validity of typing state-
ments: If an expression e has type T and σ is a type substitution, then expression e will also
have type [σ]T .

Theorem 1.1 If Γ ` e : T and σ is a type substitution then [σ]Γ ` e : [σ]T .

1.1 Two views of type variables

Suppose we have an expression e which has type T in a context Γ, i.e. Γ ` e : T , where T
and Γ may possibly contain type variables. Then we can ask two different questions:

1. Are all substitution instances of e well-typed? That is for every type substitution σ,
we have [σ]Γ ` e : [σ]T .

2. Is some substitution instance of e well-typed? That is we can find a type substitution
σ, such that [σ]Γ ` e : [σ]T .

The first answer implies that type variables are held abstract during type checking. They
are merely place holders which can be instantiated with any concrete type. For example:

fn f ⇒ fn x ⇒ f(f(x)) has type (α → α) → α → α

By replacing α with bool, we still maintain that the function is well typed, and in fact
has exactly the same typing derivation! Holding type variables abstract in such a way leads
to parametric polymorphism. Type variables are used to encode the fact that a term can be
used in many concrete contexts with different concrete types.

In the second view, the original term e may not even be well typed. what we want to
know is whether we can instantiated the type variables such that it will be well-typed. For
example, we could ask whether there exists an instantiation for the type variables β1 and β2

s.t. the term

fn f ⇒ fn x ⇒ f(f(x)) has type β1 → β2

well-typed.
The answer to this question would be yes, if we instantiate β1 with (α → α) and β2 with

α → α. Recall that function types are parenthesized to the right.
To illustrate let us consider a few more examples:

2

1. Does there exist and instantiation for the type variables β s.t. we have

fn x ⇒ x + 1 has type β ?

Yes, if we instantiate beta to int → int.

2. Does there exist and instantiation for the type variables β s.t. we have

fn x ⇒ x has type β ?

Yes, if we instantiate β to int → int or we choose β to be bool → bool or we choose β
to be α → α.

3. Does there exist and instantiation for the type variables β s.t. we have

fn x ⇒ x + 1 has type β → bool ?

The answer is no.

The answer to whether there exists an instantiation for the type variables in T such that
an expression e has type T is not necessarily unique as the examples show. There may be
many possible instantiations. A principal solution is an instantiation σ for the free type
variables in Γ ` e : T s.t. any other solution can be obtained from it.

2 Type inference

When inferring the type for an expression e we essentially ask whether there exists an
instantiation for the type variable β s.t. e has type β. Informally, the reasoning process can
be split in two phases: inferring a type for an expression and checking that certain constraints
are satisfied. For example, to infer the type for if 3 = 1 then 55 else 44 we infer the type T
for 3 = 1, the type T1 for 55 and the type T2 for 44. In the second phase we check that
certain conditions are satisfied, namely T = bool and T1 = T2.

An expression e has a type T , if we infer some type T for e and certain constraints are
satisfied. We will concentrate first on constraint generation, and then discuss how to solve
constraints.

2.1 Constraint generation

Constraints are either true (written as tt, or consist of an equality constraints on types
(written as T1 = T2, or if C1 and C2 are constraints, then so is the conjunction C1 ∧ C2.

Constraints C := tt | C1 ∧ C2 | T1 = T2

3

To satisfy the constraint C1 ∧ . . .∧Cn all the individual constraints Ci must be satisfied.
How do constraints arise? Let us consider as an example, how we infer a type T for an

if-expression if e then e1 else e2 we will argue as follows:

1. Infer the type T ′ for expression e.

2. Infer the type T1 for expression e1

3. Infer the type T2 for expression e2

Then if e then e1 else e2 will have T1 if T ′ = bool∧T1 = T2, i.e. the listed constraints can be
satisfied.

Γ ` e ⇒ T/C Infer type T for expression e in the typing environment Γ modulo the constraints C.

Ultimately, we want that expression e will have type T if the constraints C are satis-
fied. For now however, we will just generate constraints. We will consider the typing rules
individually.

Numbers and booleans and variables First the rules for number, booleans, and vari-
ables. For these expressions there are no constraints which need to be satisfied.

Γ ` n ⇒ int/tt
t-num x:T ∈ Γ

Γ ` x ⇒ T/tt
t-var

Γ ` true ⇒ bool/tt
t-true

Γ ` false ⇒ bool/tt
t-false

If-expressions and primitive operations Next, the rule for if-expressions. It follows
our recipe from above.

Γ ` e ⇒ T/C Γ ` e1 ⇒ T1/C1 Γ ` e2 ⇒ T2/C2

Γ ` if e then e1 else e2 ⇒ T1/C ∧ C1 ∧ C2 ∧ T = bool ∧ T1 = T2
t-if

Similarly, we can define rules for our arithmetic operations.

Γ ` e1 ⇒ T1/C1 Γ ` e2 ⇒ T2/C2

Γ ` e1 + e2 ⇒ int/C1 ∧ C2 ∧ T1 = int ∧ T2 = int
t-plus

Γ ` e1 ⇒ T1/C1 Γ ` e2 ⇒ T2/C2

Γ ` e1 = e2 ⇒ bool/C1 ∧ C2 ∧ T1 = T2

t-eq

Let-expressions The rule for let-expressions is straightforward.

Γ ` e1 ⇒ T1/C1 Γ, x:T1 ` e2 ⇒ T/C2

Γ ` let x = e1 in e2 end ⇒ T/C1 ∧ C2
t-let

4

Functions The most interesting case arises for functions, since we lack the information
necessary to determine the type of the input argument. This is resolved by generating a new
type variable α.

Γ, x:α ` e ⇒ T/C

Γ ` fn x ⇒ e ⇒ α → T/C
t-fn

Before we continue, let us consider how we can infer a type for the function fn x ⇒ x+1 .
We simplify a little bit along the way and writing instead of C ∧ T just C.

x:α ` x ⇒ α/tt
t-var

x:α ` 1 ⇒ int/tt
t-num

x:α ` x + 1 ⇒ int/tt ∧ tt ∧ α = int ∧ int = int
t-plus

· ` fn x ⇒ x + 1 ⇒ α → int/tt ∧ tt ∧ α = int ∧ int = int
t-fn

Simplifying a little bit the constraints, this essentially means fn x ⇒ x+1 will have type
α → int if we can satisfy α = int. Note, that our typing derivation will now always succeed!
It may only happen that our constraints cannot be satisfied. For example, fn x ⇒ x + true
will lead to the constraints α = int ∧ int = bool. Obviously these constraints cannot be
satisfied. We give a general constraint solving algorithm in the next section. For now, let us
continue with the typing rules.

Application Let us consider application next. We recursively infer the type for e1 and e2,
and must impose certain constraints on their type respectively. We introduce a type variable
α to extract the return type of the function described by T1.

Γ ` e1 ⇒ T1/C1 Γ ` e2 ⇒ T2/C2

Γ ` e1 e2 ⇒ α/C1 ∧ C2 ∧ T1 = (T2 → α)
t-app

Let us briefly summarize. We have so far seen how to collect constraints during type
checking. This process will always succeed. However an expression is only well-typed, if
we can collect some constraints C (a process which always succeeds) and we can solve the
constraints C (a process which may fail).

2.2 Solving typing constraints

The general question we are answering in this section is whether there exists an instantiation
for the type variables in the constraint C s.t. all constraints occurring in C are satisfied.
For example,

• α = int ∧ α → β = int → bool can be satisfied by instantiating α with int and β with
bool.

• α1 → α2 = int → β ∧ β = bool can be satisfied by instantiating α1 with int and β with
bool, and α2 with bool.

5

• α1 → α2 = int → β ∧ β = α2 → α2 cannot be satisfied! The first constraint suggests
that α2 = β, but the second suggests β = α2 → α2! We can never find an instantiation
for β s.t. β = β → β!!

Solving constraints of this form is done via unification. In general, we say two types T1

and T2 are unifiable if there exists an instantiation σ for the free type variables in T1 and T2

s.t. [σ]T1 = [σ]T2, i.e [σ]T1 is syntactically equal to [σ]T2.
Unification is a general algorithm to determine whether two objects can be made syntac-

tically equal. We will present here a version which will only test whether a set of constraints
is unifiable. It will stop, if we have simplified our constraints to tt.

C ∧ tt =⇒ C
C ∧ int = int =⇒ C
C ∧ bool = bool =⇒ C
C ∧ (T1 → T2) = (S1 → S2) =⇒ C ∧ T1 = S1 ∧ T2 = S2

C ∧ α = T =⇒ [T/α]C provided that α 6∈ FV(T)
C ∧ T = α =⇒ [T/α]C provided that α 6∈ FV(T)

We can solve the constraints C by transforming C using the rules above. We terminate,
when no rules is applicable anymore. If we can transform C to the true constraint tt, i.e.
C =⇒∗ tt, otherwise we fail. We also not that solving a constraints C using the unification
rules always terminates, either showing that C is unifiable or it is not unifiable.

2.3 Type inference in practice

In practice, type inference algorithms do not strictly separate the two phases of generating
constraints and checking constraints, but rather check the constraints eagerly. This however
requires that we propagate instantiations for type-variables.

3 Polymorphism and Let-expressions

The type inference algorithm described above can be easily generalized to provide ML-style
polymorphism, also known as let-polymorphism. Let us consider again the example from
the introduction, where we defined the function double as follows:

double = fn f ⇒ fn x ⇒ f(f(x))

Since the type we infer for this function is polymorphic, we should be able to use this
function in two ways:

(a) double (fn x ⇒ x + 2) 3

(b) double (fn x ⇒ x) false

6

However, what will happen when we try to use the same double function with both
booleans and numbers? In other words, will we be able to type-check the following piece of
code?

let d = fn f ⇒ fn x ⇒ f(f(x))
x = d (fn x ⇒ x + 2) 3
y = d (fn x ⇒ x) false

in (x, y) end

The answer is in fact no. This is best explained at a simpler example. What will happen
when we try to infer a type for the following expression

let f = fn x ⇒ x in (f 3, f true) end?

We will first infer the type of let f = x in end as α → α. Next, we need to infer the type
for (f 3, f true) in the typing environment where we assume that f has type α → α. For
the expression f 3 we will infer a type β0 together with the constraints α → α = int → β0,
as demonstrated by the following derivation:

f :α → α ` f ⇒ α → α/tt f :α → α ` 3 ⇒ int/tt

f :α → α ` (f 3) ⇒ β0/α → α = int → β0

Next, let us consider the expression (f true). For this expression we will infer a type
β1 together with the constraints α → α = bool → β1, as demonstrated by the following
derivation:

f :α → α ` f ⇒ α → α/tt f :α → α ` true ⇒ bool/tt

f :α → α ` (f true) ⇒ β1/α → α = bool → β1

In order for the tuple (f 3, f true) to have some type β0 × β1 we must satisfy the
constraints:

α → α = int → β0 ∧ α → α = bool → β1

But this is impossible since α is supposed to be int and bool at the same time! What went
wrong? The problem is that we use the same type variable α for both uses of the function
f . By doing so we impose a constraint which is too strong. It requires us to use f in the
same way, not in different ways. What we’d like is to break this connection, i.e. we would
like to associate different types with the variable f . In other words, every time we use f we
can instantiate the type variable α as we need.

How can this problem be fixed? – The simplest solution is to change the rule for let-
expressions. Recall the rule for let.

Γ ` e1 : T1 Γ, x:T1 ` e2 : T

Γ ` let x = e1 in e2 end : T

7

Instead of calculating the type of e1 and then using the type in inferring the type of e2,
we will just re-calculate the type of e1 every time we need it. We will just substitute for any
occurrence of x in the expression e2 the expression e1

Γ ` e1 : T1 Γ ` [e1/x]e2 : T

Γ ` let x = e1 in e2 end : T

You may wonder whether it is necessary to type-check e1 in the first premise of this
typing rule. The answer is yes. If x does not occur in e2 we will actually never type check e1.
This is considered bad, since we would like to ensure that every expression is type-checked
without considering special cases of whether a bound variable is used or not.

There is however another more serious objection to this proposal. If x is used many times
within the body of e2, then we will re-type-check e1 multiple times. Since the right hand
side itself can contain let-bindings, this typing rule can cause the type-checker to perform an
amount of work that is exponential in the size of the original term! To avoid re-type-checking,
practical implementations actually use a more clever though equivalent reformulation of the
typing rules. To type-check the term let x = e1 in e2 end we infer the type T1 of e1. This
can be for example done by using the constraint typing rules to calculate the type S1 and
a set of constraints C1, and then solving the constraints C1 to obtain an instantiation σ for
the free type variables. We can then obtain the principal type T1 for e1 by applying σ to
S1. The type T1 may still contain free type variables. Next, we generalize over the free type
variables in T1. If α1, . . . αn are the free type variables in T1, then we write ∀α1 . . . ∀αn.T1

for the principal type scheme of the expression e1. Finally, we continue to type check e2 in
the extended context Γ, x:∀α1 . . . ∀αn.T1.

Γ ` e1 : T1 generalize(T1) = ∀α1 . . . ∀αn.T1 Γ, x:∀α1 . . . ∀αn.T1 ` e2 : T

Γ ` let x = e1 in e2 end : T

When using an assumption such as x:∀α1 . . . ∀αn.T1 we can re-instantiate all the type
variables αi appropriately as often as we need to.

The algorithm is much more efficient that the simplistic approach of substituting e1 into
the body of e2. SML’s type inference algorithm essentially builds on these described ideas.
In practice, type inference is linear in the size of the input program. However, the worst-case
complexity of type inference is still exponential as shown by Mairson and independently by
Kfoury, Tiuryn and Urzyczyn in 1990. The example they constructed involves using deeply
nested sequences of lets in the right-hand sides, which cause the types to grow exponentially.

In a full-blown programming language with let-polymorphism, we need to be a bit careful
when we try to combine polymorphism with side-effects. Consider the following SML code:

let

val r = ref (fn x => x)

in

r := (fn x => x + 1) ; (!r) true

end

8

Using the algorithm sketched above we would compute the type of fn x => x to be α =>

α. Hence the type of r is (α => α) ref. Since we have type variables, we will generalize
and continue to type-check the body with the assumption that r is ∀α.(α => α) ref. Then
the type-checker will consider the body of the let-expression. Clearly, the update of storing
the function fn x => x+1 in the reference cell r is ok. Unfortunately, also the expression
(!r) true is ok, since we only know that r is a cell which contains polymorphic functions of
type α => α. By having generalized over the type variables, we now can use this reference
cell with different instantiations for α! But this is clearly wrong! We have updated the
function which is stored in the reference cell r, and when we read from r, we do not get a
polymorphic function, but a function of type int => int, which cannot be applied to true!

The problem is that the typing rules have gotten out of sync with the evaluation rules,
and do not properly approximate anymore the runtime behavior! The typing rules see two
uses of the reference cell and analyze them under different assumptions. But at run time
only one reference cell is actually allocated. The fix used in many programming languages
is to restrict the generalization of type variables in the let-expression let x = e1 in e2 end.
Only when the expression e1 is a syntactic value, we are allowed to generalize. This is often
called the value restriction.

The value restriction solves our problem at some cost in expressiveness. we can no
longer write programs in which the right-hand side of let-expressions can both perform some
interesting computation and be assigned a polymorphic type. Surprisingly, this makes hardly
any difference in practice.

In SML, the problem arises when you try to type-check for example the following code:

- let val r = ref (fn x => x) in r end;

SML will print back to you a warning saying

stdIn:15.2-15.40 Warning: type vars not generalized because of

value restriction are instantiated to dummy types (X1,X2,...)

val it = ref fn : (?.X1 -> ?.X1) ref

This indicates that the use of r with multiple types is disallowed. Once you use r its
type will be fixed.

9

