
A brief introduction to theoretical concepts in

programming languages:formal syntax and evaluation

Brigitte Pientka

March 5, 2007

So far we have seen key concepts and programming paradigms such as higher-order
functions, data-types types, type inference, modules etc. Mainly we have learned how these
concepts are exemplified in the programming language SML, and we often introduced these
concepts by showing different examples. This gives us a good intuition of why these concepts
are valuable and how we can use them, but often we need a more solid and more precise
theoretical foundation to answer questions such as: What is the scope of a variable? What
are the legal expressions I can write? Understanding these questions will help us to better
understand the language we use. More importantly, we can also ask questions such as:
What are the expressions which will be well-typed? How does SML infer the type of a given
expression? How is the program going to be executed? How can we in general reason about
a program? These questions are extremely important to understand why some programs
are not correct or are rejected as ill-typed. In other words they will help us to debug the
program. Understanding these theoretical concepts, will also help us to write well-structured
and better code which is more likely to be correct. These notes introduce the theoretical
concepts behind programming languages.

In order to talk rigorously about how programs behave and and reason about programs,
we begin with a concise and formal specification of a programming language. Such a speci-
fication consists of three steps:

1. Grammar of the language (i.e. What are the syntactically legal expressions?)

2. Operational dynamic semantics (i.e. How is a given program executed?)

3. Static semantics (= type system) (i.e. When is a given program well-typed? What can
we statically say about the execution of a program without actually executing it?)

We will begin by considering a tiny functional language called Nano-ML, and introduce
its grammar and operational semantics. Later, we will also consider its static semantics. We
would like to emphasize that this language Nano-ML is not identical to the programming
language SML, although it share many of the main ideas. We will use this tiny fictional
language to explain some of the underlying theoretical principles and ideas which underly

1

language desing. The techniques are general enough that the apply to many real languages
such as SML, OCaml, or Haskell, and even object-oriented languages such as Java as well.

1 Inductive definitions of expressions

First, we would like to describe the legal expressions our tiny functional language consists
of. Our language will have numbers and some basic arithmetic operations, booleans and
if-statements. We will define the syntactically well-formed expressions inductively.

Definition 1.1 The set of expressions is defined inductively by the following clauses

1. A number n is an expression.

2. The booleans true and false are expressions.

3. If e1 and e2 are expressions, then e1 op e2 is an expression

where op = {+, =,−, ∗, <}.

4. If e1, e2 and e3 are expressions, then if e then e1 else e2 is an expression.

This inductive definition is often considered too verbose, and a shorter way of describing
what expressions are well-formed, is the Backus-Naur Form (BNF). The left side introduces
the the symbol for operations op and expressions e, and the right side describes recursively
the set of syntactically valid expressions. The vertical bar | indicates a choice.

Operations op ::= + | − | ∗ |<|=
Expressions e ::= n | e1 op e2 | true | false | if e then e1 else e2

This grammar inductively specifies well-formed expressions. To illustrate, we consider
some well-formed and some ill-formed expressions.

Examples of well-formed expressions

• 3 + (2 + 4)

• true + (2 + 4)

• if (2 = 0) then 5 + 3 else 2

• if true then (if false then 5 else 1 + 3) else 2 = 5

• (if 0 then 55 else 77 − 23) = 0

2

Examples of ill-formed expressions

• if true then 2 else

• −4

• +23

Note that the grammar only tells us when expressions are syntactically well-formed. The
grammar does not say anything whether a given expression is for example well-typed. In
fact, you may notice that the syntactically well-formed expressions (3) and (4) are not well-
typed. Similarly, you may argue that −4 is a perfectly sensible expression. This is of course
correct, but our grammar does not accept it as a well-formed syntactically expression, since
any operation requires two arguments.

2 Operational semantics

Next, we would like to formally describe how a given expression is going to be executed. In
this section, we will define a high-level operational semantics for the tiny language we have
seen so far. We begin by defining the evaluation judgment:

e ⇓ v Expression e evaluates to a final value v

The first question which comes to mind is: What are final values v? – In the tiny language
we have introduced so far, we expect a final value to be either a number n or a boolean, true

or false. More formally, we can write:

Values v ::= n | true | false

Now we can define recursively how to evaluate an expression by analyzing its structure.
If we have already have a value (i.e. a number n or a boolean true or false), then there is
nothing to evaluate and we will simply return this value. To evaluate the expression e1 + e2

we evaluate the sub-expression e1 to some value v1 and the sub-expression e2 to some value
v2. The final value of e1 + e2 is then obtained by adding the two values v1 and v2. In other
words, once we have values v1 and v2 we rely on our basic primitive operations of arithmetic
and add the two values v1 and v2. This is written as v1 op v2. Similarly, to evaluate the
expression e1 ∗ e2, we evaluate the sub-expression e1 to some value v1 and the sub-expression
e2 to some value v2. The final value of e1 ∗ e2 is then obtained by multiplying the two values
v1 and v2. More generally, we evaluate the expression e1 op e2 as follows:

• Evaluate sub-expression e1 to some value v1

• Evaluate sub-expression e2 to some value v2

• Compute the final value v1 op v2 by appealing to the corresponding primitive operation.

3

We will now turn the informal description given above into a formal one using inference
rules. In general, an inference rule has the following shape:

premise
1

. . . premise
n

conclusion
name

The part below the line is called conclusion while the parts above the line are called
premises. To the right, we often write the name of the rule. We can read an inference rule
as follows: To achieve the conclusion, we must satisfy each of the premises. In other words,
if the premises are satisfied, we can conclude the conclusion.

Let’s look how we can use this formal notation to describe the evaluation of expressions.
We start by defining the evaluation rules for numbers and booleans. Numbers and

booleans are already values, and hence there is nothing to evaluate and we simply return
this number. This is described by the rule b-num, b-true and b-false. Note that these
rules do not have any premises because any value evaluates to itself unconditionally.

n ⇓ n
b-num

true ⇓ true
b-true

false ⇓ false
b-false ⇓

Next, let us reconsider the evaluation of expression e1 op e2 and cast the informal recipe
given above in a more formal description.

e1 ⇓ v1 e2 ⇓ v2

e1 op e2 ⇓ v1 op v2

b-op

The rule b-op says the following: If e1 ⇓ v1 (i.e. expression e1 evaluates to some value
v1”) and e2 ⇓ v2 (i.e. “expression e2 evaluates to some value v2), then e1 op e2 ⇓ v1 op v2

(i.e. “expression e1 op e2 evaluates to v1 op v2).
Reading the rule b-op from the bottom to the top, this rules gives a recipe on how to

evaluate an expression e1 op e2, by recursively evaluate its sub-expressions. The first premise
e1 ⇓ v1 says “evaluate expression e1 to some value v1 and the second premise e2 ⇓ v2 says
“evaluate expression e2 to some value v2. Then compute the final value v1 op v2 by appealing
to the corresponding primitive operation.

Finally, let us consider the if-statement.

e ⇓ true e1 ⇓ v

if e then e1 else e2 ⇓ v
b-ift

e ⇓ false e2 ⇓ v

if e then e1 else e2 ⇓ v
b-iff

There are two rules for evaluating if-expressions. If the guard e evaluates to true, we will
evaluate the first branch (rule b-ift), and if the guard e evaluates to false, we will evaluate
the second one (rule b-iff).

4

Remark Note that the evaluation rules do not impose an order in which premises need to
be evaluated. For example, when evaluating e1ope2, we can first evaluate e1 and then e2 or the
other way round. The rule just specifies that both subexpressions need to be evaluated. Big-
step evaluation provides a high-level description of the operational semantics, and abstracts
over the order in which we evaluate sub-expressions.

Evaluation How does evaluation work with the inference rules given? – We can evaluate
an expression by applying the inference rules and constructing a derivation. Next, we give
an example of an evaluation derivation to illustrate the use of the evaluation rules.

4 ⇓ 4
b-num

1 ⇓ 1
b-num

(4 − 1) ⇓ 3
b-op

6 ⇓ 6
b-num

((4 − 1) < 6) ⇓ true
b-op

3 ⇓ 3
b-num

2 ⇓ 2
b-num

3 + 2 ⇓ 5
b-op

if ((4 − 1) < 6) then 3 + 2 else 4 ⇓ 5
b-ift

Evaluating an expression essentially means to construct such a derivation. However, there
are many expressions which do not have a value, for example true +3 or if 0 then 3 else 4 do
not have a value. So how do we know that some expressions do not yield a value? – The
answer is that there exists not derivation tree for such expressions, since there are no rules
for evaluating these expressions. For example the derivation for if 0 then 3 else 4 is stuck
because 0 ⇓ 0. But the rules for if-expressions require that the guard either evaluates to true

or to false. Since there is no rule which specifies what to do in the case where the guard
evaluates to a number, evaluation fails. Failure is handled implicitly.

3 Properties

Surprisingly, our tiny language already has some interesting properties. For example, we
know that any successful evaluation of an expression will indeed yield a value, i.e. either a
number n or a boolean true or false. This property is called value soundness . Moreover, we
know the valuation is deterministic and yields a unique value.

Value soundness If e ⇓ v1 then v1 is a value.

Determinacy If e ⇓ v1 and e ⇓ v2 then v1 = v2.

Both these properties can be proven by structural induction, but this is beyond this
course.

5

