Towards Mini-ML

Brigitte Pientka
March 9, 2007

In these notes, we will extend the language we have seen so far with variables, let-
expressions. We will do this in two steps. First, we extend our inductive definition to
allow variables, and let-expressions. Next, we will consider issues arising due to variables.
In particular we will explain the notion of a bound and free variables, overshadowing of
variables, and substitution. Finally, we are extending the operational semantics to evaluate
let-expressions.

1 Syntax for variables and let-expressions

First, we will extend our inductive definition for expressions to allow for variables and let-
expressions. We write ... to indicate we have all the previously defined expressions of
numbers, booleans, primitive operations, and if-statements.

Expressions e == ...|z|letx =e;in ey end

We will write x,y, 2z for variables. To illustrate again these new expressions, here are
some examples:

Examples of well-formed expressions
o let z = if true then 2 else 43 in 2z + 123 end
o let z = if 7 then 2 else 43 in z + false end
o letz=x+3iny+ 123 end
o letx=x+3inz+ 123 end

The last two examples are well-formed expressions, although we may not yet understand
the meaning of it. In particular, we have not clarified the status of the variables z and y
occurring in the expression.

Examples of ill-formed expressions
o let z = if true then 2 else 43 in — 123 end
eletr=3inx
o let x =3 x4+ 2end

The first expression here is ill-formed because —123 is not syntactically allowed. The
second expression is erroneous because the end is missing to indicate the end of the let-
expression. The last one is rejected because the key word in is missing.

Before we can define the operational semantics for evaluating let-expressions, we first
clarify issues arising from variables. The first question we must answer is: When is variable
bound and when is it considered free? Intuitively, a variable is considered free, if it is not
bound. We will define these two concepts next.

Free variables Fist, let us define inductively the set of free variables occurring in an
expression e. We will define a function FV which takes as input an expression e and returns
a set of the free variables occurring in e.

FV(z) = {z}
FV(ei op e3) = FV(e1) UFV(eq)
FV(if e then ey else e5) = FV(e) UFV(e;) UFV(eq)

FV(let x = ey ines end) = FVe; U (FV(ey)/ {x})

This definition also highlights the fact that a variable may become bound in the let-
expression. The let-expression let © = e; in ey end introduces a binder x which binds all the
occurrences of x in e;. An expression e which has no free variables, i.e. FV(e) = () is called
closed. The following example clarifies the concept of bound and free variables.

x is free x, y are free

. ~ ~ =
letx =5in (lety= 243 in y+z end)end

-

-~
x is free, y is bound

The subexpression y 4+ x contains the free occurrences of the variable x and y. The
variable y then gets bound in let y = x + 3 in y + = end. Hence only = remains a free. The
scope of y is only in the body of the let expression. More generally, given a let-expression
let x = ey in e5 end, the binder x binds variables occurring in es only.

To clarify let us consider the free and bound variables in the following expression:

x is free x is free
bound by x =5 bound by x = x+3
. = . — =
let z =5in (let x = r+3 in T+ end) end

In other words, a free variable x gets bound by the first binder enclosing it. Another
important property of bound variables is that their names do not matter. Clearly, it should
not matter, if we write

let z =5in (lety =2+ 3in y+ y end) end

or

let z =5in (let x =2 + 3 in x + x end) end

Both terms denote the same expression up to renaming of the bound variables. Before
we describe the evaluation of a let-expression, we will define the important operation of
substituting an expression for a free variable in another expression. We will write [¢//x]e
for replacing all free occurrences of the variable x in the expression e with the expression
e/. We will define this operation inductively on the expression e. This is straightforward
in most cases. Applying the substitution [¢//x] to a variable x clearly should return the
term €. When applying the substitution [¢’/x] to the expression e; op ez, we need to apply
[¢//x] to each of its sub-expressions. Similarly, when applying the substitution [¢//x] to the
expression if e then e; else ey, we need to apply the substitution [¢’/z] to the sub-expression

e, e1, and eg. This is defined as follows more formally:

[’/ 2] () = ¢
['/x](ex op e5) = ([¢'/z]e op [¢'/x]es)
[€'/x](if e then e; else ey) = if [¢//x]e then [¢//z]e; else [¢'/x]es

The most interesting case is what should happen when we apply the substitution [¢’/z]
to the expression let y = ey in ey end.

In the first attempt, we just apply the substitution [¢’/z] to the sub-expressions e; and
€9.

[e'/x](let y = ey in ey end = let y = [¢//z]ey in [€'/x]es end Attempt 1

This seems to work fine for this example:

[5/z](lety =2+ 3iny+zend) =
let y = [5/z)(x + 3) in [5/z](y + x) end =
let y =5+3iny+5end

However, what will happen when we try to replace the variable x with the term y + 17
Simple replacement would yield,

ly+1/z](lety =2+ 3iny+ x end)
= lety=[y+1/z](x+3)in[y+1/z](y +z) end
= lety=(y+1)+3iny+(y+1)end

But this seems wrong, since y occurred free in the term y 4+ 1, but becomes bound in
the result! This phenomena is called wvariable capture, and clearly needs to be avoided.

The key is the observation that the name of bound variables do not matter, and hence
we can always rename the bound variable y in (let y = z + 3 iny + x end) to z and
obtain (let z = = + 3 in z + x end) which is equivalent. A change of bound variables is
often called a-conversion. To ensure substitution works correctly for let-expressions, i.e.
[¢//x](let y = ey in es end, we need to impose the restriction that y does not occur free in the
expression €. This side condition can always be achieved by renaming bound variables. We
can now define more formally the last case for let-expressions:

[€//x](let y = ey in e end) = let y = [¢//x]ey in [€//x]es end
provided = # y and y & FV(¢')

The problem of variable capture occurs whenever we have bound variables. Once we
extend the language to include functions for example we will encounter the same problem.

2 Evaluation of let-expressions

Finally, we are in a position to describe formally how a let-expression will be evaluated.
Intuitively, when given an expression let z = e; in e; end, we first evaluate the expression e;
to some value v;. Next, we replace all free occurrences of x in the expression ey by the value
v; and continue to evaluate [v;/x]ey to some value ve. This can be formally described by the
following inference rule:

ey d v [v1/zles Yv

letz =e1ineyend | v

B-LET

Next, a sample derivation illustrating evaluation of a let-expression.

5—U5 B-NUM m E—EEM 5—U5 B-NUM m E—IC\T)EM
e on 5+318) 5+8u13BLET‘
505 >N (lety=5+3in5+yend) |

: - B-LET
letz=5in (lety =2+ 3in x + y end) end

3 Functions and Function application

Next we will add functions and function application. They follow the same principles we
employed when handling let-expressions. We will first introduce nameless functions as we
have encountered them in SML, and recursive functions.

Expressions e == ...|[fnz=¢€ |ejex|rec f=c¢

Before we consider evaluation, let us define the free variables occurring in a function and
substitution.

FV(e; e2) = FV(e;) UFV(e2)
FV(fnz =€) = FV(e)/ {z}
FV(rec f=e) = FV(e)/ {f}

The definition highlights that both fn x = e and rec f = e bind variables. In the first
case of fn x = e the input variable z is bound, and in the second case of rec f = e the
function name is bound.

Next, we extend the definition for substitution. Similar to let-expressions, we must be
careful to avoid the problem of variable capture.

[¢'/x](ex e2) [¢' /ey [¢'/x]es
€/x](fny=¢e) = fny=|[/z]e provided = # y and y € FV(¢')
[e'/x](rec f =€) = rec f=[e/x]e provided z # f and f & FV(¢)

Functions are considered first-class values, and hence will evaluate to themselves (see rule
B-FN). Evaluation of function application (e; e3) is done in three steps. First, we evaluate
e; which will (hopefully!) yield a function fn z = e . In addition, we evaluate e; to obtain
some value vy. Finally, we need to evaluate the function body e where we have replaced any
occurrence of x with vs.

er fne =
PN 1Ufne=e e vy [va/zlelw AP
fnr=ce |fnx=c¢e apply (e1, e2) v

This allows us to evaluate functions and function application. However, sometimes we
would also like to write recursive functions. This is handled by the construct rec f = e .
The intention is that we separate the name of the recursive function and the name of the
arguments passed to it. Intuitively, the correspondence between the function written in SML
and in our fictional language is as follows. Recall that in SML instead of writing

fun f(x) = if x = 0 then 1 else f(x-1)
we could have written
val rec £ = (fn x => if x = 0 then 1 else f(x-1))

which already resembles more our formal notation. Using our syntax, we can write this
function as :

rec f = fnx = if x =0 then 1 else f(z —1)

How do we evaluate recursive functions? — The simplest way to model recursive evaluation
is again by substitution. To evaluate rec f = e we will simply replace any occurrence of
f in e with the actual function definition rec f = e . This means that when we need call

the recursive function we will have the actual code present. This is a very simple model
which gives a very high level description and is ideally suited for reasoning about evaluation.
However, we would like to point out that this is typically not how execution of recursive
functions is implemented for real.

rec f=e¢/flelv

rec f=e v

B-REC

