
COMP 302: Midterm Exam.
5 June 2008

Please answer all questions in the space provided.

Question 1.a. (25 points) Write a function transform that has the
following behavior. The input should be a generic function f:’a -> ’b,
and the output should be a function which takes an ’a list and applies f
to all of the elements of the list. For example, the output of:

transform (fn x => 2 * x) [1,2,3,4,5]

will be

[2,4,6,8,10]

fun transform p =
let

fun t’ nil = nil
|t’ (x::xt) = p(x)::t’(xt);

in
t’

end

fun transform’ p nil = nil
|transform’ p (x::xt) = p(x)::(transform’ p xt);

Question 1. b. (5 points) What is the type of transform?

(’a -> ’b) -> ’a list -> ’b list

1

Question 2.a. (25 points) Suppose that we use the following data struc-
ture to represent full binary trees:

datatype ’a bintree = Leaf of ’a |
Node of ’a bintree * ’a * ’a bintree

Write a function predcount which takes as input a predicate function p
of type ’a -> bool as well as an ’a bintree, and returns the sum of all of
the nodes and leaves which satisfy p.

For instance, we may call predcount with a function fn x => x > 0
and an int bintree, and the result will be the total number of positive
nonzero elements in the tree.

fun predcount p (Leaf(x)) = if p(x) then 1 else 0
| predcount p (Node(Ltree, x, Rtree)) =

(predcount p Ltree) +
(predcount p Rtree) +
(if p(x) then 1 else 0);

Question 2. b. (5 points) What is the type of predcount?

(’a -> bool) -> ’a bintree -> int

(depending on your answer for 2.a, the answer might be
(’a -> bool) * ’a bintree -> int)

2

Question 3: (20 points) Consider the following function:

fun fiter (f, 1: int) = f
| fiter (f, n: int) = let

val frest = fiter (f,(n-1))
in

(fn x => f(frest(x)))
end;

What is the output of fiter (f,1)? fiter (f,2)? fiter (f,3)? Be
careful, and be precise.

fiter(f,1) => f

fiter(f,2) => (fn x => f(f(x)))

fiter(f,3) => (fn x => f((fn x’ =>f(f(x’)))x))

Question 4: In this question, you need to design an SML data type for
logical expressions. Here is the definition of a logical expression that you
should base your data type:

• true and false are logical expressions,

• variables x, y, and z are logical expressions,

• if φ is a logical expression, then ¬φ is a logical expression,

• if φ1 and φ2 are logical expressions, then φ1 ∧ φ2 (the and operator)
and φ1 ∨ φ2 (the or operator) are logical expressions.

• if φ is a logical expression and v is a variable, then ∃vφ is a logical
expression.

3

Question 4.a (10 points) Design a data type for logical expressions. Note:
it may be helpful to define a separate data type for variables.

datatype var = X | Y | Z;

datatype LExp = True | False | Var of var |
Not of LExp | And of LExp * LExp |
Or of LExp * LExp | Exists of var * LExp;

Question 4.b (10 points) A variable is bound if it is enclosed within an ∃
quantifier. Otherwise it is free. for instance, in the expression y∧(∃x(x∧y)),
the occurrence of x is bound but both occurrences of y are free.

Write a function which takes as input an expression e, a variable v, and
an assignment a (being either true or false), and produces an expression e′

which is the result of replacing all the free occurrences of v in e with a.

fun lebind (e, v, a) =
case e of

True => True
| False => False
| And(e1, e2) => And(lebind(e1,v,a), lebind(e2,v,a))
| Or(e1,e2) => Or(lebind(e1,v,a),lebind(e2,v,a))
| Not(e1) => Not(lebind(e1, v, a))
| Exists(v1, e1) =>

Exists(v1, if v1=v then e1 else lebind(e1,v,a))
| Var(v1) => if v=v1 then

if a then True else False
else

Var(v1);

4

