
Induction

Brigitte Pientka∗

January 19, 2007

In this note, we will briefly discuss how to prove properties about ML programs us-
ing induction. In particular, we will discuss proofs by “mathematical induction” and by
“structural induction.

Proofs by induction are uqiquitous in the theory of programming languages, as in most
of computer science. Many of these proofs are based on one of the following principles.

1 Mathematical induction

Mathematical induction is the simplest form of induction. When we try to prove a property
for every natural number n, we first show the property holds for 0 (induction basis). Then
we assume the property holds for n and establish it for n + 1 (induction step). Basis and
step together ensure that the property holds for all natural numbers.

There are small variations of this scheme which can be easily justified. For example, we
may start by proving the property holds for 1, if we want to prove a property for all positive
integers. There may also be two base cases, one for 0 and one for 1.

As an example, let us consider the following program power.

(* Invariant: power:int >=0 *)

fun power(n, k)=

if k=0 then 0 else n * power(n, k-1)

How can we prove that this program indeed computes nk? – To clearly distinguish
between the natural number n in our on-paper formulation and its representation and use in
a program, we will write n to denote the latter. Moreover, we will use the following notation

e ⇓ v expression e evaluates in multiple steps to the value v.
e ⇒ e′ expression e evaluates in one steps to expresion e′.
e ⇒∗ e′ expression e evaluates in multiple steps to expresion e′.

In this example, we want to prove that power(n, k) evaluates in multiple steps to the
value nk.

∗These notes are partially inspired by some notes from F. Pfenning used at CMU.

1

Theorem 1.1. power(n, k) ⇓ nk for all k ≥ 0

Proof. By induction on k.

Base Case k = 0

power(n, 0)

⇒ if 0 = 0 then 0 else n * power(n, 0-1)

⇒ if true then 0 else n *power(n,0-1)

⇒ 0 = 0 = n0

Step Case Assume that power(n,k) ⇓ nk. We have to show that power(n, k + 1) ⇓ nk+1.

power(n, k + 1)

⇒ if k + 1 = 0 then 0 else n*power(n, k + 1-1) by program

⇒ if false then 0 else n*power(n, k + 1 - 1) by program

⇒ n *power(n, k + 1 - 1) by program

⇒ n *power(n, k) by program

⇒ n ∗ nk by induction hypothesis

⇒ n ∗ nk by program

⇒ nk+1 by basic arithmetic

This proof emphasizes each step in the evaluation of the program. Often, we may not
want to go trough each single step in that much detail. However, it illustrates that when
reasoning about programs, we must know about the underlying operational semantics of the
programming language we are using, i.e. how will a given program be executed.

2 Complete induction

The principle of complete induction formalizes a frequent pattern of reasoning. To prove
a property by complete induction we first need to establish the induction basis for n = 0.
Then we prove the induction step for n ≥ 0 by assuming the property for all n′ < n and
establishing it for n. One can think of it like mathematical induction, except that we are
allowed to appeal to the induction hypothesis for any n′ < n and not just the immediate
predecessor.

These two principles should be familiar to you and are the basis for proving some funda-
mental properties about programs. As an example, we define a program for power which is
more efficient and defined via pattern matching.

2

fun power(n,0) = 1

| power(n,k) =

if even(k) then square(power(n, k div 2))

else n * power (n, k-1)

To prove that this program works correctly, we rely on the following properties which we
state as lemmas without proofs.

Lemma 2.1.

For all n, square(n) ⇓ n2.

Theorem 2.1. power((n), (k)) ⇓ nk for k ≥ 0.

Proof. By complete induction on k.

Base Case k = 0
power(n, 0)

⇒ 1

Step Case k > 0
Assume that power(n, k′) ⇓ nk′ for any k′ < k.
We have to show that power(n, k) ⇓ nk.

power(n, k)

⇒ if even k then square(power(n, k div 2))

else n * power (n, k-1)

Now we will distinguish subcase, whether k is even or odd.

Sub-Case 1 k = 2k′ for some k′ < k.

⇒ square(power(n, 2k′div 2))

⇒ square(power(n, k′))

⇒ square(nk′

) by i.h. on k′

⇒ (nk′)2 by Lemma 1

= n2k′ = nk

Sub-Case 2 k = 2k′ + 1 for some k′ < k.

⇒ n * power (n, k-1)

⇒ n * power (n, k − 1)

⇒ n * nk−1 by i.h. k − 1

⇒ n ∗ nk−1 = nk

3

3 Structural induction

When proving properties about ML programs, we typically need to reason not only about
numbers but about defined inductively data-structures, such as lists, trees etc. Structural
induction allows us to reason about the structure of the objects we are considering. This is
best illustrated by considering an example of an inductive data-type such as lists.

datatype ’a list = nil | :: of ’a * ’a list

To inductively prove a property about lists, we first prove it for the empty list nil. Then
we assume the property holds for lists t and establish it for lists h::t.

Similarly, for trees:

datatype ’a tree = Empty | Node of ’a * ’a tree * ’a tree

To inductively prove a property about trees, we first prove it for the emtpy tree Empty.
Then we assume the property holds for trees L and R, and establish it for the tree Node(a, L, R).

Inductive data-structures make it easy to reason about them inductively, since they
directly give rise to induction principles. Typically, we reason directly about their structure.
For example, we consider L and R to be sub-trees of the tree Node(a, L, R). Let us consider
the following two programs. The first one allows us to insert an element, which consists of
a key x and the data d, into a binary search tree. The second one allows us to lookup the
data d associated with some key x in a binary search tree T.

fun insert (e as (x,d)) Empty = Node(e, Empty, Empty)

| insert (e as (x,d)) (Node((y,d’), L, R)) =

if x = y

then Node(e, L, R)

else

(if x < y then

Node((y,d’), insert e L, R)

else

Node((y,d’), L, insert e R))

fun lookup x Empty = NONE

| lookup x (Node((y,d), L, R)) =

if x = y then SOME(d)

else

(if x < y then lookup x L

else lookup x R)

Let’s try to prove that when we have inserted an element (x,d) into a binary search tree
T, and then look up the data corresponding to the key x, we will get back the date d. In the
proof below we will write ⇒ ∗ when we skip over some intermediate steps.

Theorem 3.1. If T is a binary search tree, then lookup x (insert (x,d) T) ⇓ SOME(d)

Proof. By structural induction on T.

4

Base Case T = Empty

lookup x (insert (x,d) Empty)

⇒ lookup x (Node((x,d), Empty , Empty) by program insert

⇒ SOME(d) by program lookup

Step Case T = Node((y,d’), L, R)

We can assume the property holds for the sub-trees L and R.

1. lookup x (insert (x,d) L ⇓ SOME(d)

2. lookup x (insert (x,d) R ⇓ SOME(d)

Sub-case: x = y

lookup x (insert (x,d) (Node((y,d’), L, R)))

⇒∗ lookup x (Node((x,d), L, R)) by program insert

⇒∗ SOME(d) by program lookup

Sub-case: x < y
lookup x (insert (x,d) (Node((y,d’), L, R)))

⇒∗ lookup x (Node((y,d’), insert (x,d) L, R)) by program insert

⇒∗ lookup x (insert (x,d), L) by program lookup

⇒ SOME(d) by i.h.

Sub-case: y < x

lookup x (insert (x,d) (Node((y,d’), L, R)))

⇒∗ lookup x (Node((y,d’), L, insert (x,d) R)) by program insert

⇒∗ lookup x (insert (x,d), R) by program lookup

⇒ SOME(d) by i.h.

4 Generalizing the statement

From the examples, it may seem that induction is always straightforward. Often this is
indeed the case. Sometimes however we will encounter functions whose correctness property
is more difficult to prove. This is often because we need to prove something more general
than the final result we are aiming for. This is also referred to as generalizing the induction

hypothesis. There is no general recipe for generalzing the induction hypothesis, but one
common case is the following.

Consider the following two programs for reversing a list. The first one is the naive ver-
sion, while the second one is the tail-recursive version.

5

fun rev([]) = []

| rev(x::t) = rev(t)@[x]

fun rev’ ([], acc) = acc

| rev’ (x::t, acc) = rev’(t, x::acc)

We would like to prove that both programs yield the same result. Essentially we would like
to say rev(l) returns the same result as calling rev’(l,[]).

rev(l) ⇓ l’ iff rev’(l,[]) ⇓ l’

We will simplify this statement a little bit, and try to prove

rev(l) = rev’(l,[])

We will use this as an abbreviation for the more verbose statement, if rev(l) ⇓ r and
rev’(l,[]) ⇓ r’ then r = r’.

The problem arises in the step-case, when we attempt to prove

rev(x::t) = rev’(x::t, [])

On the left, the program rev’ evaluates as follows:
rev’(x::t, [])

⇒ rev’(t, x::[])

⇒ rev’(t, [x])
But now we are stuck. We cannot apply the induction hypothesis, because the statement

we attempt to prove requires that the second argument to rev’ is the empty list! The
solution is to generalize the statement in such a way that the desired result follows easily.

The following theorem generalizes the problem appropriately.

Theorem 4.1. For any list l, rev(l)@acc = rev’(l, acc)

Proof. Induction on l.

Base Case l = []
rev([])@acc

⇒ []@acc by program rev

⇒ acc by program @

⇐ rev’([], acc) by program rev’

Step Case l = x::t

Assuming, for any acc’, rev(t)@acc’ = rev’(t,acc’),
we must prove rev(x::t)@acc’ = rev’(x::t, acc’) .

6

rev(x::t)@acc

⇒ (rev(t)@[x])@acc by program rev

⇒ rev(t)@([x]@acc) by associativity of @

⇒ rev(t)@(x::acc) by Lemma

= rev’(t, x::acc) by i.h.

⇐ rev’(x::t, acc) by program

We want to emphasize that you should always state lemmas (i.e. properties) you are
relying on. In the previous example, we need to know properties of append for example.

5 Conclusion

We presented several important induction principles and examples of induction proofs. While
in practice, we will rarely verify programs completely, we may want to prove certain proper-
ties about them in practice, for example we may want to prove that some confidential data
is not leaked, or only some designated principals will have access to a given resource. These
properties will typically follow the same induction principles we have seen in these notes.

There is a wide spectrum of properties we would like to enforce about programs. Types, as
we encounter them in a language such as SML, enforce fairly simple properties. For example,
the type of the lookup function is int * (int * ’a) tree -> ’a option. While this gives
us a partial correctness guarantee, it does for example not ensure that the tree passed is a
binary search tree. On the other hand, type systems are great because they enforce a property
statically. When you change your program, the type-checker will verify if it still observes
this type property. If it doesn’t the type checker will give precise error messages, so the
programmer can fix the problem. Inductive proofs can typically enforce stronger properties
about programs than types. In fact, we can prove full correctness. However, inductive proofs
have to be redone every single time your program changes. Doing them by hand is time-
consuming. What is it we actually need to prove? How do we know when to generalize an
induction hypothesis? What happens if a proof fails? Can we give meaningful error messages
in this case? A key question is therefore how we can make type systems stronger so they
can check stronger properties statically, while retaining all their good properties. But that’s
a question for a different course :–).

7

