Fun with functions: higher-order functions

Brigitte Pientka

September 28, 2007

In this note, we will cover a very powerful programming paradigm: Higher-order func-
tions. Higher-order functions are one of the most important mechanisms in the development
of modular, well-structured, and reusable programs. They allow us to write very short and
compact programs, by abstracting over common functionality. This principle of abstraction
is in fact a very important software engineering principle. Each significant piece of function-
ality in a program should be implemented in just one place in the source code. Where similar
functions are carried out by distinct pieces of code it is generally beneficial to combine them
into one by abstracting out the varying part. The use of higher-order functions allows you
to easily abstract out varying parts.

Since abstracting over varying parts to allow code reuse is such an important principle
in programming, many languages support it in various disguises.

Step 1: Passing functions as arguments

Functions form the powerful building blocks that allow developers to break code down into
simple, more easily managed steps, as well as let programmers break programs into reusable
parts. As we have seen early on in the course, functions are values, just as numbers and
booleans are values.

But if they are values, can we write functions which take other functions as arguments?
In other words, can we write a function f:int * (int -> int) -> int? Would this be

useful? The answer is YES! It is in fact extremely useful!
k=b

Consider the following implementation of the function which computes Z k.
k=a
fun sumInts(a,b) = if (a > b) then 0 else a + sumInts(a+l,b)
k=b k=b k=b
Similarly, we can compute the function Z k* or Z k® or Z 3"
k=a k=a k=a
fun sumSquare(a,b) = if (a > b) then 0 else square(a) + sumSquare(a+l,b)
fun sumCubes(a,b) = if (a > b) then 0 else cubes(a) + sumCubes(a+1,b)
fun sumExp (a, b) = if (a > b) then O else exp(2, a) + sumExp(atl, b)

1

All these functions look very similar, and the code is almost the same. But obviously,
the sum depends on what function we are summing over! It is natural to ask, if we can
write a generic sum function where we only give a lower bound a, and upper bound b, and
a function f which describes what needs to be done in each iteration. The answer is, YES,
we can! Here is how it works:

(x* sum: (int -> int) * int * int -> int *)
fun sum(f,a,b) =

if (a > b) then O

else (f a) + sum(f,a+1,b)

We can then easily obtain the previous functions as follows:

fun sumInts’(a,b) = sum(fn x => x, a, b)

fun sumCubes’(a,b) = sum(cube, a, b)

fun sumSquare’(a,b) = sum(square, a, b)

fun sumExp’(a,b) = sum(fn x => exp(2,x), a, b)

Note that we can create our own functions using fn x => e, where e is the body of the
function and x is the input argument, and pass them as arguments to the function sum. Or
we can pass the name of a previously defined function like square to the function sum. In
general, this means we can pass functions as arguments to other functions.

What about if we want to sum up all the odd numbers between a and b?

(* sum0dd: int -> int -> int *)
fun sumOdd (a, b) =
let
fun sum’ (a,b) =
if a > b then 0
else a + sum’(a+2, b)
in
if (a mod 2) = 1 then
(* a was odd *)
sum’ (a,b)
else
(* a was even *)
sum’ (a+1, b)
end

This seems to suggest we can generalize the previous sum function and abstract over the
increment function.

fun sum’ (f, a, b, inc) =
if (a > b) then O
else (f a) + sum’(f,inc(a),b, inc)

Isn’t writing products instead of sums similar? — The answer is also YES. Consider the
following code for computing the product of a function f(k) for k between a and b.

(* product : (int -> int) * int * int * (int -> int) -> int *)
fun product(f, a, b, inc) =
if (a > b) then 1
else (f a) * product(f, inc(a), b, inc)
(* Using product to define factorial. *)
fun fact n = product(fn x => x, 1, n, fn x => (x + 1))

The main difference is two-folded: First, we need to multiply the results, and second we
need to return 1 as a result in the base case, instead of 0.

So how could abstract over addition and multiplication to generalize the function product
and sum and define a function series which in addition to a function f:int -> int, a
lower bound a:int, an upper bound b:int, increment function inc:int -> int and an
accumulator for the result r:int also takes a function comb:int * int -> int to combine
the results. Our goal is to write this function tail-recursive and by instantiating comb with
addition we obtain the function sum and by instantiating it with multiplication we obtain
the function prod.

fun series(comb,f,a,b,inc,r) =
let
fun series’ (a, r) =
if (a > b) then r
else
series’ (inc(a), comb(r, f(a)))
in
series’(a, r)
end
fun sumSeries (f,a,b,inc) = series(fn (x,y) => x +y, f, a, b, inc, 0)
fun prodSeries (f,a,b,inc) = series(fn (x,y) => x * y, f, a, b, inc, 1)

Ok, we will stop here. Abstraction and higher-order functions are very powerful mecha-
nisms in writing reusable programs.

Example 1: Integral

Let us consider here one familiar problem, namely approximating an integral. The integral
of a function f(x) is the area between the curve y = f(x) and the z-axis in the interval [a, b].
We can use the rectangle method to approximate the integral of f(z) in the intervalla, b],
made by summing up a series of small rectangles using midpoint approximation.

f(a+(dx/2)

a
at+(dx/2)
To approximate the area between a and b, we compute the sum of rectangles, where the
width of the rectangle is dx. The height is determined by the value of the function f. For
example, the area of the first rectangle is dx x f(a + (dz/2)).
Then we can approximate the area between a and b by the following series, where [=
a+ (Ax)/2 is our starting point.

fabf(:v)d:)s ~ f(l)xdx+ f(l+de)«de+ f(l+de+dx)«dx+ ...
=drx(f(l)+ f(l+de)+ f(l+2xdx)+ f(l+3*dx)...)

Assuming we have an iterative sum function sumR for reals, we can now compute the
approximation of an integral as follows:

fun integral(f,lo,hi,dx) =
dx * sumR(f,(lo + (dx / 2.0)), hi, fn x => (x + dx))

This is very short and elegant, and directly matches our mathematical theory.

Combining higher-order functions with recursive data-types

We can also combine higher-order functions with recursive data-types. One of the most
common uses of higher-order functions is the following: We want to apply a function f to
all elements of a list.

(*x map: (’a -> ’b) -> ’a list -> ’b list *)
fun map f nil = nil
| map £ (h::t) = (f h)::(map f t)

4

We can also filter out all the elements in a list which fulfill a certain predicate p:’a ->
bool.

(x filter: (’a -> bool) -> ’a list -> ’a list *)
fun filter p (nil) = nil
| filter p (x::1) =
if p(x) then x::filter p 1
else filter p 1;

Step 2: Returning functions as results

In this section, we focus on returning functions as results. We will first show some simple
examples demonstrating how we can transform functions into other functions. This means
that higher-order functions may act as function generators, because they allow functions to
be returned as the result from other functions.

Functions are very powerful. In fact, using a calculus of functions, the lambda-calculus,
we can cleanly define what a computable function is. The lambda calculus is universal in the
sense that any computable function can be expressed and evaluated using this formalism. It
is thus equivalent to the Turing machine formalism and was originally conceived by Alonzo
Church.

The question of whether two lambda calculus expressions are equivalent cannot be solved
by a general algorithm, and this was the first question, even before the halting problem, for
which undecidability could be proved. The lambda calculus is also the foundation for many
programming languages in particular functional programming.

Example 2: Currying and uncurrying

Currying has its origins in the mathematical study of functions. It was observed by Frege
in 1893 that it suffices to restrict attention to functions of a single argument. For example,
for any two parameter function f(x,y), there is a one parameter function f’ such that f’(x)
is a function that can be applied to y to give (f'(z))(y) = f(z,y).

This idea can be easily implemented using higher-order functions. We will show how
we can translate a function £ : ’a * ’b -> ’c which expects a tuple x:’a * ’b into a
function £ : ’a -> ’b -> ’c to which we can pass first the argument of type ’a and
then the second argument of type ’b. The technique was named by Christopher Strachey
after logician Haskell Curry, and in fact any function can be curried or uncurried (the reverse
process).

(* curry : ((CCa * ’b) -> ’¢c) => (Pa => ’b -> ’c) *)
fun curry f = (fn x => fn y => £ (x,y))

(* uncurry: (Pa => ’b -> ’¢c) -> ((Pa * ’b) -> ’c) *)
fun uncurry f = (fn (y,x) => f y x)

5

To create functions we use the nameless function definition fn x => e where x is the in-
put and e denotes the body of the function. Recall that the following two function definitions
are equivalent:

val id fn x => x

fun id x X

Another silly function we can write is a function which swaps its arguments.

(k swap : (Pa * ’b => ’c) > (’b *x ’a -> ’c) *)
fun swap f = (fn (x,y) => f (y,x))

Example 3: Derivative

A bit more interesting is to implement the derivative of a function f. The derivative of a
function f can be computed as follows:

d, x+e)— f(z
U fat o - f)
dr =0 €
We can approximating the result of the derivative by choosing € to be some small number.
Then given a function f:real -> real and a small number dx, we can compute a function

£’ which describes the derivative of f.

fun derive (f, dx) = (fn x => (f (x + dx) - f(x)) / dx)

Example 4: Partial evaluation and staged computation

Staged computation refers to explicit or implicit division of a task into stages. It is a
standard technique from algorithm design that has found its way to programming languages
and environments. Examples are partial evaluation which refers to the global specialization
of a program based on a division of the input into static (early) and dynamic (late) data, and
run-time code generation which refers to the dynamic generation of optimized code based
on run-time values of inputs.

For example, given the following generic function,

(x funkyPlus : int -> int -> int *)
fun funkyPlus x y = x * x + y

we can first pass it 3. This will generate the partially evaluated function fn y => 3 *
3 +v.

(* plus3 : int -> int *)
val plus3 = (funkyPlus 3)

We only partially evaluate the funkyPlus function by passing only one of the arguments
to it. This yields again a function! We can see that templates, which occur in many
programming languages are in fact nothing more than higher-order functions.

How would be generate a function which fixes y, but awaits still the input x?

val plus3’ = (fn x => funkyPlus x 3)

The idea of partial evaluation is quite powerful to achieve code which can be configured
during run-time and code which can achieve considerable efficiency gain.
Consider we have first defined a horrible computation:

(* val horriblecomputation : int -> int *)
fun horriblecomputation(x:int):int =
let fun ackermann(0O:int, n:int):int = n+1
| ackermann(m, 0) = ackermann(m-1, 1)
| ackermann(m, n) = ackermann(m-1, ackermann(m, n-1))
val y = Int.abs(x) mod 3 + 2
fun count(0) = ackermann(y, 4)
| count(n) = count(n-1)+0*ackermann(y,4)
val large = 1000
in
ackermann(y, 1)*ackermann(y, 2)*ackermann(y, 3)*count(large)
end;

Next, we define a function £1, which calls this horrible function.

(* val f1 : int * int -> int *)
fun f1 (x:int, y:int) : int =
let
val z = horriblecomputation(x)
in
z +y
end;

If we execute f1 on a few instantiations, where the first instantiation for x does not
change, then we have to execute this horrible computation each time.

val resultl = f1(10, 5);
val result2 = f1(10, 2);
val result3 = f1(10, 18);

Would it help to write a curried version?

(* val f2 : int -> int -> int *)
fun f2 (x:int) (y:int) : int =
let

val z = horriblecomputation(x)
in

z+y
end;

Can’t we then compute the following function £2°:

(x val f2’ : int -> int x*)
val f2° = £2 10;

What will happen? — Well, let’s see....The function £2 is equivalent to the following :

val f2 =
fn x => fny =
let
val z = horriblecomputation(x)
in
z+y
end;

If we apply it to 10, then according to our operational semantics, this will evaluate to

fn y =>
let
val z = horriblecomputation(10)
in
z+y
end;

We have achieved nothing, since the horrible computation is hidden within a function,
and we never evaluate inside functions! As a consequence we will compute the horrible
computation every time we call the function £2’. But this is exactly what we wanted to
avoid!

How can we generate a function which will only compute the horrible computation once
and capture this result so we can re-use it for different inputs of y? — The idea is that we need
to factor out the horrible computation. When given an input x, we compute the horrible
computation yielding z, and then create a function which awaits still the input y and adds
y and z.

fun £f3 (x:int) : int -> int =

let

val z = horriblecomputation(x)
in

(fn y => z + y)
end;

If we now create a function £3’ s.t.

(x val 3’ : int -> int x*)
val f3° = £3 10;

we have done the horrible computation once, and created a closure which stores its result.
Hence, when we use £3’, we do not need to re-evaluate the horrible computation.

This idea of staging computation is based on the observation that a partial evaluator can
convert a two-input program into a staged program that accepts one input and produces
another program that accepts the other input and calculates the final answer. The point
being that the first stage may be run ahead of time (e.g. at compile time) while the second
specialized stage should run faster than the original program. Many current compilers for
functional programming employ partial evaluation and staged computation techniques to
generate efficient code. It is worth pointing out that to understand this optimization, we
really need to understand the operational semantics of how programs are executed.

Continuations

Generally speaking, a continuation is a representation of the execution state of a program
(for example, a call stack) at a certain point in time. Many languages have constructs that
allow a programmer to save the current execution state into an object, and then restore
the state from this object at a later point in time (thereby resuming its execution). One
can distinguish between first-class continuations (which are not available in Standard ML,
although the SML NJ implementation provides them?), and functions as continuations. In
these notes we only talk about the latter. Thus we do not refer to an extension of the
language, but a particular programming technique based on higher-order functions.

A tail-recursive append function

Let us consider the function append: ’a list * ’a list -> ’a list that appends two
lists.

fun append([], k) =k
| append(h::t, k) = h::append(t,k)

This function is not tail-recursive, since it applies the list constructor :: to the result of
the recursive call append (t,k). Nonetheless, this function is quite efficient and the definition
above is fully satisfactory from a pragmatic point of view.

But one may still ask, if there is a way to write an append function in tail-recursive form.
The answer is “yes”, although it will be less efficient than the direct version above. In fact,
it is a deep property of ML that every function can be rewritten in tail-recursive form!

Suppose we have a function f:’a -> ’b and would like to rewrite it as a function £’ in
tail-recursive form. The basic idea is to give f” an additional argument called a continuation,
which represents the computation that should be done on the result of £ In the base case,
instead of returning a result, we call the continuation. This means that £’ should have the

type
f’: ’a > (b > ’¢c) > ’c

In the recursive case, we add whatever computation should be done on the result to the
continuation. So a continuation is like a functional accumulator! Or to put it differently, it
will be a stack of functions.

When we use this function to compute £ we give it the initial continuation which is often
the identity function, indicating no further computation is done on the result.

Applying this basic idea to append yields the following:

(* app_tr: ’a list * ’a list * (’a list -> ’b) -> ’b %)
fun app_tr([], k, cont) = cont k
| app-tr(h::1, k, cont) = app_-tr(l, k, fn r => cont (h::r))

The first line implements the idea that instead of returning the result k we apply the
continuation to k. The second line implements the idea that instead of constructing

x: :append(1,k)

we call app_tr recursively on 1 and k, adding the task of prepending x to the argument
r of the continuation cont. To illustrate how the functional accumulator is built during the
recursive calls; consider the following sample computation.
app_tr([1,2], [3,4], fn r => 1)
app-tr([2], [3,4], fn rl => (fn r => r) (1::r1))
— app-tr([l, [3,4], fn r2 => (fn r1 => (fn r => r) (1::r1)) (2::r2)) (%)
= (fnr2 => (fnrl => (fnr =>1r) (1::r1)) (2::r2)) [3,4]
= (fnrl => (fnr =>1r) (1::1r1)) (2::[3,4]))
_—
_—

!

(fn r => r) (1::2::[3,4])
(1::2::[3,41)

This example illustrate how we build up a stack of functions as an accumulator, which
keeps track of the computation we still need to do. Although the function is now tail-
recursive, we have not saved anything, since we build up and then call the continuation. The
benefit of continuations is not necessarily in gaining efficiency, but they provide us with a
direct handle on future computation.

10

Using continuations as function generators

Let us consider again the following simple program to compute the exponent.

(* pow k n = n"k *)
fun pow O n =1
| pow k n = n *x pow (k-1) n

While we wrote this program in curried form, when we partially evaluate it with k = 2
we will not have generated a function “square”. What we get back is the following:

fnn=>nx*xpow ln

The recursive call of pow is shielded by the function abstraction (closure). One interesting
question is how we can write a version of this power function which will act as a generator.
When given 2 it will produce the function “square”, when given 3 it produce the function
“cube”, etc. So more generally, when given an integer k it will produce a function which
computes n*x...*xn* 1.

—_—

k
The simplest solution, is to factor out the recursive call before we build the closure.

fun powG 0 = (fn n => 1)
| powG k =
let
val cont = powG (k-1)
in
fnn => n * (cont n)
end

This allows us to compute a power generation function. To illustrate, let us briefly
consider what happens when we execute powG 2. Let us first start with powG 1

powG 2)

let val ¢ = powG O in (fn n =>n * c n) end

let val ¢ = (fnn => 1) in (fn n => n * c n) end
(fnn =>n * (fn => 1) n)

iy

powG 2)
= let val ¢ = powG 1 in (fn n =>n * c n) end
= let val c (fnn=>n* (fn => 1) n) in (fn n => n * ¢ n) end
= (fn n2 => n2 * (fn nl1 => nl * (fn n0 => 1) nl) n2)

Is this final result really the square function? — Yes, it is. Intuitively, this function is
equivalent to

11

fn n2 => n2 *x n2 * 1

Intuitively, all the function applications can be reduced as follows:

(fn n2 => n2 * (fn n1 => nl1 * (fn n0 => 1) nl) n2)
reduces to (fn n2 => n2 * n2 (fn n0 => 1) n2)
reduces to (fn n2 => n2 * n2 * 1)

So yes, we will have generated a version of the square function. However, the program
is not tail-recursive. We will solve this problem using continuations. We can think of the
continuation as a higher-order accumulator. The basic idea is to give the power function an
additional argument called a continuation, which represents the computation that should be
done on n. In the base case where k = 0, we will return the continuation. In the recursive
case, we built up a new continuation (= function) describing what computation should be
done on n! Applying this idea to write a power generator we get:

(* powGen: int -> (int -> int) -> (int -> int) *)
fun powGen O cont = cont
| powGen k cont = powGen (k-1) (fn n => n * (cont n))

How do we initialize the continuation to kick off the computation? It will be fn n0 =>
1. It is the generator for k = 0. Now we can consider what will happen when we ask to
generate the square function by executing powGen 2 (fn n0 => 1)

powGen 2 (fn n0 => 1)

powGen 1 (fn nl => nl1 * (fn n0 => 1) nl)

powGen 0 (fn n2 => n2 * (fn nl => nl * (fn n0 => 1) nl) n2)
(fn n2 => n2 * (fn n1 => nl * (fn n0 => 1) nl) n2)

L4l

We note the function is directly built in as the second argument of the function powGen.

Control with continuations

In the case of appending two lists and even in the power generation function, continuations
can be applied, but they do not necessarily help us in writing simpler or more efficient code.
However, in functions with more complex control flow, they can often be used to advantage.
Here we will discuss two examples.

Finding element in a tree

The first example demonstrates a continuation-style implementation for finding an element
d in a binary tree T which satisfies some property p. If such an element d exists, then we
return SOME(d), otherwise we return NONE. This problem can be solved straightforwardly as
follows:

12

datatype ’a tree =
Empty | Node of ’a tree * ’a * ’a tree

(* Finding an element d in the tree T s.t. p(d) is true x)
(x find: (’a -> bool) * ’a tree -> ’a option *)
fun find(p, Empty) = NONE

| find(p, Node(L, d, R)) =

if (p d) then SOME(A)

else

(case find(p, L) of
NONE => find(p, R)
| SOME(d’) => SOME(d’))

However, this solution is slightly unsatisfactory, since in every recursion we check, if we
have found an element in the left tree (see recursive call £ind(p,L)). If we actually did find
an element, we pass this information SOME(d’) back and must propagate this information
up. This seems unnecessary, because once we found an element d which satisfies the property
p, we would like to simply return. Rewriting this function using continuations we can in fact
achieve this.

(x find tr: (’a -> bool) * ’a tree * (unit -> ’a option) -> ’a option *)
fun find tr(p, Empty, cont) = cont ()
| find tr(p, Node(L, d, R), cont) =
if (p d) then SOME(d) (x 1 %)
else find tr(p, L, fn () => find tr(p, R, cont))
fun find’ (p, t) =
find tr(p, t, fn () => NONE) (x 2 %)

The continuation cont keeps track of the work we still need to do, i.e. it keeps track
of the tree we still need to traverse. However, if we found an element d which satisfies
the property p (see line (* 1 *)) we simply return the result SOME(d) and throw away the
continuation. The continuation plays the role of a failure continuation, since it keeps track
of what to do when we have not found an element d which satisfies p. Similarly, we often
want to keep track what to do upon success. In this case, the continuation is often called
success continuation. The next example is such an example.

Regular expression matcher

Next, we discuss the implementation of a simple regular expression matcher. Regular expres-
sion matching is a very useful technique for describing commonly occurring patterns. For
example, the unix shell provides a mechanism for describing a collection of files by patterns
as *.sml or hw[1-3].sml. The emacs editor provides an even richer language for regular
expressions.

13

Typically, the patterns can be

e Singleton : matching a specific character
e Alternation: choice between two patterns
e Concatenation: succession of patterns

e [teration : indefinite repetition of patterns

Note that regular expressions provide no concept of nesting of one pattern inside another.
For this we require a richer formalism, namely context-free language. We can describe regular
expressions inductively:

regular expressionr = a |7 re| 0|1y +ro| 1| 7*

where a represents a single character from an alphabet. We say a string s matches a
regular expression r, iff s is in the set of terms described by r. So for example:

e a(p*)l(e +y) would match apple or apply.
e g(1+r)(e+ a)y would match grey, gray or gay.
e g(1+ 0)*(gle) would match google, gogle, goooogle or ggle.

In general, we can describe a simple algorithm for a regular expression matcher as follows:

e s never matches 0

s matches 1 iff s is empty.

s matches a iff s = a.

s matches r; + rq iff either s matches r{ or ry

s matches r; ro iff s = 51 s, where s; matches r; and sy matches rs.

s matches r* iff either s is empty or s = s; s, where s; matches r and s matches r*.

To implement regular expression matcher, we first need to define our regular expressions.
We can do this straightforwardly by the following datatype definition:

datatype regexp =

Char of char | Times of regexp * regexp | One | Zero |
Plus of regexp * regexp | Star of regexp

14

Next, we will write a function acc which takes a regular expression, a character list, and
a continuation, and yields a boolean value. Informally, the continuation determines how to
proceed once an initial segment of the given character list has been determined to match
the given regular expression. The remaining character list is passed to the continuation to
compute the final result.

fun acc (Char(c)) [] k = false
| acc (Char(c)) (cl::8) k = (¢ = c1) andalso (k s)
| acc (Times(rl, r2)) s k =
acc rl s (fn s’ => acc r2 s’ k)
| acc (One) s k =k s
| acc (Plus(rl, r2)) s k =
acc rl s k orelse acc r2 s k
| acc (Zero) s k = false
| acc (Star(r)) s k =
(k s) orelse acc r s (fn s’ => not(s = s’) andalso acc (Star(r)) s’ k)

What is the initial continuation with which we should call acc? We stop when the
remaining character string is empty, i.e. we have exhausted our input string. Hence, the
initial continuation must test this, i.e. (fn 1 => 1 = []).

(* accept : regexp * string -> bool *)
fun accept r s = acc r (String.explode s) (fn 1 =>1 = []) ;

One final remark: out top-level matcher accept takes in as input a regular expression
describing the pattern r and a string s for which we must decide whether it is accepted by
the pattern r. To easily process the string sequentially, we “explode” the string s into a list
of characters.

15

