Environment model

Brigitte Pientka
February 5, 2007

Introduction

So far, we have taken a high-level view of the operational semantics. Our evaluation rules
are based on substitutions. An advantage of the substitution model is that it is simple and
easy to use in proving properties about programs. It provides a high-level abstract view of
how programs are evaluated. Recall the rule for evaluating functions:

(fn z =>e) v — [v/z]e
let z=v in e — [v/z]e

Although this high-level view is convenient, because it abstracts over many implemen-
tation details and allows us to easily reason about programs and their behavior, it has also
some drawbacks. One drawback is that we copy the value of v multiple times, if x occurred
multiple times in the expression e. It would be nicer and more efficient, if we could just re-
member this binding between x and the value v in an environment, and if we need it during
evaluation of the expression e, we just look it up in the environment. The other drawback
of the substitution model is that it does not easily extend to references and assignment. To
illustustrate, consider how one would evaluate

let

val x = ref O
in

(x :=3); (Ix)
end

If we use a substitution model this leads to

[ref 0/x]((x := 3);(!Ix))=
(ref 0) :=3 ; (!(ref 0))

This seems horribly wrong, since the result would be 0, instead of 3. We would read
from a reference cell with content 0, instead of reading from a reference cell with content 3.
The essence of the problem is that substitutions do not keep track of state, or update of a
location in memory. Although the substitution model can be extended to keep track of state
and memory locations, we will take a different path here in this note.

We will introduce a different evaluation model, the environment model. 1t will provide
a different view of evaluation where the environment keeps track of the binding between a
variable name and a value. It provides a lower level view of the operational semantics, which
is one step closer to an implementation, and gives a good explanation for references.

First, let us introduce some terminology.

Terminology

1. A binding is the association between the name of a variable and a value. A name can be
the name of a variable, the name of a function, or the name of a memory location. For
instance, in the expression let val x = 10 in x + 3 end, we encounter the binding
between the name x and the value 10. Similarly, in the expression val square = (fn
X => x * x), we have the binding between the name of the function square, and its
input argument x and the function body x * x. Finally, in the expression let val x
= ref 2 in !x + 3 end, we have the name x which is bound to a location in memory
where we store 2.

2. A frame is a collection of zero or more bindings, as well as a pointer to another frame,
which is called its enclosing environment. An environment is a structured collection of
frames, starting from a particular frame and going back through each frame’s enclosing
environment until the global environment is reached.

In the environment model, an expression is always evaluated in the context of a particular
environment. The environment determines what values correspond to the names occurring
in the expression. The purpose of an environment is to provide a way to associate a value
with a particular name. The way this works is that the first frame in the environment is
searched to see if it contains a binding for that name. If so, the associated value is used.
If not, the first frame of the enclosing environment is searched, and so on up to the global
environment. If the name is not found there, an error is reported.

There are three different possible bindings. We may bind a variable name to an integer,
real, etc, or we may bind a variable name to a function (= closure) or we may bind it to a
location in memory. Let’s look at some examples. A binding is typically represented by a
box with two parts. The left part has the name of the binding while the right part either
contains the value (if the value is an integer, boolean, etc) or, if the structure is too large, it
contains a pointer to another structure (= box).

val x = 10;
fun fact n = if n = 0 then 1
else n * fact(n-1)

ifn=0then 1
else n * fact(n-1)

First, we encounter the binding of the name x to the value 10. We have drawn a box
with two parts, to represent this binding in the picture. Next, we encounter a function fact.
The binding between the name of the function fact and a pointer another structure which
contains the function body if n = 0 then 1 else n * fact(n-1), the input argument n,
and a pointer again back to the name of the function fact. Hence we build up a stack of
bindings, where possibly later bindings can refer to earlier ones.

Note that the pointers or arrows are indicating where we need to look up the current
binding. Since val x = 10 is declared before the function definition of fact, there is a
pointer from fact to the binding for x.

To look up a binding for x, we would follow the pointers (or arrows) until we find the
first binding for it. So let us consider the next example.

let
val x = 10; val x = 10; val x = 10
val x = 5; funfoor=x*r; funfoor=x*r
val x = 5; valx=5
in
foo x
end

The left part illustrates what happens if we have first a declaration val x = 10 which
is followed by another declaration val x = 5. The new binding for x is simply put next to
the first binding for x. If we would insert a simple function foo betwen the two bindings, we
can see that this new binding for foo will only refer to the first binding where x is bound
to 10, since it only can refer to earlier bindings. So in order to look up the value for x, we
can follow the arrows, and will end up at x is bound to 10. To the far right we see what
happens when we evaluate foo x in this environment. We create a new binding between r
and 5. Note that this binding is pointing to the function foo. So when we evaluate the body
of foo, and we have to look up the binding for x, we follow the pointers to where x is bound
to 10. Hence we must evaluate 10 * 5 = 50.

Next, we show what happens when evaluating square x in the environment where we

have defined val x =

10, fun square n

n * n, and fun fact n

.... We will use a

more compact representation of the bindings for x, square, and fact, and combine them in
one frame, where we have multiple bindings.

Y

A

X 10
square

n*n

fact
if n=0then1
else n * fact(n-1)

X 10
square

n*n

fact
if n=0then1

else n * fact(n-1)

val x =10
funsquaren=n*n
fun factn =
ifn=0then1

else n * fact(n-1)

square x

n 10

10*10 =100

To evaluate square x, a new frame is created with a binding between the input argument
n of the square function and the value 10. Where did we get this value from? We looked
above the definition for the square function. The body of square n * n will be executed
with this binding. Hence we compute 10 * 10 which will evaluate to 100. After evaluation

the frame with the binding n to value 10 will be removed.

To illustrate what happens when we have recursion, consider evaluating the factorial

function fact.

X 10
square

n*n

fact
if n=0then1
else n * fact(n-1)

val x =10
funsquaren=n*n
fun factn =
ifn=0then1

else n * fact(n-1)

,,,,,,,,,,,,,,,,,

X 10
square

n*n

fact
if n=0then1
else n * fact(n-1)

fact (x — 8)

Again a new frame is created to keep track of the binding between the input n to fact
and its current value. In the first step we must evalue fact (x - 8). Since x is bound to
10, this means we need to bind the input argument n to fact to 2. This is the top most
binding in this frame. When executing the body of fact, namely if 2 = 0 then 1 else 2
x fact (1), we call factorial recursively. Now the inupt argument is bound to 1. Therefore

4

we establish another binding for n which will point to the previous binding where n was 2.
So in every recursion step, we will keep track of the binding between the input argument and
the current value it is bound to, until we have reached the final value. It is worth mentioning
that the environment model only keeps track of bindings. The computation still to be done
in each recursion is typically tracked by a run-time stack which we do not model in these
notes.

As we have mentioned in the beginning, we can not only have a binding between a name
and a number or a name and a function, but also between a name and a location. This way
we can model references. References are represented by a name and a pointer to a memory
location (or cell). To demonstrate the differences between the binding of a name introduced
for example by a let-expression, and the binding of a name to a location, we will rewrite
some of the previous examples slightly. First, consider what happens if we have two bindings
for x, where the first one is a pointer to a location with content 10, while the second one is
a pointer to a location with content 6.

x T x T x T
x T
x [
[r [5]
val x = ref 10; val x = ref 10; val x = ref 10; val x = ref 10;
val x = ref 5; funfoor= (Ix) *r; funfoor= (Ix)*r; Lu_n_fgp r=(*r
X = =

foo (1)

Let us consider what happens, if we modify the previous example slightly. In the middle,
we see the representation for the function fun foo r = (!x)*r. The interesting bit comes
when we update x, as seen on the right. Assignment directly modifies the cell associated
with x, and replaces the previous value 10 with the new value 5.

Next, we consider two more complicated examples:

let x =1 in
let y = (let u =3 in u + x end) in
let x = 2 in
X +y
end
end
end

On the right, we see how the bindings for x, y, and u are established. Note that we do
not yet have a value for y. The binding for u is only temporary. Once we have computed
the value for y, we remove the binding of u. The left shows the next stage after computing
the value for y.

A final example combines the ideas we have seen so far.

let x =1 in
let £ = (let u=31in (fny =>u + y + x) end) in
let x = 2 in
f(x)
end
end
end

The following model describes what happens. On the right we have the environment
built before we execute the body of the let-expression f(x). On the left, we see that the
binding for y is established before the execution of the function body uty+x.

U+y+x
X

3+2+1 =6

The final result of this computation is 6.

Summary

The environment model can be summarized as follows:
An environment is a structured collection of frames. Each frame is a box (possibly empty)
of bindings, which associate variable names with their corresponding values. (A single frame

6

may contain at most one binding for any variable.) Fach frame also has a pointer to its
enclosing environment. The value of a variable with respect to an environment is the value
given by the binding of the variable in the first frame in the environment that contains a
binding for that variable. If no frame in the collection specifies a binding for the variable,
then the variable is said to be unbound in the environment.

