
COMP 302: Assignment 3, Summer 2008.
SML datatypes, closures

Due Date: June 27th in my office (McConnell 106) or on June 26th in class.

Guidelines for submission: For this assignment, please print out a few test cases to
demonstrate the correctness of your work. I emphasize that hand-written outputs are not
sufficient.

Question 1: (30 points) Recall the logical expressions defined in the last question of the
midterm:

• true and false are logical expressions,

• variables x, y, and z are logical expressions,

• if φ is a logical expression, then ¬φ is a logical expression,

• if φ1 and φ2 are logical expressions, then φ1 ∧φ2 (the and operator) and φ1 ∨φ2 (the
or operator) are logical expressions.

• if φ is a logical expression and v is a variable, then ∃vφ is a logical expression.

A variable is bound if it is enclosed within an ∃ quantifier. Otherwise it is free. If an
expression contains no free variable we say it is closed. We will use the following datatype
to encode logical expressions:

datatype var = X | Y | Z;

datatype LExp = True | False | Var of var |
Not of LExp | And of LExp * LExp |
Or of LExp * LExp | Exists of var * LExp;

We can define the value of a closed expressions inductively as follows:

• the value of true and false are true and false respectively,

• if φ has value true, then ¬φ has value false and vice-versa,

• φ1 ∧ φ2 has value true if both φ1 and φ2 are true, and false otherwise, φ1 ∨ φ2 has
value true if either φ1 or φ2 are true and false otherwise.

1

• ∃vφ is true if there exists an assignment a ∈ {true, false} to the free occurrences of
v in φ which makes φ evaluate to true.

Now, construct a function of type LExp-> bool option which returns NONE if the
expression is not closed, otherwise it returns SOME(a) where a is the value of the input
expression.

Question 2: (30 points) Suppose we have a numbering system with multiplication and
addition defined. We can encode this into a structure matching the following signature:

signature RING =
sig

type t
val add: t*t->t
val mult: t*t->t
val ONE: t
val ZERO: t
val toString: t->string

end;

Implement structures matching the signature above for a) ints, b) reals, c) rationals,
and d) bignums.

Question 3: (40 points) The following is a generic template for expression trees consisting
of addition and multiplication operators:

datatype ’a expr = Add of ’a expr * ’a expr |
Mul of ’a expr* ’a expr | Leaf of ’a

signature EXP =
sig

structure num: RING
val eval : (num.t expr)->(num.t)
val sop : (num.t expr)->(num.t expr)

end;

Write a functor which takes as input a structure R matching the RING signature and
returns a structure matching the signature EXP where num.t = R.t. The function eval
should take an expression tree (i.e. a value of type num.t expr as input and apply the
appropriate operations to evaluate the tree. The function sop should take as input an
expression tree and rearrange the operators so that no addition operations occur below
multiplication operators. You can (and need to) assume that multiplication distributes
over addition.

2

