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Stochastic Processes

Figure 1. TASEP on Z/1000Z, with the initial distribution as the Bernoulli product measure.
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Axioms of Probability

Conditional Probability

Definition 1 (Conditional Probability). The conditional probability of
A given B, defined for P(B) > 0, is,

P(A | B) =
P(A ∩ B)

P(B)

Definition 2 (Independence). Events A and B are independent if
P(A | B) = P(A). Equivalently, P(A ∩ B) = P(A)P(B).

Definition 3 (Total Law of Probability). Let B1, · · · , Bk be a sequence of
events that partition Ω. Then, for any event A,

P(A) = P

 ⋃
i∈[k]

(A ∩ Bi)

 =
k

∑
i

P (A ∩ Bi) =
k

∑
i

P (A | Bi) P (Bi)

More generally, P(A) = E[P(A | X)].

Definition 4 (Bayes’ Rule). For events A and B1, 1 With the Total Law of Probability,

P (Bi | A) =
P (A | Bi) P (Bi)

∑j P
(

A | Bj
)

P
(

Bj
)

P(A | B) =
P(B | A)P(A)

P(B)

Conditional Distributions

Definition 5 (Conditional Probability Mass Function). The condi-
tional probability mass function of Y given X = x is,

P(Y = y | X = x) =
P(X = x, Y = y)

P(X = x)

Definition 6 (Conditional Probability Density Function). The condi-
tional probability density function of Y given X = x is,

fY|X(y|y) =
f (x, y)
fX(x)

Conditional Expectation

Definition 7 (Conditional Expectation). The conditional expectation
of Y given X = x, written E[Y | X = x](x), is a function of x,

E[Y | X = x](x) =

∑y y · P(Y = y | X = x) Ω is discrete∫ ∞
−∞ y · fY|X(y | x)dy Ω is continous

Summary of Conditional Probability:

• Total Probability

P(A) = E[P(A | X)]

• Total Expectation

E[Y] = E[E[Y | X]]

• Total Conditional Expectation

P(Y | A) = E[P(Y | X, A) | A]

• Total Conditional Probability

E[Y | A] = E[E[Y | X, A] | A]
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Definition 8. The conditional expectation of Y given A is,

E(Y | A) =
1

P(A) ∑
y

yP({Y = y} ∩ A)

= ∑
y

yP(Y = y | A)

for the discrete case.

Definition 9 (Law of Total Expectation). If A1, · · · , Ak partitions Ω and
Y is a random variable, then the law of total expectation states that,

E[Y] =
k

∑
i=1

E[Y | Ai]P(Ai)

More generally, E[Y] = E[E[Y | X]].

Proof. For the discrete case,

E[E[Y | X]] = ∑
x

E[Y | X = x] · P(X = x)

= ∑
x

(
∑
y

yP(Y = y | X = x)

)
P(X = x)

= ∑
y

y ∑
x

P(Y = y | X = x) · P(X = x)

= ∑
y

y ∑
x

P(X = x, Y = y)

= ∑
y

y · P(Y = y)

= E(Y)

Time-Homogeneous Markov Chains

Finite State, Time-Homogeneous Chains

Definition 10 (Finite State Stochastic Process). A finite state stochas-
tic process (Xn)n≥0 has time steps in N and values in S = [N − 1].

Definition 11 (Markov Property). The Markov property claims that
for every n ∈ N and every sequence of states (i0, i1, · · · ) where ij ∈ S, the
behavior of a system depends only on the previous state,

P(Xn = in | X0 = i0, · · · , Xn−1 = in−1) = P(Xn = in | Xn−1 = in−1)

Definition 12 (Time Homogeneity). A Markov chain is time-homogeneous
if the probabilities in Definition 11 do not depend on n,

P(Xn = in | Xn−1 = in−1) = P(X1 = i1 | X0 = i0) (n ∈ N)
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Definition 13 (Transition Matrix). The transition matrix P for a time-
homogeneous Markov chain is the N × N matrix whose (i, j)th entry Pij is
the one-step transition probability p(i, j) = P(X1 = j | X0 = i).

Remark 14. The transition matrix P is stochastic, that is,

• (Non-Negative Entries) 0 ≤ Pij ≤ 1 for 1 ≤ i, j ≤ N

• (Row Sum Equal to 1) ∑N
j=1 Pij = 1 for 1 ≤ i ≤ N

Example 1: Biased Coin Flips

Let (Xn)n≥0 denote a sequence of coin flips where,

P(Xn+1 = H | Xn) =

0.51 if Xn = H

0.49 if Xn = T

and,

P(Xn+1 = T | Xn) =

0.51 if Xn = T

0.49 if Xn = H

Then,

P =

(
0.51 0.49
0.49 0.51

)
=

(
PHH PHT

PTH PTT

)

Transition Probabilities

Definition 15 (Probability Distribution Vector). The distribution of a
discrete random variable X is the vector ϕ⃗ if,

ϕj = P(X = j) ∀j ∈ N

Definition 16 (Initial Distribution Vector). The initial probability
distribution of a Markov chain (Xn)n≥0 is the distribution ϕ⃗ of X0.

Theorem 17 (Transition Probabilities). The n-step transition probability
pn(i, j) = P(Xn = i | X0 = j) is the (i, j)th entry in the matrix Pn.

Proof. The base case is trivially true for n = 1. Assume the statement
holds for a given n. Using the properties of matrix multiplication and
the Law of Total Conditional Expectation,

P(Xn+1 = j | X0 = i) = ∑
k∈S

P(Xn = k | X0 = i) · P(Xn+1 = j | Xn = k)

= ∑
k∈S

pn(i, k) · p(k, j)

= PnP

= Pn+1
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Theorem 18 (Chapman-Kolmogorov). Let x, y, z ∈ S and m, n ∈ (0, ∞).

pm+n(x, y) = P(Xm+n = y | X0 = x)

= ∑
z∈S

P(Xm+n = y, Xm = z | X0 = x)

= ∑
z∈S

pm(x, z) · pn(z, y) The probabilistic interpretation for
Chapman-Kolmogorov is that transi-
tioning from x to y in m + n steps is
equivalent to transitioning from i to k in
m steps and then moving from k to j in
the remaining n steps.

Definition 19 (Distribution of Xn). The distribution of (Xn)n≥0 is,

ϕ · Pn i.e., P(Xn = j) = (ϕ · Pn)j ∀j ∈ N

where P is the transition matrix of (Xn) and ϕ is the initial distribution.

Stationary Distributions

Definition 20 (Limiting Distribution Vector). A limiting distribution
for a time-homogeneous Markov chain (Xn)n≥0 is a distribution π⃗ so that,

lim
n→∞

pn(i, j) = πj

The definition of a limiting distribution is equivalent to,

• limn→∞ P(Xn = j) = πj

• limn→∞ ϕ⃗ · Pn = π⃗, where ϕ⃗ is the initial distribution

• limn→∞ Pn = V , where V is a stochastic matrix whose rows are π⃗

Definition 21 (Occupation Time). The occupation time for a time-
homogeneous Markov chain (Xn)n≥0 from an initial state i is,

lim
n→∞

E

[
1
n

n−1

∑
k=0

1Xk=i | X0 = i
]

which represents the long-term expected proportion of time spent visiting j.

Remark 22. The limiting distribution gives the occupation time of (Xn),

lim
n→∞

E

[
1
n

n−1

∑
k=0

1{Xk=j} | X0 = i
]
= lim

n→∞

n−1

∑
k=0

E[1Xk=j | X0 = i]

= lim
n→∞

1
n

n−1

∑
k=0

P(Xk = j | X0 = i)

= lim
n→∞

1
n

n−1

∑
k=0

pn(i, j)

= lim
n→∞

Pn
ij

= πj by Cesaro’s Average
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Definition 23 (Stationary Distribution Vector). A limiting probability
vector π⃗ is a stationary probability distribution for P if,

π⃗ = π⃗ · P

Lemma 24. The limiting distribution π⃗ of (Xn) is stationary.

Note on Stationary Distributions:
The converse of Lemma 24 is not
true. Stationary distributions are not
necessarily limiting distributions. For
example, the chain with,

P =

(
1 0
0 1

)
has every probability vector as a sta-
tionary distribution since,

π⃗ · P = π⃗ ∀π⃗

P =

(
0 1
1 0

)
Unique Stationary

P =

(
1 0
0 1

)
Multiple Stationary

P =

(
0 1
1 0

)
No Limiting

p(x, x + 1) = 1 (S = N) No Stationary

Proof. Assume that π⃗ is the limiting distribution. We need to show
that π⃗ = π⃗ · P. For any initial distribution ϕ⃗,

π⃗ = lim
n→∞

ϕ⃗ · Pn = lim
n→∞

ϕ⃗ · (Pn−1 · P) =
(

lim
n→∞

ϕ⃗ · Pn−1) · P = π⃗ · P

Example 2: Random Walk on a Weighted Graph

Let G be a weighted graph with edge weight function w(i, j).
For a random walk on G, the stationary distribution π⃗ is pro-
portial to the sum of the edge weights incident to each vertex,

πv =
w(v)

∑z w(z)
∀v ∈ V(G) where w(v) = ∑

z∼v
w(v, z)

is the sum of the edge weights on all edges incident to v.

Consider the random walk with transition matrix,

P =


0 5

8
1
8

2
8

5
7 0 0 2

7
1 0 0 0
2
4

2
4 0 0


Let w(i) = ∑4

j=1 w(i, j). Then,

π⃗ =
(

w(1)
∑ w(1)

w(2)
∑ w(2)

w(3)
∑ w(3)

w(4)
∑ w(4)

)
=
(

8
20

7
20

1
20

4
20

)
satisfies π⃗ · P = π⃗.

Random Walk on a Weighted Graph:

Example 3: Simple Random Walk on a Graph

For a simple random walk on a non-weighted graph,

w(i, j) = 1 ∀i, j ∈ V(G) and w(v) = deg(v)

If |E(G)| is the number of edges in the graph, this gives,

πv =
deg(v)

∑z deg(z)
=

deg(v)
2|E(G)|
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Regular Chains

Definition 25 (Regularity). A transition matrix P is regular if and only
if there exists n ∈ N so that every entry of Pn is positive.

Theorem 26. If the matrix Pn is regular, then Pm is regular (m > n).

Proof. Linear combinations of positive numbers are positive, so the
result follows by the definition of matrix multiplication,

Pn+1
ij = ∑

ℓ∈S
Pn

iℓ · Pℓj > 0

since Pn
iℓ > 0 and at least one Pℓj is positive2. 2 Otherwise Pn has a zero column.

The two-state Markov chain with,

P =

(
1 − p p

q 1 − q

)
can be expressed as,

Therefore, its stationary distribution is,

π =

(
q

p + q
,

p
p + q

)

Theorem 27. A stochastic matrix P has an eigenvalue λ∗ = 1. All other
eigenvalues λ of P satisfy |λ| ≤ 1, with strict inequality if P is regular.

Example of Regularity:
The following matrix is regular,

P =

 0 1/2 1/2
1 0 0

1/2 1/2 0


because P4 is positive,

P4 =

 9/16 5/16 1/8
1/4 3/8 3/8
1/2 5/16 3/16



Proof. Let P be a k × k stochstic matrix. The rows of P sum to 1 by
definition, so P · 1⃗ = 1⃗ and λ∗ = 1 is a right eigenvalue of P. Suppose
that z⃗ is the eigenvector corresponding to any other eigenvalue λ

of P. Let |zm| = max1≤i≤k |zi| be the component of z⃗ of maximum
absolute value. Then,

|λ| · |zm| = |λzm| = |(P · z⃗)m| = |
k

∑
i=1

Pmizi| ≤ |zm|
k

∑
i=1

Pmi = |zm|

and consequently |λ| ≤ 1.
Assume that P is regular. Then Pn > 0 for some n > 0. P is a

stochastic matrix, and it was shown above that P has an eigenvalue
λ∗ = 1. Moreover, all other eigenvalues λ of P satisfy |λ| ≤ 1. We
want to show that the inequality is strict. If λ is an eigenvalue of P,
then λn is an eigenvalue of Pn. Let x⃗ be its corresponding eigenvalue,
with |xm| = max1≤i≤k |xi|. Then,

|λ|n · |xm| = |(Pn · z⃗)m| = |
k

∑
i=1

Pn
mixi| ≤ |xm|

k

∑
i=1

Pn
mi = |xm|

Since the entries of Pn are positive, the last inequality only holds
if |x1| = · · · = |xk|. Similarly, the first inequality only holds if
x1 = · · · = xm. But the constant vector whose components are the
same is an eigenvector associated with the eigenvalue 1. Hence, if
λ ̸= 1, one of the inequalities must be strict. Thus, |λ|n < 1.

Theorem 28. Every finite state time-homogeneous Markov chain (Xn)n≥0

has a stationary distribution π⃗. Moreover, the stationary distribution(s) of
(Xn) are in bijective correspondance with the left 1-eigenvectors of P3. 3 We require that the eigenvectors are

non-negative with components that
sum to 1.
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Proof. If P is a stochastic matrix, then P has a right eigenvalue λ∗ = 1
(see Theorem 27). Since det(PT) = det(P), the left and right eigen-
values of P are equal. Hence, P has at least one left eigenvector π⃗ for
the eigenvalue 1. Normalizing this eigenvector to sum to 1 gives4, 4 The vector with |π|i = |πi | is still an

eigenvector with eigenvalue 1.

P · π⃗ = 1 · π⃗ i.e., P · π⃗ = π⃗

The proof that the stationary distribution(s) of (Xn) are in bijective
correspondance with the left 1-eigenvectors of P is similar.

Corollary 29. If (Xn) has a unique stationary distribution, then the distri-
bution is a left eigenvector of P corresponding to λ∗ = 1.

Theorem 30 (Perron-Frobenius). Let M be a k × k positive matrix. Then,

• There exists λ∗ ∈ R+ (called the Perron-Frobenius eigenvalue) which is
an eigenvalue of M. |λ| < λ∗ for all other eigenvalues λ of M.

• The eigenspace of eigenvectors associated with λ∗ is one-dimensional

Proof. The proof of the Perron–Frobenius theorem can be found in
many linear algebra textbooks, including Horn and Johnson (1990).

Theorem 31 (Limit Theorem for Finite Regular Chains). If (Xn)n≥0 is
a finite state time-homogeneous Markov chain and P is regular, then there is
a unique, positive, stationary distribution π⃗ > 0 such that,

lim
n→∞

Pn = V

where V is a matrix with all rows equal to π⃗.

Classification of States

Example of Communication Classes:
G has 3 communication classes,

Definition 32 (Communication). Two states i, j ∈ S of a Markov chain
communicate, written i ↔ j, if there exist m, n ∈ N such that,

pm(i, j) > 0 and pn(j, i) > 0

Equivalently, two states communicate if and only if each state has a positive
probability of eventually being reached by a chain starting in the other state.

Theorem 33. The relation ↔ is an equivalence relation on the state space.

Proof. The relation ↔ is reflexive, symmetric, and transitive.

• (Reflexivity) i ↔ i since p0(i, i) = 1 > 0

• (Symmetry) i ↔ j =⇒ j ↔ i by definition
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• (Transitivity) i ↔ j and j ↔ i =⇒ i ↔ k since,

pm1+m2(i, k) = P(Xm1+m2 = k | X0 = i)

≥ P(Xm1+m2 = k, Xm1 = j | X0 = i)

= P(Xm1 = j | X0 = i) · P(Xm1+m2 = k | Xm1 = j)

= pm1(i, j)pm2(j, k)

> 0

Definition 34 (Irreducibility). The relation ↔ partitions the state space
into disjoint sets called communication classes. If there is only one com-
munication class, then the chain is called irreducible.

Definition 35 (Hitting Time). Let (Xn)n≥0 be a Markov chain with state
space S. The hitting time ("first passage time") of A ⊆ S when X0 = x is,

τA = inf{n ≥ 0 | Xn ∈ A}

Definition 36 (First Return Time). Let (Xn)n≥0 be a Markov chain with
state space S. The first return time is a variant of hitting time,

τ+
x = inf{n ≥ 1 | Xn = i} assuming X0 = x

Definition 37 (Expected Number of Visits). Let (Xn)n≥0 be a Markov
chain with state space S. The expected number of visits to i ∈ S is,

∞

∑
n=0

pn(i, i) assuming X0 = i

Proof. Let Ni be the random variable giving the total number of visits
to i ∈ S, including the initial visit. We can write,

Ni =
∞

∑
n=0

1{Xn=i}

where the expectation of Ni when X0 = i is,

E[Ni] = E

[ ∞

∑
n=0

1{Xn=i}

]
=

∞

∑
n=0

P(Xn = i) =
∞

∑
n=0

pn(i, i)

Theorem 38 (Limit Theorem for Finite Irreducible Chains). If (Xn)n≥0

is a finite state time-homogeneous Markov chain and P is irreducible, then,

µj = E[τ+
j | X0 = j] < ∞ for all i ∈ S

and there exists a unique, positive, stationary distribution π⃗ > 0 such that,

πj =
1

E[µj]
, for all j ∈ S

Furthermore,

πj = lim
n→∞

1
n

n−1

∑
m=0

Pm
ij for all j ∈ S
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First Step Analysis

Definition 39 (First-Step Analysis). First-step analysis is the pro-
cess of conditioning on the first step of the chain and using the law of total
expectation to find the expected return time, E[τ+

j | X0 = j].

Remark 40. If (Xn)n≥0 is irreducible, then the expected return time can
also be found by taking the reciprocal of the stationary probability π.

Example 4: First-Step Analysis

Consider the Markov chain with transition matrix,

P =

a b c 0 1 0 a
1/2 1 1/2 b
1/3 1/3 1/3 c

Define ex := E[τ+
j | X0 = x] for x ∈ {a, b, c}. Thus, ea is the

desired expected return time, and eb, ec are the first hitting
times to a for the chain started in b and c.

ea = 1 + eb

eb =
1
2
+

1
2
(1 + ec)

ec =
1
3
+

1
3
(1 + eb) +

1
3
(1 + ec)

Solving these equations gives,

ec =
8
3

eb =
7
3

ea =
10
3

Recurrence and Transience

Definition 41 (Recurrent). A state i ∈ S is recurrent if a Markov chain
starting at i will return to i infinitely often, with probability 1.

Definition 42 (Transient). A state i ∈ S is transient if a Markov chain
starting at i will return to i only finitely often, with probability 1.

Theorem 43. Recurrence and transience are class properties,

If i ∈ S is recurrent and j ↔ i =⇒ j is recurrent

If i ∈ S is transient and j ↔ i =⇒ j is transient

Proof. It suffices to show that if i ∈ S is transient and j ↔ i, then j is
transient. Since j ↔ i, there exist s, r ≥ 0 such that ps(i, j) > 0 and
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pr(j, i) > 0. For all n ∈ N, it holds that,

pn+r+s(i, i) ≥ ps(i, j) · pn(j, j) · pr(j, i)

by Chapman-Kolmogorov. Therefore,

∞

∑
n=1

pn(j, j) ≤ 1
ps(i, j) · pr(j, i)

∞

∑
n=1

pn+r+s(i, i) expanding the expectation

≤ 1
ps(i, j) · pr(j, i)

∞

∑
n=1

pn(i, i)

< ∞ since i is transient

It follows that j is transient. Hence, if one state of a communication
class is transient, all states in that class are transient.

Conversely, if one state is recurrent, then the others must be recur-
rent. By contradiction, if the communication class contains a transient
state then by what was just proven all the states are transient.

Theorem 44. Every state in a finite, irreducible Markov chain is recurrent.

Proof. Every pair i, j ∈ S belongs to the same communication class,
and that class has finitely many elements. By definition, there is
positive probability of reaching j from i since i ↔ j. If i is visited
infinitely often then we get this chance of visiting j infinitely often. If
an event has a positive probability of occuring, and we get an infinite
number of trials, then it will occur an infinite number of times.

Theorem 45. Let (Xn)n≥0 be an irreducible Markov chain. Then,

E[Ni] =
∞

∑
n=0

pn(i, i) =
1

1 − P(τ+
i < ∞)

=
1

P(τ+
i = ∞)

= (I − P)−1
ii

Moreover,

E[Ni] =

finite ⇐⇒ i is transient

infinite ⇐⇒ i is recurrent
Recall:
Let A be a square matrix with the
property that An → 0, as n → ∞. Then,
∑∞

n=0 An = (I − A)−1. This gives the
matrix analog of the sum of a geometric
series of real numbers.

Proof. Assume that E[Ni] < ∞. Let Ri be the number of returns to a
state i. Define a sequence (τ

(n)
i )n≥0 by,

τ
(n)
i =

inf{n ≥ 1 | X∗
n = i} Ri ≥ n

∞ otherwise

where (X∗
n) is the process (Xn) started at τ

(n−1)
i . Ni = ∑∞

n=1 1{Xn=i} is
1 more than the number of returns Ri, so,

Ni = 1 + Ri = 1 +
∞

∑
n=1

1
{τ

(n)
i <∞}
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and τ
(n)
i = ∞ if and only if Xn visits i fewer than n times. Now,

P(τ(n)
i < ∞) = [P(τ(1)

i = ∞)]n by time homogeneity (⋆). Therefore,

E[Ni] = E

[
1 +

∞

∑
n=1

1
{τ

(n)
i <∞}

]
= E

[ ∞

∑
n=0

1
{τ

(n)
i <∞}

]
=

∞

∑
n=0

E

[
1
{τ

(n)
i <∞}

]
by Linearity of Expectation

=
∞

∑
n=0

P(τ(n)
i < ∞)

=
∞

∑
n=0

P(τ(1)
i < ∞)

=
∞

∑
n=0

[P(τ(1)
i < ∞)]n (⋆)

=
1

1 − P(τ+
i < ∞)

by definition of a geometric series

Thus, E[Ni] =
1

1−P(τ+i <∞)
=

finite ⇐⇒ i is transient

infinite ⇐⇒ i is recurrent Stirling’s Formula states that as n → ∞,

n! ∼
√

2πn
( n

e

)n

Example 5: Simple Symmetric Random Walk on Z

The simple symmetric random walk on Z is recurrent,

E[Ni] = ∑
n≥0

pn(0, 0)

= ∑
n≥0

p2n(0, 0)

= ∑
n≥0

(
2n
n

)
· 1

22n

≥ ∑
n≥1

1√
4n

by Stirling’s Formula

= ∞

Definition 46 (Canonical Decomposition). The canonical decomposi-
tion of the state space S of a finite Markov chain is a separation of S,

S = T ∪ R1 ∪ · · · ∪ Rm
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where R1, · · · , Rm are the communication classes of recurrent states and T
is the set of all transient states. P has the block matrix form,

P =

T R1 R2 · · · Rm


∗ ∗ ∗ · · · ∗ T
0 P1 0 · · · 0 R1

0 0 P2 · · · 0 R2
...

...
...

. . .
...

...
0 0 0 0 Pm Rm

where each square stochastic matrix Pi corresponds to a closed recurrent
communication class which is irreducible with a restricted state space5. 5 A communication class is closed if it

consists of all recurrent states.
Remark 47. The block matrix form facilitates taking matrix powers,

lim
n→∞

Pn =

T R1 R2 · · · Rm


∗ ∗ ∗ · · · ∗ T
0 limn→∞ Pn

1 0 · · · 0 R1

0 0 limn→∞ Pn
2 · · · 0 R2

...
...

...
. . .

...
...

0 0 0 0 limn→∞ Pn
m Rm

Corollary 48. For every recurrent class Ri, there is a stationary distribu-
tion π⃗ so that πi > 0 if and only if i ∈ Ri.

Corollary 49. The dimension of the eigenspace of P for the eigenvalue 1 is
the number of recurrent classes in the Markov chain.

Periodicity

Definition 50 (Period). The period of a state i, d = d(i) is,

gcd(Ji) where Ji = {n ≥ 0 | pn(i, i) > 0}

If d(i) = 1, state i is called aperiodic.

Theorem 51. The states of a communication class all have the same period.

Proof. Suppose that there exist states i, j such that i ↔ j and d(i) ̸=
d(j). Since i and j communicate, there exist r, s ∈ N such that,

pm(i, j) > 0 and pn(j, i) > 0

Then m + n is a possible return time for i,

pm+n(i, i) = ∑
k∈S

pm(i, k) · pn(k, i) ≥ pm(i, j) · pn(j, i) > 0
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and d(i) is a divisor of m + n. Assume that pr(j, j) > 0 for some
integer r. Then pr+m+n(i, i) ≥ pm(i, j) · pr(j, j) · pn(j, i) > 0 and
d(i) is a divisor of r + m + n. Since d(i) divides both m + n and
r + m + n, it must also divide r. Thus, d(i) is a common divisor of
the set {r > 0 | pr(j, j) > 0}. Since d(j) is the largest such divisor,
d(i) ≤ d(j). A symmetric argument gives that d(j) ≤ d(i).

Example 6: Periodicity

A random walk on the n-cycle has no limiting distribution
when n is even. The graph is regular, and the unique station-
ary distribution is uniform. However, the chain alternates
between even and odd states, and its position after n states
depends on the parity of the initial state.

Definition 52 (Periodic Chain). A Markov chain is periodic if it is
irreducible and all states have period greater than 1.

Definition 53 (Aperiodic Chain). A Markov chain is aperiodic if it is
irreducible and all states have period equal to 1.

Note on Periodicity:
Any state i satisfying that Pii > 0 is
necessarily aperiodic. Thus, a suficient
condition for an irreducible Markov
chain to be aperiodic is that Pii > 0 for
some i, i.e., at least one diagonal entry
of the transition matrix is non-zero.

Theorem 54. P is irreducible and aperiodic if and only if P is regular.

Proof. Suppose that P is irreducible and aperiodic. Consider any
states i, j. Since P is irreducible, there exists m(i, j) so that pm(i,j)(i, j) >
0. Since P is aperiodic, there exists M(i) so that for all n ≥ M(i),
pn(i, i) > 0. Taken together, this means that for n ≥ M(i),

pn+m(i,j)(i, j) ≥ pn(i, i)pm(i,j)(i, j) > 0

Now, pn(i, j) > 0 for all n ≥ max{M(i) + m(i, j) | (i, j) ∈ S × S}.
Suppose that P is regular. By definition, there exists an M > 0

such that for all n ≥ M, Pn has all entries strictly positive. This
means that pn(i, j) > 0 for all states i, j, and consequently that P is
irreducible. If Pn has strictly positive entries, so too does Pn+1. Thus,
P(Xn = i | X0 = i) > 0 and P(Xn+1 = i | X0 = i) > 0. Since
gcd(n, n + 1) = 1, P is aperiodic.

Theorem 55 (Limit Theorem for Aperiodic Irreducible Chains). If
(Xn)n≥0 is a finite state, time-homogeneous, aperiodic, irreducible Markov
chain and P is its transition matrix, then there is a unique, positive, station-
ary distribution π⃗ > 0 such that,

lim
n→∞

Pn = V

where V is a matrix with all rows equal to π⃗.
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Absorbing Chains

Definition 56 (Absorption). A state i ∈ S is called absorbing if,

p(i, i) = 1

An absorbing chain has at least one absorbing state6. 6 Intuitively, this is a state i that the
chain never leaves once it first visits i.

Definition 57 (Absorption Probability). Let (Xn)n≥0 be a Markov chain
with all states transient or absorbing. The absorption probability is the
probability that the chain is absorbed in state j from transient state i.

Definition 58 (Absorption Time). Let (Xn)n≥0 be a Markov chain with
all states transient or absorbing. The absorption time is the expected
number of steps from transient state i to absorption in some absorbing state.

Note on Absorption Time:
The problem of computing hitting time
reduces to the problem of computing
time to absorption because a state can
be modified to be absorbing.Theorem 59. Let (Xn)n≥0 be finite-state and irreducible with transition

matrix P. To find the expected hitting time, E[τi],

• Consider a new chain in which i is an absorbing state

• Define P̃ by deleting the ith row and setting P̃ii = 1

• Define Q by deleting the ith row and i-h column of P

Assume that the chain starts in state a. The first time that P hits i is,∑b ̸=i(I − P̃)−1
a,b if i ̸= a

1 + ∑j ̸=i Pij · ∑b ̸=i(I − P̃)−1
j,b if i = a

Proof. We need to find,

E[τa] = E[inf{n ≥ 0 | Xn ∈ A}]

=
∞

∑
n=1

n · P(τa = n)

=
∞

∑
n=1

P(τa ≥ n)

For an absorbing state a,

P(τa ≥ n) = P(Xn−1 ̸= a) (n ≥ 1)

Considering every probable path that does not go through a,

E[τa] =
k

∑
i=1

∞

∑
n=1

∑
b ̸=a

πi · P̃n−1
i,b

=
k

∑
i=1

∑
b ̸=1

πi(I − P̃)−1
i,b
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Positive and Null Recurrence

Definition 60 (Positive Recurrent). A recurrent state j is positive recur-
rent if the expected return time E[τ+

j | X0 = j] is finite7. 7 Positive recurrence is the infinite
analog of finite recurrent chains.

Theorem 61 (Limit Theorem for Irreducible, Positive Recurrent
Chains). Let (Xn)n≥0 be an infinite, irreducible, and positive recurrent
Markov chain. There exists a unique, positive, stationary distribution π,
which is the limiting distribution of the chain8. That is, 8 For infinite irreducible chains that are

null recurrent, no stationary distribu-
tion exists.πj = lim

n→∞
Pn

ij for all i, j

Moreover,

πj =
1

E[τ+
j ]

for all j

Definition 62 (Null Recurrent). A recurrent state j is null recurrent if
the expected return time E[τ+

j | X0 = j] is infinite9. 9 Null recurrent chains do not have
stationary distributions.

Theorem 63. Positive and null recurrence are class properties10. 10 In particular, all states in a recurrent
communication class are either positive
or null recurrent.Proof. Assume that i is a positive recurrent state. Let j be another

state in the same communication class as i. Since i ↔ j, there exist
s, r ≥ 0 such that pr(j, i) > 0 and ps(i, j) > 0. Thus,

1
µj

= lim
n→∞

1
n

n−1

∑
m=0

pm(j, i)

≥ lim
n→∞

1
n

n−1

∑
m=r+s

pr(j, i) · pm−r−s(i, i) · ps(i, j)

= lim
n→∞

(
n − r − s

n

)
pr(j, i)

(
1

n − r − s

n−1

∑
m=r+s

pm−r−s(i, i)

)
Ps(i, j)

= pr(j, i)
(

1
µi

)
ps(i, j) > 0.

Hence, µj < ∞ and j is positive recurrent.

Definition 64 (Ergodic). A Markov chain is called ergodic if it is irre-
ducible, aperiodic, and all states have finite expected return times11. 11 Every finite chain is ergodic, and

the condition that all states have finite
expected return times is equivalent to
all states being positive recurrent.

Theorem 65 (Limit Theorem for Ergodic Chains). Let (Xn)n≥0 be an
ergodic Markov chain. There exists a unique, positive, stationary distribu-
tion π, which is the limiting distribution of the chain. That is,

πj = lim
n→∞

Pn
ij for all i, j

Moreover,

πj =
1

E[τ+
j ]

for all j
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Reversibility

Definition 66 (Detailed Balance Equations).

πiPij = πjPji for all i, j ∈ S

More generally, we can write,

P(X0 = i0, X1 = i1, · · · , Xn = in) = P(X0 = in, X1 = in−1, Xn = i0)

Theorem 67. Let (Xn)n≥0 be a Markov chain with transition matrix P. If
π⃗ satisfies the detailed balance equations, then π⃗ is stationary12 for P. 12 Checking detailed balance is often the

simplest way to verify that a particular
distribution is stationary.Proof. ∑i∈S πiPij = ∑i∈S πjPji = πj since P is stochastic.

Definition 68. An irreducible Markov chain (Xn)n≥0 with transition
matrix P and stationary distribution π⃗ is time reversible if it satisfies the
detailed balance equations. The time reversal of (Xn) is the chain with,

P̂ij :=
πjPij

πi

as its transition matrix.

Remark 69. If a chain with transition matrix P is reversible, then P̂ = P.

Proof. By the detailed balance equations,

P̂ij =
πjPij

πi
=

πjPji

πi

so Pji = Pij.

Example 7: Reversibility

A simple random walk on a graph is time reversible.

πiPij =

(
deg(i)

2|E(G)|

)(
1

deg(i)

)
for neighbors i, j

=
1

2|E(G)|

=

(
deg(j)

2|E(G)|

)(
1

deg(j)

)
= πjPji

Markov Chain Monte Carlo

Markov Chain Coupling

Definition 70 (Total Variation Distance). The total variation distance
between two distributions µ and ν on a state space S is defined by13, 13 This definition is explicitly proba-

bilistic: the distance between µ and ν is
the maximum difference between the
probabilities assigned to a single event
by the two distributions.

∥µ − ν∥TV = sup
A⊆S

∥µ(A)− ν(A)∥
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Example 8: Coupling Distance

Suppose, for illustration, that the total variation distance,

∥π7 − π∥TV = 0.17

This tells us that the probability of any event, for example, the
probability of winning any specified card game using a deck
shuffled 7 times, differs by at most 0.17 from the probability of
the same event using a perfectly shuffled deck.

A coupling of two probability distri-
butions µ and ν is a pair of random
variables (X, Y) defined on a single
probability space such that the marginal
distribution of X is µ and the marginal
distribution of Y is ν. That is, a cou-
pling (X, Y) satisfies,

P(X = x) = µ(x) and P(Y = y) = ν(y)

Definition 71 (Coupling of Markov Chains). A coupling of Markov
chains is a process (Xn, Yn)n≥0 with the property that both (Xn), (Yn)

are Markov chains with transition matrix P, although the chains may have
different starting distributions.

Definition 72 (Coupling Time). The coupling time of a process (Xn, Yn)n≥0

is defined to be the first time T in which Xn equals Yn,

T = inf{n | Xn = Yn}

Lemma 73. Consider a coupling (Xn, Yn)n≥0 of Markov chains (Xn), (Yn).

∥π⃗0 · Pn − π⃗∥TV ≤ P(T > n) for all n > 0

where π⃗ is the stationary distribution of (Yn).

The coupling inequality reduces the
problem of showing that,

∥π⃗0 · Pn − π⃗∥ → 0

to that of showing,

P(T > n) → 0 ⇐⇒ P(T < ∞) = 1
Proof. Define the process (Y∗

n ) by,

Y∗
n =

Yn if n < T

Xn if n ≥ T

(Y∗
n ) is a Markov chain with the same probability transition matrix P

as (Xn). This is because Yn and Xn share P and Zn and Xn share π⃗0.
Since we also have that (Y∗

n ) ∼ π for all n,

π⃗0 · Pn(A)− π⃗ = P(Xn ∈ A)− P(Y∗
n ∈ A)

= P(Xn ∈ A, T ≤ n) + P(Xn ∈ A, T > n)

− P(Y∗
n ∈ A, T ≤ n)− P(Y∗

n ∈ A, T > n)

However, on the event {T ≤ n}, Y∗
n = Xn, so that P(Xn ∈ A, T ≤ n) =

P(Y∗
n ∈ A, T ≤ n). Simplifying gives that,

π⃗0 · Pn(A)− π⃗ = P(Xn ∈ A, T > n)− P(Y∗
n ∈ A, T > n) < P(T > n)
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Remark 74 (Doeblin Coupling Argument). Proving the Markov Conver-
gence Theorem can be done by showing that P(T < ∞) = 1.

Proof. The bivariate chain Z = {(Xn, Yn) | n ≥ 0} is a Markov chain
on the state space S × S. Its transition matrix PZ can be written,

PZ
(i1,i2),(j1,j2)

= PX
(i1,j1)

· PY
(i2,y2)

and the stationary distribution is,

πZ(i, j) = πiπ(y)

P(T < ∞) = 1 occurs if the Z chain hits {(j, j) | j ∈ S} ⊆ S × S.
Since Z has a stationary distribution, it suffices to show that Z is
irreducible14. This can be done using a numbertheoretic proof. 14 If an irreducible Markov chain has a

stationary distribution, then the chain is
recurrent.

Metropolis-Hastings Algorithm

Definition 75 (Markov Chain Monte Carlo). Given a discrete or contin-
uous probability distribution π⃗, the goal of Markov Chain Monte Carlo is
to simulate a random variable X ∼ π⃗.

Remark 76 (Strong Law of Large Numbers for Markov Chains). If
(Xn)n≥0 is a finite state, time-homogeneous, aperiodic, irreducible Markov
chain and r is a bounded and real-valued function, then15, 15 The chain is not i.i.d, but successive

excursions between visits to the same
state are independent.

lim
n→∞

r(X1) + · · ·+ r(Xn)

n
= E[r(X)] a.s.

where E[r(X)] = ∑j r(j)πj.

Definition 77 (Metropolis-Hastings Algorithm). Let π⃗ be a discrete
probability distribution. The Metropolis-Hastings Algorithm constructs
a reversible Markov chain (Xn)n≥0 whose stationary distribution is π⃗,

1. Let T, the proposal chain, be a transition matrix16 for any irreducible 16 It is assumed that the user knows
how to sample from T.Markov chain with the same state space as π⃗

2. Assume that at time n, the chain is at state i

3. Choose a new state j, the proposal state, according to T ij

4. Let U ∼ Uni f (0, 1). If Xn = i, define an acceptance function,

a(i, j) =
πjT ji

πiT ij
and let Xn+1 :=

j if U ≤ a(i, j)

i otherwise

Proof. The sequence (Xn)n≥1 constructed by the Metropolis-Hastings
Algorithm is a Markov chain, as each Xn+1 only depends on Xn. Let
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P be its transition matrix. We need to show that (Xn) is reversible
with stationary distribution is π⃗. Given X0 = i, then,

P(U ≤ a(i, j)) =

a(i, j) if a(i, j) ≤ 1

1 otherwise

=

a(i, j) if πjT ji ≤ πiT ij

1 otherwise

and for i ̸= j,

Pij =

T ij · a(i, j) if πjT ji ≤ πiT ij

T ij otherwise

The diagonal entries of P are determined by the fact that the rows of
P sum to 1. There are two cases,

• If πjT ji ≤ πiT ij,

πiPij = πiT ija(i, j) = πiT ij

(
πjT ij

πiT ij

)
= πjT ji = πjPji

• If πjT ji < πiT ij,

πiPij = πiT ija(i, j) = πjT ji

(
πiT ij

πjT ji

)
= πjT jia(j, i) = πjPji

Hence, the detailed balance equations are satisfied.

Classical Markov Chains

Electrical Networks

We can represent Markov chains as electrical networks, which we
typically denote by undirected weighted graphs G = (V, E).

Definition 78 (Electrical Network). A network is a pair (G, c), where
G = (V, E) is a countable graph and c : E → (0, ∞) is a function assigning
a positive conductance to each edge such that,

Cx := ∑
y∼x

Cxy < ∞ ∀x ∈ V

and (Xn)n≥0 is a random walk with transition matrix,

Pxy :=
Cxy

Cx
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Definition 79 (Resistance). The resistance Rxy of an edge e = (x, y) is,

Rxy =
1

Cxy

That is, it is the reciprocal of its conductance.

Definition 80 (Effective Conductance). The effective conductance
between two disjoint, non-empty finite sets of vertices A and B is defined,

ceffA,B := ∑
v∈A

ca · P(τv < τ+
b )

where τv is the first hitting time and τ+
a is the first return time17. When 17 Recall that we write τz and τ+

a for the
first time that the random walk visits
z and the first positive time that the
random walk visits a respectively.

A = {a} and B = {b}, the effective conductance is,

Ceff
A,B := ∑

v∈A
Ca · P(τv < τ+

b | X0 = a)

When A and B are not disjoint, we define Ceff
A,B = ∞.

Definition 81 (Effective Resistance). The effective resistance between
two disjoint, non-empty finite sets of vertices A and B is defined,

Reff
A,B =

1
Ceff

A,B

Remark 82 (Series Additivity). Vertices connected in series can be re-
placed by one vertex whose resistance is the sum of the resistances.

Remark 83 (Parallel Additivity). Vertices connected in parallel can be
replaced by one vertex whose conductance is the sum of the conductances.

Remark 84. Given a network G and two disjoint, finite, non-empty sets
of vertices A and B, we can form a network G′ by contracting ("shorting")
each of the sets A and B into single vertices [A] and [B]. Then,

ceffA,B(G) = ceff[A],[B](G
′)

Shorting two vertices adds infinite
conductance between them (or, merges
them while preserving edges). Thus,
shorting two sets of nodes can only
decrease the effective resistence of the
network between two nodes.

Cutting an edge can only increase the
effective resistance between the two
vertices that it is adjacent to.

Remark 85 (Rayleigh’s Monotonicity Principle). Let G = (V, E) be a
finite graph, and let A and B be disjoint, non-empty subsets of V. Then,

ceffA,B(G)

is a monotone increasing function of c ∈ (0, ∞)E.

Remark 86. An irreducible Markov chain (Xn) is recurrent if and only if
the conductance to infinity, limn→∞ C0,[n], is finite,

P(τ0 < ∞) = lim
n→∞

C0,[n] < ∞
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Pólya’s Theorem

Theorem 87 (Pólya’s Theorem). The d-dimensional hybercubic lattice Zd

is recurrent if d ≤ 2 and transient if d ≤ 3.

Corollary 88. A simple random walk on any subgraph of Z2 is recurrent18. 18 Adding a finite number of edges to a
transient graph preserves transience.

Pólya’s Urn

Definition 89 (Pólya Urn Model). Pólya’s Urn is the process,

• An urn contains two balls, one black and one white

• Proceed by choosing a ball at random from those already in the urn

• Return the chosen ball to the urn and add another ball of the same color

The sequence of ordered pairs listing the numbers of black and white balls is
a Markov chain. A configuration (a, b) with a black balls and b white balls
evolves according to,

(a, b) →

(a + 1, b) with probability a
a+b

(b, b + 1) with probability b
a+b

Figure 1: The urn process as a trajectory
on a two-dimensional lattice, where
bullets indicate intermediate stages.

Example 9: Pólya’s Urn

We want to find the likelihood that the system reaches,

(B, W) = (m, n) starting from (B, W) = (b, w)

Consider the transition,

(1, 1) → (3, 3)

where one possible path is,

(1, 1) → (1, 2) → (1, 3) → (2, 3) → (3, 3)

Its likelihood is,

1
2
× 2

3
× 1

4
× 2

5
=

(1 · 2) · (1 · 2)
2 · 3 · 4 · 5

there are (4
2) = 6 distinct routes, each with this same probabil-

ity. In general, for a path (b, w) → (m, n),

[b(b + 1) · · · (m − 1)] · [w(w + 1) · · · (n − 1)]
(b + w)(b + w + 1) · · · (m + n − 1)

Rewriting this probability using factorials,

(m − 1)!
(b − 1)!

× (n − 1)!
(w − 1)!

× (b + w − 1)!
(m + n − 1)!
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The total number of distinct paths from (b, w) to (m, n) is,(
m + n − b − w

m − b

)
so the transition probability P that, starting from configuration
(b, w), the system reaches (m, n) is:

P =

(
m − 1
b − 1

)(
n − 1
w − 1

)(
m + n − 1
b + w − 1

)−1

In particular, for (b, w) = (1, 1),

P =
1

m + n − 1
or, if U = m + n, P =

1
U

Branching Processes

Mean Generation Size

Figure 2: Family tree.

Definition 90 (Offspring Distribution). The offspring distribution X
gives the probability xk that an individual gives birth to k children,

X = (x1, x2, · · · )

independently of other individuals.

Definition 91 (Branching Process). Let Zn be a random variable that
denotes the size of a population of living species. The Markov chain (Zn)n≥1

with values in N0 is a branching process if,

Zn+1 =
Zn

∑
j=1

Xj

where Xj denotes the number of children born to the jth person in the nth
generation. (Xj)j≥1 is an i.i.d sequence with common distribution X. Fur-
thermore, Zn is independent of (Xj).

Definition 92 (Extinction Time). The extinction time T0 of a branching
process is the hitting time to zero, that is, T0 := τ0.

Definition 93 (Mean Generation Size). The mean generation size µn is
the mean size of the nth generation, that is, µk := E[Zn].

Definition 94 (Mean Offspring Size). The mean offspring size µ is the
mean of the offspring distribution, that is, µn := E[X].

Theorem 95. Let µ = ∑∞
k=0 k · xk be the mean of the offspring distribution.

E[Zn] = µn
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Proof. By the Total Law of Expectation,

E[Zn] =
∞

∑
k=0

E[Zn | Zn−1 = k] · P (Zn−1 = k)

=
∞

∑
k=0

E

[ Zn−1

∑
i=1

Xi

∣∣∣∣ Zn−1 = k
]
· P (Zn−1 = k)

=
∞

∑
k=0

E

[ k

∑
i=1

Xi | Zn−1 = k
]
· P (Zn−1 = k)

=
∞

∑
k=0

E

[ k

∑
i=1

Xi

]
· P (Zn−1 = k) since Xi and Zn−1 independent

=
∞

∑
k=0

µ · kP (Zn−1 = k)

= µ · E[Zn−1]

Iterating the recurrence for n ≥ 0 gives that,

E[Zn] = µE[Zn−1] = µ2E[Zn−2] = · · · = µnE[Z0] = µn

since Z0 = 1

Theorem 96. If µ < 1, then P(T0 > n) ≤ E[Z0] = µn. In particular, the
branching process goes extinct with probability 1, (T0 < ∞) = 1.

Proof. By Markov’s Inequality,

P(T0 > n) = P(Zn ≥ 1) ≤ E[Zn] = µnE[Z0]

Definition 97 (Criticality). A branching process is subcritical if µ < 1,
critical if µ = 1, and supercritical if µ > 1. Moreover,

lim
n→∞

E[Zn] = lim
n→∞

µn =


0, if µ < 1

1, if µ = 1

∞, if µ > 1
Note on Criticality:
For a subcritical process, mean genera-
tion size declines exponentially to zero.
For a supercritical process, it exhibits
exponential growth.

Generating Functions

Definition 98 (Generating Function). Let X be a discrete random vari-
ables with values in N0. The probability generating function of X is,

G(s) = E[sX ] =
∞

∑
k=0

sk · P(X = k) =
∞

∑
k=0

sk · πk

= P(X = 0) + sP(X = 1) + s2P(X = 2) + · · ·

where π⃗ = (πk)k≥0 is the law of X.
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Example 10: Generating Functions

Let X ∼ Unif({0, 1, 2}). Then,

G(s) =
1
3
+ s

(
1
3

)
+ s2

(
1
3

)
=

1
3

(
1 + s + s2

)
Let X ∼ Geom(p). For |s| < 1,

G(s) =
∞

∑
k=1

sk p(1 − p)k−1 = sp
∞

∑
k=1

(s(1 − p))k−1 =
sp

1 − s(1 − p)

Let X ∼ Po(µ). For µ > 0,

G(s) =
∞

∑
k=0

e−µµk

k!
· sk = e−µ ·

∞

∑
k=0

(µs)k

k!
= e−µeµs = eµ(s−1)

Properties of Generating Functions:

1. If X and Y satisfy,

GX(s) = GY(s) ∀s

then X law
= Y.

2. If X and Y are independent, then,

GX+Y(s) = GX(s) · GY(s)

Remark 99. The series G(s) converges absolutely for |s| ≤ 1.

Proof. Let π⃗ be the law of X. Then,

|G(s)| =
∣∣∣∣ ∞

∑
k=0

sk · πk

∣∣∣∣ ≤ ∞

∑
k=0

|s|k · πk ≤ 1

so G(s) exists and is well-defined for |s| ≤ 1.

Theorem 100. Let (Xn) be an i.i.d sequence of random variables. Define
Z := ∑n

i=1 Xn. The probability generating function of Z is [GX(s)]n.

Proof. Expanding the definition,

GZ(s) = E[sZ]

= E[s∑n
i=1 Xn ]

= E

[ n

∏
k=1

sXk

]
=

n

∏
k=1

E[sXk ] by independence

= GX1(s) · · · GXn(s)

If Xn is i.i.d., then,

GZ(s) = GX1(s) · · · GXn(s) = [GX(s)]
n

where X has the same distribution as Xi.

Theorem 101. Probabilities for X can be obtained from the generating
function by successive differentiation. If G(j) is the jth derivative of G,

G(j)(s) =
∞

∑
k=j

k(k − 1) · · · (k − j + 1)sk−jP(X = j)
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Proof. Observe that,

G(0) = P(X = 0)

G′(0) =
∞

∑
k=1

ksk−1P(X = k)

∣∣∣∣∣
s=0

= P(X = 1)

G′′(0) =
∞

∑
k=2

k(k − 1)sk−2P(X = k)

∣∣∣∣∣
s=0

= 2P(X = 2)

and so on. In general,

G(j)(0) =
∞

∑
k=j

k(k − 1) · · · (k − j + 1)sk−jP(X = j)

∣∣∣∣∣
s=0

= j!P(X = j)

and thus

P(X = j) =
G(j)(0)

j!
, for j = 0, 1, . . .

Theorem 102. The generating function of the nth generation size Zn is the
n-fold composition of the offspring distribution generating function,

Gn(s) = E[sZn ] = G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸
n times

(E[sZ0 ])

Proof. The generating function of the nth generation size Zn is,

Gn(s) = E[sZn ] = E

[
sΣ

Zn−1
k=1 Xk

]
= E

[
E

[
s∑

Zn−1
k=1 Xk | Zn−1

]]
where the last inequality is by the Total Law of Expectation.

E

[
s∑

Zn−1
k=1 Xk | Zn−1 = z

]
= E

[
s∑z

k=1 Xk | Zn−1 = z
]

by conditioning

= E

[
s∑z

k=1 Xk

]
by independence

= E

[ z

∏
k=1

sXk

]
=

z

∏
k=1

E[sXk ] by independence

= [G(s)]z for all z

G(s) is the generating function of the offspring distribution,

G(s) =
∞

∑
k=0

skπk

so this gives that,

E[s∑
Zn−1
k=1 Xk | Zn−1] = [G(s)]Zn−1
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Taking expectations,

Gn(s) = E[G(s)Zn−1 ] = Gn−1(G(s))

The result follows by induction on n.

Corollary 103. The extinction probability of a branching process is,

P(T0 < ∞) = lim
k→∞

lim
s→0

G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸
k times

(E[sZ0 ])

Proof. The generating function for the nth generation size Zn is,

Gn(s) =
∞

∑
k=0

skP (Zn = k)

Since P(T0 ≤ k) = P(Zk = 0),

P(Zk = 0) = lim
s→0

E[sZk ] = lim
s→0

Gk(s) = lim
s→0

G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸
k times

(E[sZ0 ])

Now, P(T0 < ∞) = P(
⋃∞

k=1{T0 ≤ k}) = P(
⋃∞

k=1{Zk = 0}). Therefore,

P(T0 < ∞) = P(
∞⋃

k=1

{Zk = 0})

= lim
k→∞

P({Zk = 0}) since {Zk = 0} ⊆ {Zk+1 = 0}

= lim
k→∞

lim
s→0

G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸
k times

(E[sZ0 ])

by the continuity of measure over increasing unions.

Theorem 104. The probability generating function G(s) of a discrete
random variable X is convex and non-decreasing on [0, 1] with G(1) = 1.

Proof. We have that,

1. G(1) = 1 since,

E[1X ] =
∞

∑
k=0

P(X = k) = 1

2. G(s) is strictly increasing since,

G′(s) =
∞

∑
k=1

ksk−1πk > 0 (s > 0 and πk ̸= 0 for all k ≥ 1)

3. G(s) is strictly convex since,

G′′(s) =
∞

∑
k=2

k(k − 1)sk−2πk > 0 (s > 0 and πk ̸= 0 for all k ≥ 2)

Theorem 105. G′(1) can be used to find the mean of X.
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Proof. G′(1) = ∑∞
k=1 k · πk = ∑∞

k=1 k · P(X = k) = E[X].

Theorem 106. Let G(s) be the probability generating function of a discrete
random variable X. The smallest positive root of the equation G(s) = s is
the probability of eventual extinction, that is, P(T0 < ∞).

Proof. The extinction probability P(T0 < ∞) of a branching process is
a root of the equation s = G(s). To see this,

P(T0 ≤ k) = P(Zk = 0)

= Gk(0)

= G(Gk−1(0))

= G(P(Zk−1 = 0))

= G(P(T0 ≤ k − 1))

Taking the limits on both sides and using the continuity of G,

P(T0 < ∞) = G(P(T0 < ∞))

Let x be a positive solution of s = G(s). We need to show that,

P(T0 < ∞) = lim
k→∞

P(Zk = 0) ≤ x

The proof is by induction on k. Since G(s) is increasing on (0, 1] and
x > 0, P(Z1 = 0) = G1(0) = G(0) ≤ G(x) = x. Assume that
P(Zk = 0) ≤ x for k < n. Then, P (Zn = 0) = Gn(0) = G (Gn−1(0)) =
G (P(T0 ≤ k − 1)) ≤ G(x) = x. Taking limits as n → ∞ gives,

P(T0 < ∞) ≤ x

Theorem 107. Let G(s) be the probability generating function of a discrete
random variable X. Exactly one of the following holds,

1. G(s) = s for infinitely many s ∈ [0, 1] and,

lim
k→∞

G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸
k times

(s) = s ∀s ∈ [0, 1]

2. G(s) = s for two points s1, s2 ∈ [0, 1] and,

lim
k→∞

G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸
k times

(s) = s2 ∀s ∈ [0, 1] and s2 ̸= 1

3. G(s) = s for a unique point s ∈ [0, 1] and,

lim
k→∞

G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸
k times

(s) = 1 ∀s ∈ [0, 1]
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Proof. If πk = δ1k for all k ≥ 0, then G(s) = s for all s ∈ [0, 1] and
µ = 1. This implies that G(s) has infinitely many fixed points in
the interval [0, 1]. Assume that πk ̸= δ1k. Since G is convex, the two
curves y = G(s) and y = s can intersect at either one or two points.
The derivative of G(s) at s = 1 distinguishes these two cases.

1. If µ ≤ 1, then G′(1) ≤ 1. Since G′ is strictly increasing in s,
G′(s) < G′(1) = 1 for 0 < s < 1. Let h(s) = s − G(s). Then
h′(s) = 1 − G′(s) > 0 for 0 < s < 1. But h is increasing and
h(1) = 0, so h(s) < 0 and s < G(s) for 0 < s < 1. Then, y = G(s)
lies above y = s for 0 < s < 1, and s = 1 is the only point of
intersection. Thus, P(T0 < ∞) = 1.

2. If µ > 1, then G′(1) > 1, then h(0) = 0 − G(0) = −π0 =

−P(X = 0) < 0 since P(X = 0) = 0 contradicts convexity. Also,
h′(1) = 1 − G′(1) = 1 − µ < 0. Thus, h(s) is decreasing at s = 1.
Since h(1) = 0, there exists 0 < t < 1, such that h(t) > 0. It follows
that there exists a fixed point s2 = G(s2) satisfying 0 < s2 < 1.

Example 11: Computing Extinction Probabilities

Consider a branching process with,

Z0 = 1 and π⃗ =
(

1/3 1/3 1/3
)

where π⃗ is the offspring distribution. The curves,

y = s and y = G(s) =
1
3
(1 + s + s2)

intersect at s = 1. Therefore, µ ≤ 1, and the extinction proba-
bility is P(T0 < ∞) = 1. We can also compute µ explicitly,

µ =
1
3
(0 + 1 · s + 2 · s)

∣∣∣∣
s=1

= 1
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Example 12: Computing Extinction Probabilities

Consider a branching process with,

Z0 = 1 and π⃗ ∼ Po(µ)

where π⃗ is the offspring distribution. Recall that,

G(s) = eµ(s−1)

Solving s = eµ(s−1) numerically by iteration,

G1(0) G2(0) G3(0) G4(0) G10(0) G15(0)
0.135335 0.177403 0.192975 0.199079 0.203169 0.203187

Figure 3: A Poisson probability generat-
ing function with various means µ.

Poisson Processes

Definition 1

Definition 108 (Counting Function). A counting process (Nt)t≥0 is a
collection of random variables with values in N0 such that,

Nt ≥ Ns ∀t ≥ s ≥ 0

and limt→s+ Nt = Ns for all s ∈ R (right-continuity19). 19 If 0 ≤ s < t, then Nt − Ns is the
number of events in the interval (s, t]

Figure 4: Counting process.

There are three equivalent definitions of a Poisson process, each of
which gives special insights into the stochastic model.

Definition 109 (Poisson Process – 1a). A Poisson process with parame-
ter λ ≥ 0 is a counting process (Nt)t≥0 satisfying,

1. N0 = 0

2. Nt − Ns ∼ Po(λ · (t − s)) for all t > s > 0

3. Nt − Ns is independent of Nr for all t > s > 0 and 0 ≤ r ≤ s

where Nt − Ns is the number of events that have occured in (s, t]. The parameter λ is called the rate
because E[Nt] = t · λ,

E[Nt] = E[Nt − N0] = λ · t
Example 13: Poisson Process

Jana sends Ioan 10 text messages per hour after 10am. We
want to find the probability that Ioan has exactly 18 texts by
noon and 70 texts at 5pm. This problem can be modelled by a
Poisson process with rate 10, where the desired probability is,

P(N2 = 18, N7 = 70)
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By definition,

{N2 = 18, N7 = 70} = {N2 = 18, N7 − N2 = 52}

Since [0, 2] and (2, 7] are disjoint,

P (N2 = 18, N7 = 70) = P (N2 = 18, N7 − N2 = 52)

= P (N2 = 18) · P (N7 − N2 = 52)

= P (N2 = 18) · P (N5 = 52)

=

(
e−20 · 2018

18!

)
·
(

e−50 · 5052

52!

)
= 0.0045

Definition 110 (Poisson Process – 1b). A Poisson process with parame-
ter λ ≥ 0 is a counting process (Nt)t≥0 with,

N0 = 0 and Nt − Ns ∼ Po(λ · (t − s))

for all t > s > 0, conditionally on Nr for 0 ≤ r ≤ s.

Lemma 111. Nt − Ns ∼ Nt−s
20 20 Be careful when thinking about this

conditionally.
Proof. Nt−s − N0 ∼ Po(λ · (t − s − 0)) = Po(λ · (t − s)).

Theorem 112. Let (Nt)t≥0 be a Poisson process with parameter λ. Then,

(Nt+s − Ns)t≥0 ∼ Po(λ) for s > 0

and (Nt+s − Ns)t≥0 is a Poisson process.

Proof. We need to show that the translated process is probabilistically
equivalent to the original process. It suffices to show that,

Yt := Nt+s − Ns

is a Poisson Process (Definition 1b). Clearly, Y0 = 0. Now,

Yt − Yr = Nt+s − Ns − (Nr+s − Ns)

= Nt+s − Nr+s

so Yt − Yr ∼ Po(λ · (t − r)) given (Nq) for 0 ≤ q ≤ r. Furthermore,
(Nq) contains all information in (Yq) = (Nq+s − Ns) for 0 ≤ q ≤ r,

Definition 2

Definition 113 (Interarrival Time). The interarrival times (Xk)k≥0 are
the times between consecutive jumps of a counting process.
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Definition 114 (Arrival Time). The arrival times (Sk)k≥0 are the times,

lim
t→s+

Nt ̸= lim
t→s−

Nt

at which (Nt)t≥0 increases.

Note on Arrival Time:
SK − Sk−1 = Xk (where S0 = 0)

Figure 5: Arrival times S1, S2, · · · and
interarrival times X1, X2, · · · .

Definition 115 (Poisson Process – 2). Let (Xn)n≥0 be a sequence of i.i.d
exponential random variables with parameter λ. For t > 0,

Nt = max{n | X1 + · · · Xn ≤ t}

with N0 = 0. Then, (Nt)t≥0 is a Poisson process with parameter λ.

Sn =
n

∑
i=1

Xi n ∈ N

defines a sequence (Sn) of arrival times of the process, where Sk is the time
of the kth arrival. The interrarival time between k − 1 and k is,

Xk = Sk − Sk−1 k ∈ N with S0 = 0

Note on Exponential Distribution.

Let Xi ∼ Exp(λi). Then,

P(X ≥ t) = e−λ·t

E[ f (X)] =
∫ ∞

0 λe−λt f (t)dt(⋆)

E[X] = 1
λ

G(s) = E[rX ] =
∫ ∞

0 λe−λtrtdt = λ
λ−log r

P (min {X1, · · · , Xn} > t) = e−(λ1+...+λn)t

P (M = Xi) =
λi

λ1+···+λn
where M = mini{Xi}

P(X > s + t | X > s) = P(X > t) for s, t > 0

Lemma 116. If (Nt)t≥0 is a rate λ · t Poisson Process, as in the interarrival
definition, then Nt ∼ Po(λt) for all t ≥ 0.

Proof. Let (Nt) be a rate λ · t Poisson Process. Then,

P(Nt = k) = P({Sk ≤ t} ∩ {Sk+1 > t}︸ ︷︷ ︸
:=A

) (k ∈ N)

By the Total Probability Rule,

P(Nt = k) = E[P(A | Sk)]

= E
[
1{Sk≤t} · P(A | Sk) + 1{Sk>t} · P(A | Sk)

]
= E

[
1{Sk≤t} · P({Sk ≤ t} ∩ {Sk+1 > t} | Sk)]

= E
[
1{Sk≤t} · P(Sk+1 > t | Sk)]

= E
[
1{Sk≤t} · P(Sk+1 − Sk > t − Sk | Sk)]

= E
[
1{Sk≤t} · P(Xk+1 > t − Sk | Sk)]

Applying Property (⋆) of the exponential distribution,

E
[
1{Sk≤t} · P(Xk+1 > t − Sk | Sk)] =

∫ t

0
e−λ(t−x) f (x)dx

=
∫ t

0
e−λ(t−x) λkxk−1

(k − 1)!
e−λxdx

=
λk · tk · e−λt

k!

where the density f (x) of Sk can be found using the PGF21. 21 Sk is Gamma(k, λ) distributed, so

f (x) =
λkxk−1

(k − 1)!
e−λx
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Definition 117 (Memoryless). A random variable X is memoryless if,

P(X > s + t | X > s) = P(X > t)

Lemma 118. The exponential distribution is memoryless22, 22 In fact, it is the only continuous
distribution that is memoryless.

Proof. Let X ∼ Exp(λ). Then for all t > s > 0,

P(X > t + s | X > s) =
e−λ(t+s)

e−λs = e−λt

Therefore, X − s ∼ Exp(λ) for X > s.

Lemma 119. The sum of independent exponentials is exponential.

Proof. Let Xi ∼ Exp(λi). Then,

P (min (X1, . . . , Xn) > t) = P (X1 > t, . . . , Xn > t)

= P (X1 > t) . . . P (Xn > t)

= e−λ1t . . . e−λnt

= e−(λ1+...+λn)t Advantages of Definition 1:

• Ease of construction and calculation

• Explicit law for interarrival times

Advantages of Definition 2:

• Independence of increments

• Explicit law for statistics of Nt

Example 14: Poisson Process

Buses arrive at a bus stop according to a Poisson process with
parameter λ = 6. Suppose that you arrive at 1pm. Then,

1. Probability of waiting at least 15 minutes

P
(

S1︸︷︷︸
=X1

>
1
4

)
= Exp

(
− 3

2

)

2. Probability that exactly 3 buses arrive in the next hour

P(N1 = 3) =
63

e6 · 3!

3. Expected time to wait for the bus

E

[
S1︸︷︷︸
=X1

]
=

1
6
= 10 min

4. 18 buses arrive between 12:50pm and 1:00pm. The expected
time to wait for the bus does not depend on the past

E

[
S1︸︷︷︸
=X1

]
=

1
6
= 10 min
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Definition 3

Definition 120 (Poisson Process – Definition 3). A Poisson process
with parameter λ is a counting process (Nt)t≥0 satisfying23, 23 There cannot be infinitely many

arrivals in a finite interval, and in an
infinitesimal interval there may occur at
most one event.

1. N0 = 0

2. (Nt) has stationary and independent increment

3. P(Nh = 0) = 1 − λh + o(h)

4. P(Nh = 1) = λh + o(h)

5. P(Nh > 1) = o(h)

where f (h) = o(g(h)) means that,

lim
h→0

f (h)
g(h)

= 0

Applications of Poisson Processes

Thinning and Superposition

Note on Thinning:
Let Z be a Poisson process with pa-
rameter λ. Suppose that (Xi)i≥0 is a se-
quence of i.i.d Bernoulli trials with suc-
cess parameter p. If (Xi) is independent
of (Nt), then Y = ∑Z

i=1 Xi ∼ Po(λp).
To see this, compute the probability
generating function of Y.

Definition 121 (Thinning Poisson Process). Let (Nt)t≥0 be a Poisson
process with parameter λ. Assume that each arrival, independent of other
arrivals, is marked as a "Type k" (k ∈ [n]) event with probability pk (where

∑ pk = 1). Let N(k)
t be the number of "Type k" events in [0, t]. Then,(

N(k)
t

)
t≥0

is a Poisson process with rate λpk(
N(i)

t

)
t≥0

and
(

N(j)
t

)
t≥0

are independent (0 ≤ i ̸= j ≤ n)

Each process is called a thinned Poisson process.

Definition 122 (Superposition Process Poisson). Assume that,(
N(1)

t

)
t≥0

, · · · ,
(

N(n)
t

)
t≥0

are n independent Poisson processes with parameters λ1, · · · , λn. Let,

N = N(1)
t + · · ·+ N(n)

t

for t ≥ 0. Then, (Nt)t≥0 ∼ Po(t · (λ1 + · · ·+ λn)).

Example 15: Birthday Problem

The Birthday Problem asks: "If people enter a room one by
one, how many people are in the room the first time two peo-
ple share a birthday, ignoring year and leap days?"
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This problem can be embedded in a superposition of a Pois-
son process. People enter a room according to a Poisson pro-
cess (Nt)t≥1 with rate λ = 1. Each person is independently
and uniformly marked with one of 365 birthdays.

Let (Xi)i≥0 be the interarrival sequence for the process of peo-
ple entering the room. The Xi are i.i.d exponential with mean
1. Let T be the first time when two people in the room share
the same birthday. If K people are in the room at that time,

T =
K

∑
i=1

Xi

(Xi) is independent of K. Taking the expectation,

E[T] = E[K] · E[X1]︸ ︷︷ ︸
=1

= E[K]

Let Zk be the time when the second person marked with birth-
day k enters the room. Then, the first time that two people in
the room have the same birthday is,

T = min
1≤k≤365

Zk

Equivalently, Zk is the arrival time of the second event of a
Poisson process. Moreover, Zk has a gamma distribution with
parameters and density,

n = 2 λ =
1

365
f (t) =

te−t/365

3652 (t > 0)

The cumulative distribution function is,

P (Z1 ≤ t) =
∫ t

0

se−s/365

3652 ds = 1 − e−t/365(365 + t)
365
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This gives,

P(T > t) = P
(

min
1≤k≤365

Zk > t
)

= P(Z1 > t, · · · , Z365 > t)

= P (Z1 > t)365

=

(
1 +

t
265

)365
e−t (t > 0)

Therefore, the desired birthday expectation is,

E(K) = E(T) =
∫ ∞

0
P(T > t)dt =

∫ ∞

0

(
1 +

t
365

)365
e−tdt

Poissonization and Depoissonization

Poisson processes can be used to prove theorems for discrete time
processes. Given (Xk)k≥0, do the following:

1. (Poissonize) Let X∗
t = XNt for a Poisson process (Nt)t≥0 to embed

the discrete time process (Xk) in continuous time.

2. (Analyze) Show that X∗
t has the desired property.

3. (Depoissonize) Transfer the chain to the discrete time process.

Theorem 123 (Recurrence via Poissonization). Let (Xk)k≥0 be a time-
homogeneous Markov chain. If (Nt)t≥0 is a Poisson process with λ = 1,
then a state x is recurrent if and only if,∫ ∞

0
P (XNt = x) dt = ∞

Proof. It suffices to show the following,∫ ∞

0
P (XNt = x) dt =

∞

∑
k=0

pk(x, x)
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Since P (Xk = x) = P (XNt = x | Nt = k),

∫ ∞

0
P (XNt = x) dt =

∫ ∞

0

∞

∑
k=0

P(Nt = x) · P (XNt = x | Nt = k) dt

=
∞

∑
k=0

P (XNt = x | Nt = k) ·
∫ ∞

0
P(Nt = x)dt

=
∞

∑
k=0

P (Xk = x) ·
∫ ∞

0
P(Nt = x)dt

=
∞

∑
k=0

pk(x, x) ·
∫ ∞

0

e−ttk

k!
dt︸ ︷︷ ︸

=1

=
∞

∑
k=0

pk(x, x)

Example 16: Poissonized Simple Random Walk on Z

Let (Xk)k≥0 be a simple random walk on Zd.

1. (Poissonize) Let (Nt) be a Poisson process with λ = 1. As-
sume that each arrival is marked ”Lt” if the chain moves to
the left, and ”Rt” if the chain moves to the right. Then,

(N(Lt)
t )t≥0 ∼ Po

(
λ · t

2

)
= Po

(
t
2

)
(N(Rt)

t )t≥0 ∼ Po
(

λ · t
2

)
= Po

(
t
2

)
Moreover, (N(Lt)

t ) and (N(Rt)
t ) are independent. Thus,

X∗
t := XNt = (N(Rt)

t )t≥0 − (N(Lt)
t )t≥0 ∼ Po

(
t
2

)
︸ ︷︷ ︸
+1(”Rt”)

−Po
(

t
2

)
︸ ︷︷ ︸
−1(”Lt”)

2. (Analyze) We want to determine if X∗
t is recurrent,

P (XNt = 0) = P(Lt = Rt)

=
∞

∑
k

P(Lt = k | Rt = k) · P(Rt = k)

=
∞

∑
k=0

(
e−t/2(t/2)k

(k!)

)2

by independence

= e−t · I0(t) where I0(t) is the Bessel function
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Therefore, P(XNt = 0) ·
√

2πt → 1 as t → ∞ using the Stir-
ling Formula or Bessel function properties. Consequently,∫ ∞

0
P (XNt = 0) dt = ∞ because

∫ ∞

1

dt√
2πt

= ∞

3. (Depoissonize) Apply "Recurrence via Depoissonization".

Example 17: Poissonized Simple Random Walk on Zd

Let (Xk)k≥0 be a simple random walk on Zd.

1. (Poissonize) Let (Nt) be a Poisson process with λ = 1.
Applying Thinning as in the example on Z,

X∗
k := XNt =

(
X(1)

Nt
, · · · , X(d)

Nt

)
where (X(i)

Nt
) and (X(j)

Nt
) are independent if i ̸= j, and,

(X(i)
Nt
) ∼ Po

(
t
d

)
for all i ∈ [n]

2. (Analyze) We want to determine if X∗
t is recurrent,

P
(

XNt = 0⃗
)
= P

(
X(1)

Nt
= 0

)d
by independence

=

 ∞

∑
k=0

(
e−t/2d(t/2d)k

(k!)

)2
d

Therefore,
∫ ∞

1

(
1√

2πt/d

)d
dt < ∞ if and only if d ≥ 3 as

(√
2πt

d

)d

· P
(

XNt = 0⃗
)
→ 1

3. (Depoissonize) Apply "Recurrence via Poissonization".

Order Statistics

If a Poisson process contains exactly n events in [0, t], then the un-
ordered times of those events are uniformly distributed on [0, t].

Remark 124 (Conditional on 1 Event). P (S1 ≤ s | Nt = 1) = s
t .
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Proof. Using the definition of Conditional Probability,

P (S1 ≤ s | Nt = 1) =
P (S1 ≤ s, Nt = 1)

P (Nt = 1)

=
P (Ns = 1, Nt = 1)

P (Nt = 1)

=
P (Ns = 1, Nt − Ns = 0)

P (Nt = 1)

=
P (Ns = 1) · P (Nt−s = 0)

P (Nt = 1)

=
e−λsλse−λ(t−s)

e−λtλt

=
s
t

since Nt−s ∼ Po(λ · (t − s)).

Definition 125 (Order Statistic). Let U1, · · · , Un be an i.i.d sequence of
Unif([0, t]) random variables. Their joint density function is,

fU1,...,Un (u1, . . . , un) =
1
tn

for 0 ≤ u1, . . . , un ≤ t. Arrange Ui in increasing order,

U(1) ≤ U(2) ≤ · · · ≤ U(n)

U(k) is the kth smallest of the Ui. The ordered sequence,(
U(1), . . . , U(n)

)
is the order statistics of the original sequence. Its joint density is,

fU(1),...,U(n)
(u1, . . . , un) =

n!
tn

0 ≤ u1 < · · · < un ≤ t.

Theorem 126 (Order Statistics via Poissonization). Let S1, S2, · · · be
the arrival times of a Poisson process with parameter λ. Conditional on
Nt = n, the joint distribution of (S1, · · · , Sn) is the distribution of the order
statistics of n i.i.d uniform random variables on [0, t].

f (s1, . . . , sn) =
n!
tn

for 0 < s1 < · · · < sn < t. Equivalently, let U1, · · · , Un be an i.i.d
sequence of Unif([0, t]) random variables. Then, conditional on Nt = n,

(S1, . . . , Sn) and
(

U(1), . . . , U(n)

)
have the same distribution.
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Proof. See Dobrow 6.5 (p.245).

Corollary 127. Results for arrival times offer a new method for simulating
a Poisson process with parameter λ on an interval [0, t]:

1. Simulate the number of arrivals N in [0, t] from Po(λ · t)

2. Generate N i.i.d random variables uniformly distributed on (0, t)

3. Sort the variables in increasing order to give the Poisson arrival times

Spatial Poisson Processes

The spatial Poisson process is a model for the distribution of events
in a two- or higher-dimensional space24. For d ≥ 1 and A ⊆ Rd, let 24 The uniform distribution arises for

the spatial process in a similar way to
how it does for the one-dimensional
Poisson process. Given a bounded set
A ⊆ Rd, conditional on there being n
points in A, the location of the points
are uniformly distributed on A.

NA denote the number of points in the set A. We write |A| for the
size of A (i.e., area in R2 and volume in R3).

Definition 128 (Spatial Poisson Process). A collection of random vari-
ables (NA)A⊆Rd is a spatial Poisson process with parameter λ if,

1. NA ∼ Po(λ · |A|) for each bounded set A ⊆ Rd

2. NA and NB are independent random variables if A and B are disjoint

The definition of a spatial Poisson process can be generalized to a
Poisson random measure as follows,

Definition 129 (Poisson Random Measure). The Poisson random
measure is the unique function N : B → N0 so that for any A ∈ B,

1. If NA is the number of points in A, then,

NA ∼ Po
(∫

A
f (x)dx

)
2. If A1, · · · , Ak ∈ B are disjoint, compact sets,

(N(A1), N(A2), · · · , N(Ak))

are independent, Poisson distributed random variables with parameters,∫
Aj

f (x)dx 1 ≤ j ≤ k

where f : Rd → R is called the "intensity" of the process.

Figure 6: Samples of a spatial Poisson
process with parameter λ = 100 on the
square [0, 1]× [0, 1].

Remark 130. Let f : Rd → R be a continuous, non-negative function.

1. (Number of Points in I) For any closed rectangle I ⊂ Rd,

NI ∼ Po
(∫

I
f (x)dx

)
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2. (Location of Points in I) Define an i.i.d collection XI of points,

(Xj)j∈[1,NI ]
with Xj ∼ P(Xj ∈ B) =

∫
B f (x)dx∫
I f (x)dx

3. (Spread of Points in Rd) Repeat over a partition into rectangles,

X = ∪I XI and NA := |{X ∩ A}| for each A ∈ B

N is a Poisson random measure with intensity f 25. 25 Notes on Spatial Processes:

1. If d = 1 and f is constant at λ > 0,
then N[0,t] ↔ Nt is the Poisson
process with rate λ.

2. If d > 1 and f is constant at λ > 0,
then this is the homogeneous spatial
Poisson process.

Definition 131 (Non-Homogeneous Poisson Process). A counting
process (Nt)t≥0 is non-homogeneous Poisson with intensity λ(t) if,

1. N0 = 0

2. For all t > 0, Nt has a Poisson distribution with mean,

E (Nt) =
∫ t

0
λ(x)dx

3. For 0 ≤ q < r ≤ s < t. Nr − Nq and Nt − Ns are independent

Continuous-Time Markov Chains

Holding Times

Definition 132 (Continuous-Time Markov Property). The Markov
property for continuous-time chains (Xt)t≥0 with discrete state space S is,

P
(
Xt = j | (Xu)0≤u<s and Xs = i

)
= P (Xt = j | Xs = i)

for all t ≥ s and states i, j ∈ S.

Definition 133 (Time-Homogeneous). A continuous-time Markov chain
(Xt)t≥0 with discrete state space S is time-homogeneous if,

P (Xt+s = j | Xs = i) = P (Xt = j | X0 = i)

for s ≥ 0. The transition probabilities can be arranged in a function,

Pij(t) = P (Xt = j | X0 = i)

which is the analog of pt(i, j) in the discrete setting26. 26 P(t) is not the transition matrix P̃ of
the embedded chain, since t ∈ R.

Definition 134 (Chapman-Kolmogorov). A continuous-time Markov
chain (Xt)t≥0 with transition function P(t) satisfies that,

P(s + t) = P(s) · P(t) for s, t ≥ 0.
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Proof. By conditioning on Xs,

Pij(s + t) = P (Xs+t = j | X0 = i)

= ∑
k

P (Xs+t = j | Xs = k, X0 = i) · P (Xs = k | X0 = i)

= ∑
k

P (Xs+t = j | Xs = k) · P (Xs = k | X0 = i)

= ∑
k

P (Xt = j | X0 = k) · P (Xs = k | X0 = i)

= ∑
k

Pik(s) · Pkj(t)

= [P(s) · P(t)]ij

Definition 135 (Holding Time). The holding time Ti at a state i is the
length of time that a continuous-time Markov chain started in i stays in i
before transitioning to a new state.

Theorem 136. Let Ti be the holding time at state i. Then Ti ∼ Exp(λi).

Proof. The exponential distribution is the only continuous distribu-
tion that is memoryless, so it suffices to prove that Ti is memoryless.
Let s, t ≥ 0. Suppose that the chain starts in i. Then,

{Ti > s} = {Xu = i for u ∈ [0, s]}

Moreover, {Ti > s + t} implies that {Ti > s}, so,

P(Ti > s + t | X0 = i) = P({Ti > s + t}︸ ︷︷ ︸
A

∩ {Ti > s}︸ ︷︷ ︸
B

| X0 = i)

Applying Bayes’ Law with the conditional probability measure,

P(A ∩ B | X0 = i) = P(A | B ∩ {X0 = i}) · P(B | X0 = i)

and using homogeneity and the Markov property,

= P(Ti > s + t | {Ti > s} ∩ {X0 = i}) · P(Ti > s | X0 = i)

= P (Ti > s + t | Xu = i for u ∈ [0, s]) · P (Ti > s | X0 = i)

= P (Ti > s + t | Xs = i) · P (Ti > s | X0 = i)

= P (Ti > t | X0 = i) · P (Ti > s | X0 = i)

shows that Ti satisfies the definition of memoryless,

P(Ti > s + t | X0 = i) = P (Ti > t | X0 = i) · P (Ti > s | X0 = i)
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Definition 137 (Absorbing State). A state i is absorbing if the parameter
of the exponential distribution for the holding time Ti is zero,

E[Ti] =
1
0
= ∞

Definition 138. A continuous-time Markov chain is explosive at a time
t ∈ R+ if there are infinitely-many transitions in all neighborhoods27, 27 In Dobrow, a state i ∈ S is called

explosive if the holding time parameter
λi of Ti is infinite, i.e.,

E[Ti ] =
1
∞

= 0

(t − ϵ, t) for ϵ > 0 arbitrary

The evolution of a continuous-time Markov chain which is neither
absorbing nor explosive can be described as follows,

1. Starting from i, the process stays in i for an exponentially dis-
tributed length of time, which is 1/qi on average

2. The chain hits a new state j ̸= i, with probability pij

3. The process stays in j for an exponentially distributed length of
time, which is 1/qj on average. It then hits a new state l ̸= j

Example 18: Continuous-Time Weather Chain

Define the state space S = {rain, snow, clear}. Assume that,

1. Rain lasts, on average, 3 hours

2. Snow lasts, on average, 6 hours

3. Clear weather lasts, on average, 12 hours
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Changes in weather states are described by the matrix,

P̃ =

rain snow clear 0 1/2 1/2 rain

3/4 0 1/4 snow

1/4 3/4 0 clear

Let Xt be the weather at time t. Then, (Xt)t≥0 is a continuous-
time Markov chain. Moreover, P̃, as well as the exponential
parameters (λr, λs, λc) = (1/3, 1/6, 1/12), specify P(t), i.e.,
P (Xt1 = i1, . . . , Xtn = in) for n ≥ 1, states si and times ti ≥ 0.

Definition 139 (Embedded Chain). A sequence (Yk)k≥0 is the embedded
chain of a continuous-time process (Xk) if Yk is the kth state visited.

Remark 140. The transition matrix P̃ of the embedded chain of a continuous-
time process is a stochastic matrix whose diagonal entries are zero28. 28 The process can never transition from

state i to state i. It remains in i for an
exponential amount of time, after which
it transitions to another state j (j ̸= i).

A continuous-time Markov chain can also be described by specify-
ing transition rates between pairs of states. Suppose that for for each
state i, there are independent alarm clocks associated with each of the
states that the process can visit after i. Then,

1. If j can be hit from i, the alarm Cij associated with (i, j) will ring
after an exponentially distributed length of time with parameter qij

2. The minimum time for one Cij (i ̸= j) to finish ringing is the
minimum of independent exponentials, which was proven to be
exponential with parameter qi = ∑k qik

3. When the process first hits i, the clocks start simulataneously,
where the first alarm that rings determines the next state

4. If the (i, j) clock rings first and the process moves to j, a new set of
exponential alarm clocks are started with rates qj1, qj2, · · ·
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Infinitesimal Generator

Definition 141 (Rate Matrix). The rate matrix (Q) for a continuous-
time Markov chain is defined as follows,

(Q)ij :=

qi · P̃ij i ̸= j

0 i = j

=

qij i ̸= j

0 i = j

Note on Generator Matrix:
A continuous-time Markov chain
(Xt)t≥0 with transition function P(t)
and generator Q satisfies that,

1. P′(t) = P(t) · Q

2. P′(t) = Q · P(t)

These are called the "Kolmogorov
Forward, Backward Equations".

Definition 142 (Generator Matrix). The generator matrix Q for a
continuous-time Markov chain is defined as follows29,

29 If the smallest signed value of a
generator matrix Q is finite, then we say
the chain is "bounded rate". Moreover,
any finite chain is bounded rate.

Qij :=


qij i ̸= j

−qi︸︷︷︸
−∑k qik

i = j

Corollary 143. The generator is not a stochastic matrix. Diagonal entries
are negative, entries can be greater than 1, and rows sum to 0.

Corollary 144. A continuous-time Markov chain (Xt)t≥0 satisfies that,

P̃ij :=

P
(
Ci,j = Ĉ

)
=

qij
qi

=
qij

∑k qik
i ̸= j

0 i = j

where P̃ is the embedded chain, and {Cij = Ĉ} is the event that Cij is the
first alarm that rings and determines the next state30. 30 The holding time parameters λi are

equal to qi .
Corollary 145. A continuous-time Markov chain (Xt)t≥0 with transition
function P(t) and generator Q satisfies that,

P(t) = etQ =
∞

∑
n=0

1
n!
(tQ)n = I + tQ +

t2

2
Q2 +

t3

6
Q3 + · · ·

Note on Matrix Exponential:
Let A be a k × k matrix. Then,

eA =
∞

∑
n=0

1
n!

An

= I + A +
1
2

A2 + · · ·Classification of States

For characterizing the states of a continuous-time Markov chain, the
definitions of accessibility, communication, and irreducibility are
defined as in the discrete case. For example,

Definition 146 (Irreducible). A continuous-time Markov chain with
transition function P(t) is irreducible if for all i, j ∈ S,

Pij(t) > 0 for some t > 0

Lemma 147. If Pij(t) > 0 for some t > 0, then Pij(t) > 0 for all t > 0.
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Proof. Suppose that Pij(t) > 0 for some t > 0. Then there exists a
path from i to j in the embedded chain, and, since the exponential
distribution is continuous, for any time s there is positive probability
of reaching j from i in s time units31. 31 Formally, for s ≥ 0, this means that,

1. Pij(t + s) > 0

2. Pij(t − s) > 0
Corollary 148. All states of a continuous-time Markov chain are aperiodic.

Stationary Distributions

Definition 149 (Stationary Distribution). A probability distribution π⃗ is
a stationary probability distribution for a continuous-time chain if32, 32 As in the discrete case, the limiting

distribution, if it exists, is a stationary
distribution. However, the converse is
not necessarily true and depends on the
class structure of the chain.

π⃗ = π⃗ · P(t)

Corollary 150. The stationary distribution π⃗ is not the same as the station-
ary distribution of the embedded chain, ψ⃗33. However, for all j, 33 πi is the long-term proportion of

time that the process spends in state
i. Conversely, ψ(i) is the long-term
proportion of transitions that the
process makes into state i.

ψ(j) =
πjqj

∑k π(k)qk
πj =

ψ(j)/qj

∑k ψ(k)/qk

Theorem 151 (Fundamental Limit Theorem). Let (Xt)t≥0 be a finite,
irreducible, continuous-time Markov chain with transition function P(t).
Then, there exists a unique stationary distribution π⃗, which is the limiting
distribution of the chain. That is, for all j ∈ S,

lim
t→∞

Pij(t) = πj for all i

Equivalently,
lim
t→∞

P(t) = Π

where Π is a matrix all of whose rows are equal to π⃗.

Proof. The proof of the Fundamental Limit Theorem is omitted.

Theorem 152. A probability distribution π⃗ is a stationary distribution of a
continuous-time Markov chain with generator Q if and only if,

π⃗Q = 0⃗ ⇐⇒ ∑
i

πiQij = 0 for all j ∈ S

Proof. Assume that π⃗ = π⃗P(t) for all t ≥ 0. Differentiating at t = 0,

0⃗ = π⃗P′(0) = π⃗Q

Conversely, assume that π⃗Q = 0⃗. Right-multiplying by P(t),

0⃗ = π⃗QP(t) = π⃗P′(t) for t ≥ 0

by the Kolmogorov backward equation. This implies that π⃗P(t) is
constant, that is, π⃗P(t) = π⃗P(0) for all t. But P(0) = I34, so, 34 Observe that,

Pij(0) = P(Xt = j | X0 = i) =

{
1, if i = j
0, if i ̸= j

π⃗P(t) = π⃗P(0) = π⃗ I = π⃗
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Poisson Subordination

Definition 153 (Subordination). Let (Nt)t≥0 be a Poisson process with
parameter λ. Let (Yt)t≥0 be a finite-state, irreducible, discrete-time process
with transition matrix R. Define a continuous-time process (Xt)t≥0 by
Xt := YNt

35. The process (Xt) is subordinated to a Poisson process. 35 Transitions for the Xt process occur
at the arrival times of the Poisson
process. From state i, the process holds
an exponentially distributed amount
of time with parameter λ, and then
transitions to j with probability Rij

Remark 154. Let P(t) be the transition function of (Xt). Then,

Pij(t) = P(Xt = j | X0 = i)

=
∞

∑
k=0

P (Xt = j | {Nt = k} ∩ {X0 = i}) · P (Nt = k | X0 = i)

=
∞

∑
k=0

P (Yk = j | {Nt = k} ∩ {X0 = i}) · P (Nt = k)

=
∞

∑
k=0

P (Yk = j | Y0 = i) · P (Nt = k)

=
∞

∑
k=0

Rk
ij ·

e−λt(λt)k

k!

We have just seen how to construct a continuous-time Markov
chain from a discrete-time chain and a Poisson process. We will now
see that many continuous-time chains can be represented as chains
subordinated to a Poisson process.

Remark 155. Let Q be the generator of a continuous-time Markov chain
with holding time parameters {qi}. If qi ≤ λ for all i, then we can define,

R =
1
λ

Q + I where λ = max
i

qi

which is a stochastic matrix. The transition function is,

P(t) = etQ = e−λtetQeλt = e−λtet(Q+λI)

= e−λt
∞

∑
k=0

1
k!

tk(Q + λI)k

=
∞

∑
k=0

(
1
λ

Q + I
)k e−λt(λt)k

k!

=
∞

∑
k=0

Rk e−λt(λt)k

k!

R is not the matrix of the embedded Markov chain:

P̃ij =

qij/qi, for i ̸= j

0, for i = j
Rij =

qij/λ, for i ̸= j

1 − qi/λ, for i = j

Note on Poisson Subordination:

1. From state i, wait an exponential
length of time with rate λ

2. Flip a coin with P(H) = qi
λ

3. If heads, transition according to R.
Otherwise, stay at i and repeat

Theorem 156. For a Markov chain subordinated to a Poisson process, the
discrete R-chain has the same stationary distribution as the original chain.
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Proof. π⃗Q = π⃗λ(R − I) = λπ⃗R − λπ⃗.

Corollary 157. The following are equivalent,

1. π⃗P(t) = π⃗ for all t ≥ 0

2. π⃗Q = 0⃗

3. π⃗R̃ = π⃗ for some λ = maxi qi

Example 19: Totally Asymmetric Exclusion Process

The dynamics of the totally asymmetric simple exclusion
process on Z are as follows,

1. The alarm clock for a particle rings as a Poisson process of
rate 1 at each site independently

2. When the bell at site i rings, if there is a particle at site i
and a hole at site i − 1, they exchange

Equivalently, each particle in the system tries to jump to the
left at rate 1, and the jump succeeds whenever the site to the
left is unoccupied. Since it is possible for infinitely many par-
ticles to move instantaneously, and the minimum of infinitely-
many exponential clocks is zero, there is no embedded chain
and holding representation for this chain.

Birth-and-Death Chains Note on Yule Process:
The Yule process ia a birth-and-death
process in which the birth rate is x · λ
and the death rate 0.

Definition 158 (Yule Process). Let Yt be the population size at time t. The
Yule process (Yt)t≥0 is a continuous-time branching process where36, 36 The rate represents the expected

time until the next division. Thus,
P(min{C1, · · · , Cx} > t) = e−xβ.1. Y0 = 1, and the rate of the process is qx,x+1 = x · β

2. Each individual gives birth to an offspring at a constant rate β

3. Each individual gives birth independently of other individuals

4. The distribution of each division time is Exp(β)

Remark 159. A Yule process (Yt)t≥0 satisfies the following identity,

Yt+τ ∼ Y(1)
t + Y(2)

t and τ ∼ Exp(β)

where τ is the time of the first division, and Y(1)
t , Y(2)

t are Yule processes.
(Yt) cannot be written as a Poisson
subordinated discrete time walk.
However, it exists for all time without
exploding. Conversely, if qx,x+1 = β · x2,
then the process explodes in finite time.
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Remark 160. Define the following,

Arrival i is the birth of member i + 1 of the population

Ĉi is the minimum time for one Ci to finish ringing

Zi is the time of arrival i

Tn := min{t | Yt = n}

We need to compute P(Tn ≤ t),

P(Tn ≤ t) = P

(
n−1

∑
i=1

Ĉi ≤ t

)
where Ĉi ∼ Exp(i · β)

= P

(
n−1⋂
i=1

{Zi ≤ t}
)

where Zi ∼ Exp(β)

=
n−1

∏
i=1

P(Zi ≤ t) since (Zi)i∈[n−1] i.i.d

= (1 − e−tβ)n−1 by induction

Remark 161. We can write Yt = ∑∞
i=1 1{Tj≤t}. Then,

E[Yt] = E

[
∞

∑
i=1

1{Tj≤t}

]
=

∞

∑
i=1

P(Tj ≤ t) =
∞

∑
i=1

(
1 − e−t·β

)i−1
= et·β

using the sum of a geometric series.

Definition 162 (Birth-and-Death). Birth-and-death processes are a
class of time-reversible, continuous-time Markov chains. They satisfy,

1. Births occur from i to i + 1 with rate β

2. Deaths occur from i to i − 1 with rate 1

making qx,x+1 = β · x and qx,x−1 = x37. 37 This represents an exponential 1 clock
and a population of size x.

The following questions are equivalent,

1. How many times is the Exp(β)
birth clock C of an individual the
minimum before the Exp(1) death
clock rings?

2. How many offspring does the
individual produce?

Theorem 163. If β > 1, then the probability of extinction is less than 1.

Proof. The proof is by a Poisson Process argument, where,(
β

1 + β

)
and

(
1

1 + β

)
are the parameters of each thinned process. Computing the number
of divisions before death gives that E[Y] = β.

Corollary 164. Let (Yt) be a birth-and-death process with birth rate β and
death rate 1. If β ≤ 1, the underlying branching process goes extinct,

Yt
a.s−→

t→∞
0 where 0 is an absorbing state
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Conversely, when β > 1, there exists a random variable Y∞,

Yt
a.s→

t→∞
Y∞

and P(Y∞ = 0) is the extinction probability of the branching process,

P(Y∞ = ∞) = 1 − P(Y∞ = 0)

Definition 165. Let (Yt) be an irreducible continuous-time Markov chain.
(Yt) is null-recurrent if and only if E[τ+

0 ] = ∞38. 38 Otherwise, (Yt) is positive-recurrent.
This definition is the same as the
discrete case.Corollary 166. The underlying discrete-time behavior does not determine

positive or null recurrence for the chain. The holding time parameters can be
made sufficiently large to see this.

Theorem 167. An irreducible, continuous-time Markov chain is positive
recurrent if and only if there exists a stationary probability vector π⃗. That
is, ∑i∈S πi = 1 and π⃗Q = 0, where Q is the generator of the chain.

Proof. The proof uses Martingales, and it was not seen in class.

Example 20: Reflected Birth-and-Death Chain

We can modify the birth-and-death chain to make the bound-
ary condition at zero reflect. Equivantly, we define,

Q′
x,y =


qx,y x ̸= 0

1 x = 0 and y ̸= 0

0 x = 0 and y = 0

Q. Is the reflected birth-and-death chain recurrent?
The modified chain is recurrent if and only if β ≤ 1 since the
process goes extinct, i.e., reaches zero, with probability 1.

Q. Is the reflected birth-and-death chain positive-recurrent?
The modified chain is positive recurrent if and only if β < 1.

Martingales

Examples of Martingales

Definition 168 (Martingale). A martingale (Mt)t≥0 is a stochastic
process that satisfies, for all t ≥ 0,

1. E[Mt | (Mr)r∈[0,s]] = Ms for all 0 ≤ s ≤ t

2. E[|Mt|] < ∞

where Fk = σ(M0, · · · , Ms) = (Mr)r∈[0,s] is the history of the chain39. 39 The condition that E[|Mt|] < ∞ is
omitted for the examples in this section.
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Corollary 169. A discrete-time martingale (Mt) satisfies,

1. E[Mt | Y0, · · · , Mt−1] = Ms for all t ≥ 0

2. E[|Mt|] < ∞

Remark 170. If (Mn)n≥0 is a martingale, then E[Mn] is constant.

Proof. By the Law of Total Expectation, for all 0 ≤ s ≤ t,

E[Mt] = E[E[M0, · · · , Ms]] = E[Ms]

That is, E[Mt] = E[M0] for all t.

Example 21: Simple Random Walk

The simple symmetric random walk Sn := ∑n
i=1 Xi has,

Xi =

+1 with probability 1/2

−1 with probability 1/2

for n ≥ 1 with S0 = 0. Then,

E[Sn+1 | S0, · · · , Sn] = E[Xn+1 + Sn | S0, · · · , Sn]

= E[Xn+1 | S0, · · · , Sn] + E[Sn | S0, · · · , Sn]︸ ︷︷ ︸
E[g(X)|X]=g(X)

= E[Xn+1]︸ ︷︷ ︸
=0

+Sn

= Sn

since Xn+1 is independent of X1, · · · , Xn and consequently
Xn+1 is independent of S0, · · · , Sn. Next, we prove that,

E[|Sn|] = E

[∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣
]
≤ E

[
n

∑
i=1

|Xi|
]
=

n

∑
i=1

E[|Xi|] = n < ∞

Example 22: Biased Random Walk

Let p + q = 1. The biased random walk Sn := ∑n
i=1 Xi has,

Xi =

+1 with probability p

−1 with probability q

for n ≥ 1 with S0 = 0. While it is not a martingale,

E[Sn+1 | S0, · · · , Sn] = E[Xn+1]︸ ︷︷ ︸
p−q

+Sn

= (p − q) + Sn
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the modified process (Ŝn)n≥1 is a martingale,

Ŝn = Sn − (p − q) · n

Example 23: Biased Random Walk on N0 with Absorption

Let (Sn)n≥0 be the biased random walk on N0 with an absorb-
ing boundary at zero. (Ŝn) is not a martingale,

E[Ŝn+1 | Ŝ0, · · · , Ŝn] = E[Sn+1 − (p − q)(n + 1) | Ŝ0, · · · , Ŝn]

= E[Xn+1] + Sn − (p − q)(n + 1)

= Sn − (p − q)(n + 1) + (p − q)1{Yn ̸=0}

Define (S′
n)n≥0 by S′

n := Sn − (p − q) · min{n, T} for
T := inf{n | Sn = 0}. Then (S′

n) is a martingale.

Example 24: Absorption Time for Biased Random Walk

If p < q, then (Sn) is absorbed with probability 1,

Yk →
k→∞

0

Therefore,

E[S′
0] = E[S′

k]

= E[Sn]− E[(p − q) · min{n, T}]

Taking k → ∞ gives the absorption time E[T] = E[X0]
(q−p) .

Example 25: Branching Process

Let (Zk)k≥0 be a branching process with offspring distribution
X = (x1, · · · , ). Put E[X] = µ. Then,

Mk :=
Zk

µk
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is a martingale. Since Zk+1 ∼ ∑Zk
j=1 Xj,

E[Mk+1 | M1, · · · , Mk] = E

[
Zk+1

µk+1

∣∣∣∣M1, · · · , Mk

]

= E

∑Zk
j=1 Xj

µk · µ

∣∣∣∣∣∣ Zk


=

1
µk · µ

Zk

∑
j=1

E[Xj] since µ, k fixed

=
1

µk · µ

Zk

∑
j=1

µ

=
Zk

µk

= Mk

Example 26: Pólya’s Urn

If (Rk, Bk) are the number of red and blue balls at time k.

Mk :=
Rk

Rk + Bk

is a martingale. Recall that,

(Rk, Bk) → (Rk, Bk+1) with probability
Bk

R0 + B0 + k

(Rk, Bk) → (Rk+1, Bk) with probability
Rk

R0 + B0 + k

(Bk, k) → (Bk, k + 1) with probability
R0 + B0 + k − Bn

R0 + B0 + k

(Bk, k) → (Bk+1, k + 1) with probability
Bk

R0 + B0 + k

Since (Mk) is a Markov Chain,

E[Mk+1 | M1, · · · , Mk] = E

[
Rk+1

Rk+1 + Bk+1

∣∣∣∣ (Rk, Bk)

]
= E

[
Rk+1

B0 + R0 + k + 1

∣∣∣∣ (Rk, Bk)

]
=

1
B0 + R0 + k + 1

· E [Rk+1 | (Rk, Bk)]

where Ak+1 be the event that the (k + 1)th ball is red, given
that the number of red and blue balls at time k are Rk and Bk.

P (Rk+1 = Rk + 1)︸ ︷︷ ︸
P(Ak+1|(Rk ,Bk))=E

[
1Ak+1

] ·
Rk + 1

Rk + Bk + 1
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+ P (Rk+1 = Rk)︸ ︷︷ ︸
P(Ac

k+1|(Rk ,Bk))=E

[
1Ac

k+1

] ·
Rk

Rk + Bk + 1

is the desired expectation. Simplifying,

=
R2

k + Rk + BkRk

(R0 + B0 + k) · (R0 + B0 + k + 1)

=
Rk · (Rk + Bk + 1)

(Rk + Bk) · (Rk + Bk + 1)

=
Rk

Rk + Bk

= Mk

Example 27: Absorption Probabilities

Let (Yk) be a Markov chain with an absorbing state i. Then,

Mk := P(Ai | Yk)

is a martingale, where Ai is the event that the chain is ab-
sorbed at i. By the Total Conditional Law of Expectation,

E[Mk+1 | M0, · · · , Mk] = E[P(Ai | Yk+1) | M0, · · · , Mk]

= E[P(Ai | Yk+1) | Yk]

= E[P(Ai | Yk+1, Yk) | Yk]

= P(Ai | Yk)

= Mk

where the third inequality follows by the Markov Property.

Limit Theorems

Definition 171 (Bracket). The bracket of a martingale (Mk)k≥0 is40, 40 This is effectively the accumulated
variance of the process (Yk).

⟨Mk⟩ :=
k

∑
n=0

E
(
(Mn+1 − Mn)

2 | Fn

)
Example 28: Simple Random Walk

We saw that the simple random walk on Z0 is a martingale.

(Mn+1 − Mn)
2 = 1 for all n ∈ N0

so ⟨Mk⟩ = k for all k ∈ N.
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Remark 172. Let (Mk)k≥0 be a martingale. Then,

E ⟨Mk⟩ = E[(Mn+1 − M0)
2]

Proof. By definition,

E
[
(Mn+1 − Mn)

2 | Fn

]
= E

[
M2

n+1 + M2
n − 2 · Mn+1Mn | Fn

]
= E

[
M2

n+1 | Fn

]
+ M2

n + 2 · M2
n

Therefore,

E [⟨Mk⟩] = E

[
n

∑
n=0

E
[
(Mn+1 − Mn)

2 | Fn

]]

=
n

∑
n=0

E
[
E
[
(Mn+1 − Mn)

2 | Fn

]]
=

n

∑
n=0

E
[
E
[

M2
n+1 | Fn

]
+ M2

n − 2 · M2
n

]
=

n

∑
n=0

E[M2
n+1] + E[M2

n]− 2 · E[M2
n]

=
n

∑
n=0

E[M2
n+1]− E[M2

n]

= E[M2
n+1]− E[M2

0]

= E[(Mn+1 − M0)
2]

Example 29: Pólya’s Urn (Bracket Process)

Since Rn
n+n0

≥ Rn
n+n0+1

, we have that,

E

[(
Rn+1

n + 1 + n0
− Rn

n + n0

)2
∣∣∣∣∣Fn

]
≤ 1

(n + 1 + n0)2

Implying that, for all n ∈ N,

⟨Mn⟩ ≤
∞

∑
k=1

1
k2 =

π2

6
< ∞

Theorem 173. Let (Mk)k≥0 be a martingale. Suppose that,

P
(

sup
n
⟨Mn⟩ < ∞

)
= 1

Then, limn→∞ Mn exists. Denote it by M∞. Then,

1. P (limn→∞ Mn = M∞) = 1
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2. sup E[⟨Mn⟩] < ∞

3. Mn = E[M∞ | Fn]

Proof. The proof was not given in class.

Theorem 174. Let (Mk)k≥0 be a martingale. If Mn ≥ 0 for all n ∈ N,
then there exists a random variable M∞ < ∞ such that,

P
(

lim
n→∞

Mn = M∞

)
= 1

Proof. The proof was not given in class.

10 Runs of the Pólya’s Urn Process:

Figure 7: It was proven in class that,

Mn :=
Rn

n
→ M∞

where M∞ ∼ Unif([0, 1]).

Example 30: Branching Processes (Bracket Process)

Let (Mk)k≥0 be the martingale for a branching process
(Zk)k≥0, as defined above. Then,

⟨Mk⟩ =
n

∑
k=1

E
[
(Mk+1 − Mk)

2
∣∣∣Fk

]

=
n

∑
k=1

E

(Zk+1

µk+1 − Zk

µk

)2
∣∣∣∣∣∣Fk


=

n

∑
k=1

E

( 1
µk+1 ·

Zk

∑
i=1

Xi −
Zk

µk

)2 ∣∣∣∣∣∣Fk


=

n

∑
k=1

E

 1
µ2k ·

(
Zk

∑
i=1

(
Xi
µ

− 1
))2 ∣∣∣∣∣∣Fk


=

n

∑
k=1

E

 1
µ2k ·

(
Zk

∑
i=1

(
Xi
µ

− µ

µ

))2 ∣∣∣∣∣∣Fk


=

n

∑
k=1

1
µ2k · E

( Zk

∑
i=1

(
Xi
µ

− µ

µ

))2 ∣∣∣∣∣∣Fk


=

Zn

µ2n · Var (X1)

µ2

using the definition of the population variance. Now, we can
bound sup ⟨Mn⟩ since ⟨Mn⟩ is an increasing sequence,

sup ⟨Mn⟩ ≤
∞

∑
k=0

Zk

µ2k
Var (X1)

µ2

and use the mean exponential growth rate to conclude that,

E [sup ⟨Mn⟩] ≤
∞

∑
k=0

E

[
Zk

µ2k

]
Var (X1)

µ2 =
∞

∑
k=0

1
µk

Var (X1)

µ2

with µ > 1 and Var (X1) < ∞, the ratio Mk converges to a non-
degenerate limit random variable.
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