
Semester: Fall 2022

Instructor: Lessard, Jean-Philippe

Numerical Analysis

Course Content. Error analysis. Numerical solutions of equations by iteration. Interpolation. Numerical
differentiation and integration. Introduction to numerical solutions of differential equations.

Summary of Contents

Topic 1. Error Sources and Floating Point Numbers 3
Rounding and Discretization . 3

Measuring Error . 5

Floating-Point Numbers . 6

Arithmetic Operations . 8

Topic 2. Iterative Methods for Nonlinear Systems of Equations 9
Review of Calculus . 9

Convergence Order . 11

Bisection Method . 13

Fixed Point Iteration . 14

Newton’s Method . 18

Secant Method . 19

Summary . 21

Topic 3. Interpolation and Polynomial Approximation 22
Defining Interpolation Problems . 22

Monomial Basis Functions . 24

Lagrange Basis Functions . 25

Newton Basis Functions . 27

Error Analysis . 29

Runge’s Phenomenon . 30

Spline Interpolation . 33

Hermite Interpolation . 38

Topic 4. Numerical Differentiation and Integration 40
Numerical Differentiation . 40

Numerical Integration . 44

Gauss Quadrature . 47

Composite Quadrature . 50

Topic 5. Numerical Methods for Initial Value Problems 52
Defining Initial Value Problems . 52

Methods based on Numerical Differentiation . 52

Methods based on Numerical Integration . 54

Error Analysis . 56

Case Study: A-Stability . 63

Predictor-Corrector Methods . 66

Runge-Kutta Methods . 68

First-Order Systems of ODEs . 69

MATH 317 Numerical Analysis Lecture Notes | 3

Topic 1. Error Sources and Floating Point Numbers

Many problems in science and engineering are described using con-
tinuous variables and then modelled by differential equations.

Fluid Mechanics Laws of Motion
Electromagnetism Maxwell’s Equations
Stock Pricing Black-Scholes Equation
Machine Learning Neural Networks

Since computers have finite resources, we must approximate solu-
tions to these problems in finite precision. This involves,

Validation - Accurate approximations of solutions
- Efficiency in costs
- Stability during computation

Verification - Accurate models of real-world phenomenon

We will use the following notation,

x Exact input value

x̃ Approximate input value

f Exact output value

f̃FP Finite-precision approximationRounding and Discretization

Definition (Discretization Error). The discretization error is an
infinite-precision measurement of the difference between the
exact output and the numerical output,∣∣ f (x)− f̃IP(x)

∣∣
Definition (Rounding Error). The rounding error is an infinite-
precision measurement of the difference between numerical
outputs with infinite and finite precision,∣∣ f̃IP(x)− f̃FP(x)

∣∣

MATH 317 Numerical Analysis Lecture Notes | 4

Remark. Error sources from computation can be bounded by,

Error := | f (x)− f̃ (x̃)|
≤ | f (x)− f (x̃)|︸ ︷︷ ︸

Data Error

+ | f (x̃)− f̃FP(x̃)|︸ ︷︷ ︸
Computation Error

Assuming no data error, i.e., x = x̃, we have,

| f (x̃)− f̃FP(x)| = | f (x)− f̃FP(x)|
≤
∣∣ f (x)− f̃IP(x)

∣∣︸ ︷︷ ︸
Discretization Error

+
∣∣ f̃IP(x)− f̃FP(x)

∣∣︸ ︷︷ ︸
Rounding Error

as our bound on the computation error.

Example 1: Computation Error

Let f (x) = sin(x). We will approximate f using,

f̃IP(x) = x in infinite precision

f̃FP(x) = x with the first four non-zero digits

What is the discretization and rounding error at x = 1/9?

We begin with the following computations,

f (1/9) = sin(1/9) = 0.11088262851 . . .

f̃IP(1/9) = 1/9 = 0.11111111111 . . .

f̃FP(1/9) = 0.1111

allowing us to conclude for the choice of x = 1/9 that,

1. The discretization error is defined by
∣∣sin(x)− f̃IP(x)

∣∣. So,

|sin(1/9)− 1/9| = 0.0002284826 . . .

2. The rounding error is defined by
∣∣ f̃IP(x)− f̃FP(x)

∣∣. So,

|1/9− 0.1111| = 0.0000111111 . . .

3. The computation error is defined by | f (x)− f̃FP(x)|. So,∣∣ f (1/9)− f̃FP(1/9)
∣∣ = 0.00021737149

≤ 0.0002284826 + 0.0000111111

= Discretization Error + Rounding Error

MATH 317 Numerical Analysis Lecture Notes | 5

Measuring Error

Consider a non-zero real number a and its approximation ã.

Definition (Absolute Error). The absolute error is the difference
between measured or inferred value x̃ and the actual value of x,

|x− x̃|

Remark. The absolute error is inadequate due to the fact that it
does not give any details regarding the importance of the error.

Definition (Relative Error). The relative error is the ratio of the
absolute error of the measurement to the actual value of x,

1
|x| · |x− x̃|

The relative error is defined to be 1 when x = 0.

Remark. This allows us to determine the magnitude of the abso-
lute error in terms of the actual size of the measurement.

Example 2: Absolute and Relative Error

Let f (x) =
√

x. We will approximate f using,

f̃FP(x) =
√

x with the first two non-zero digits

What is the absolute and relative error at x = 2?

We begin with the following computations,

f (2) =
√

2 = 1.41421356237 . . .

f̃FP(2) = 1.4

allowing us to conclude for the choice of x = 2 that,

1. The absolute error is defined by | f (x)− f̃FP(x)|. So,

| f (2)− f̃ (2)| = 0.01421356237 . . .

2. The relative error is defined by 1
|a| · |a− ã|. So,

| f (2)− f̃ (2)|
| f (2)| = 0.01005050633 . . . ≈ 1%

MATH 317 Numerical Analysis Lecture Notes | 6

However, multiplying x = 2 by 106 gives an absolute error of,∣∣∣ f (2× 106
)
− f̃

(
2× 106

)∣∣∣ = 14.21356237 . . .

while the relative error remains at ≈ 1%.

Floating-Point Numbers

We can express a non-zero real number a in base β as,

a = ±
(

an × βn + . . . + a1 × β1 + a0 × β0 + a−1 × β−1 + . . .
)

= ± (an · · · a1a0 · a−1 . . .)β

= ± (d0 · d1d2 . . .)β × βE

where d0 is the first non-zero digit of a and E is called the exponent.

Remark. There are two methods that can be used to approximate a,

1. Truncating dp−1 after p digits

2. Rounding dp−1 based on the next digit dp

Definition (Floating-Point Number System). The floating-point num-
ber system consists of the following parameters,

β Base

p Digits of Precision

[L, U] Exponent Range

Given β, p, L, and U, we can represent a as,

f l(a) := ±
(

d0 +
d1

β
+

d2

β2 + . . . +
dp−1

βp−1

)
× βE

= ±(d0 · d1 . . . dp−1︸ ︷︷ ︸
Mantissa

)β × βE

where 0 ≤ di ≤ β− 1 for i ∈ [p− 1] and 0 < d0 with L ≤ E ≤ U.

Example 3: Exploring Floating-Point Numbers

How many unique decimal floating-point numbers are repre-
sented with 4 digits of precision and [L, U] = [−2, 1]?

MATH 317 Numerical Analysis Lecture Notes | 7

Observe that the largest and smallest floating-point numbers
are 99.99 and 0.01, respectively. Suppose that a ̸= 0. Then,

a = ± (d0 · d1d2d3)10 × 10E

There are 2 choices for the sign, 9 choices for d0, 10 choices for
each of d1, d2, d3, and 4 choices for E. This gives a total of,

2× 9× 10× 10× 10× 4 + 1 = 72001

unique numbers. We add 1 for the case where a = 0. The exponent is stored as an unsigned
value, so biasing is used to represent
the full range of small and large num-
bers within this convention.

Definition (IEEE754 Standard). Let a ̸= 0. With s and m as the sign
bit and mantissa bits, respectively, we can express a as,

f l(a) = (−1)s · (1.m)2 × 2e−offset

The IEEE754 standard for storing a is,

f l(a) = Sign Bit Exponent Bits Mantissa Bits

In single precision, offset = 127, and,

f l(a) = s e1e2 . . . e8 d1d2 . . . d23

In double precision, offset = 1023, and,

f l(a) = s e1e2 . . . e11 d1d2 . . . d52

Remark. The offset of a floating-point number is,

2k−1 − 1

where k is the number of bits in the exponent.
The exponent E in our floating-point
number system is an integer.

Example 4: Single-Precision Floating Point Number

Express (123)10 as a single-precision floating point number in
binary. That is, (123)10 as (−1)s(1.m)2 × 2e−127.

Solving for s, m, and e,

1. s = 0 because 123 is a positive number

MATH 317 Numerical Analysis Lecture Notes | 8

2. 123 ∈ [26, 27] = [64, 128] so 6 = e− 127 and e = 133

3. Converting e = (133)10 to binary,

(133)10 = 1× 27 + 1× 22 + 1× 20 = (10000101)2

4. To find the mantissa, we solve for m in,

m =
123
26 − 1 =

59
64

= (0.921875)10 = (0.111011)2

Combining the previous four steps,

(123)10 = 0 10000101 111011000 · · · 000

In general, every operation performed with floating-point numbers
generates rounding error, which propagates with long computations.

Definition (Machine Precision). The machine precision ϵmach is
an upper bound on the relative approximation error due to
rounding in floating point arithmetic. That is, ∀x ̸= 0,

| f l(x)− x|
|x| ≤ ϵmach

Corollary. ϵmach = β1−k for truncating after k digits in base β.

Arithmetic Operations

Given a machine epsilon ϵ, the IEEE 754 standard requires that,

1. f l(x) = x(1 + δ), where |δ| ≤ ϵ

2. f l(x⊙ y) = (x⊙ y)(1 + δ) for ⊙ ∈ {+,−,×, /} and |δ| ≤ ϵ

3. f l(x⊙ y) = f l(y⊙ x) for ⊙ ∈ {+, x}

Example 5: Error Propagation with Addition and Subtraction

Let x̃ = f l(x) = x (1 + δ1) and ỹ = f l(y) = y (1 + δ2). Then,

x̃± ỹ = x (1 + δ1)± y (1 + δ2) = x± y + xδ1 ± yδ2

This implies that (x̃± ỹ)− (x± y) = xδ1 ± yδ2. Specifically,

1. The absolute error from addition and subtraction has,

|(x̃± ỹ)− (x± y)| ≤ |x| |δ1|+ |y| |δ2| ≤ (|x|+ |y|) · ϵ

MATH 317 Numerical Analysis Lecture Notes | 9

2. The relative error from addition and subtraction has,

|(x̃± ỹ)− (x± y)|
|x± y| ≤ |x|+ |y||x± y| · ϵ

Observe that the relative error can become large when,

|x± y| ≈ 0 We say that underflow occurs when
f l(a) is too small to be represented and
that overflow occurs when f l(a) is too
large to be represented.

Topic 2. Iterative Methods for Nonlinear Systems of Equations

Review of Calculus

Let Cn(X) be the set of functions with n continuous derivatives on X.

We write C([a, b]) := C0([a, b]) for the
set of continuous functions on [a, b].
Moreover, we say that f is a smooth
function on [a, b] if f ∈ C∞([a, b]).

Theorem 1 (Intermediate Value Theorem). Suppose f ∈ C[a, b]. Then,

∃c ∈ (a, b) such that f (c) = y

for all f (a) ≤ y ≤ f (b).

Theorem 2 (Rolle’s Theorem). Suppose f ∈ C[a, b] and f is differen-
tiable on (a, b). If f (a) = f (b), then ∃c ∈ (a, b) such that,

f ′(c) = 0

Theorem 3 (Mean Value Theorem). Suppose f ∈ C[a, b] and f is dif-
ferentiable on (a, b). Then ∃c ∈ (a, b) with,

f ′(c) =
f (b)− f (a)

b− a

Theorem 4 (Extreme Value Theorem). Suppose f ∈ C[a, b]. Then,

∃c1, c2 ∈ [a, b] such that f (c1) ≤ f (x) ≤ f (c2)

for all x ∈ [a, b]. That is, f attains both a maximum and a minimum.

Corollary. Suppose f is differentiable on (a, b). Then the numbers c1

and c2 occur either at the endpoints of [a, b] or where f ′ is zero.

MATH 317 Numerical Analysis Lecture Notes | 10

Example 6: f (x) = x2

Common Taylor Series include,

sin x =
∞

∑
n=0

(−1)n

(2n + 1)!
x2n+1

cos x =
∞

∑
n=0

(−1)n

(2n)!
x2n

ex =
∞

∑
n=0

xn

n!

(1 + x)k =
∞

∑
n=0

(
n
k

)
xn

1
1− x

=
∞

∑
k=0

xk |x| < 1

log(1 + x) =
∞

∑
k=0

(−1)kxk+1

k + 1
|x| < 1

Theorem 5 (Taylor’s Theorem). Suppose f ∈ Cn([a, b]) and f (n+1) ex-
ists on the interval [a, b]. Let x0 ∈ [a, b]. Then ∀x ∈ [a, b],

∃ξ(x) ∈ (x0, x) s.t. f (x) = Pn(x) + Rn(x)

where,

Pn(x) =
n

∑
k=0

f (k) (x0)

k!
(x− x0)

k

Rn(x) =
f (n+1)(ξ(x))
(n + 1)!

(x− x0)
n+1

Remark. Pn(x) is called the nth Taylor polynomial for f about x0,
and Rn(x) is called the truncation error associated with Pn(x).

MATH 317 Numerical Analysis Lecture Notes | 11

Example 7: Taylor Polynomials and Error Bounds

To find the second Taylor polynomial of,

g(x) =
√

1 + x− 1

about x0 = 0,

1. g(x) = (1 + x)1/2 − 1 and g(0) = 0

2. g′(x) = 1
2 (1 + x)−1/2 and g′(0) = 1

2

3. g′′(x) = − 1
4 (1 + x)−3/2 and g′′(0) = − 1

4

4. g′′′(x) = 3
8 (1 + x)−5/2 and |g′′′(ξ(x))| = 3

8 ·
1

|1+ξ(x)|
5
2
≤ 3

8

Thus, P2(x) = x
2 −

x2

8 with the error,

|g(x)− P2(x)| = |R2(x)| ≤ 1
16

In comparison, we can approximate g(0.0001) using P2(0.001)
with 5-digit truncation. This gives a relative error of ≈ 0.001%.

Remark. It is sometimes easier to use Taylor series expansion when
asked to compute the n-th Taylor polynomial for a function f .

Convergence Order

Definition (Q-Convergence). A sequence {xk}k in Rn converges
to x∗ ∈ Rn if ∥xk − x∗∥ → 0 as k → ∞. Suppose xk ̸= x∗ for
sufficiently large k. Then {xk}k converges to x∗ at order p with
an asymptotic error constant C > 0 whenever,

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥p = C

By convention, we have the following,

• If p = 1, the converge is called Q-linear

• If p = 2, the converge is called Q-quadratic

• If p > 1, the converge is called Q-superlinear

MATH 317 Numerical Analysis Lecture Notes | 12

Example 8: The Significance of p

Suppose xk converges to x∗ with order p. There exists
r ∈ (0, 1) and constants C1, C2 > 0 so that for p = 1 and p > 2,

1. The error is reduced by a factor of r between xk and xk+1

(Linear) C1 · rk ≤ ∥xk − x∗∥ ≤ C2 · rk

2. The error is reduced by a factor of rpk
between xk and xk+1

(Superlinear) C1 · rpk ≤ ∥xk − x∗∥ ≤ C2 · rpk

Moreover, the order p is unique.

Remark. Suppose xk converges to x∗ with order p and A.E.C C >

0. It was left as an exercise to prove that,

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥q =


0, if q < p
C, if q = p
∞, if q > p

(1)
The improvement in digits per iteration
depends on the convergence order,

1. In the linear case, the digit improve-
ment rate is constant

2. In the quadratic case, the digit
improvement rate doubles

3. In the superlinear case, the digit
improvement rate increases

Example 9: Convergence Order

The following sequences {xk}k converge to zero,

1. xk := 2−i is linear with A.E.C = 1
2

2. xk := 2−2i+1 is linear with A.E.C = 1
4

3. xk := 2−2i
is quadratic with A.E.C = 1

The notion of Q-convergence may be insufficient to describe a se-
quence when the limit does not exist. We require a weaker notion,

Definition (R-Linear Convergence). Let {xk}k be a sequence that
converges to x∗ ∈ Rn. We say that {xk} converges R-linearly if
there is a non-negative real sequence {ak}∞

k=0 ⊂ R converging
Q-linearly to zero so that for sufficiently large k,

∥xk − x∗∥ ≤ ak

Given f : Rn → Rn, we are often required to find solutions,

x ∈ Rn such that f (x) = 0

MATH 317 Numerical Analysis Lecture Notes | 13

Example 10: Nonlinear Equations with Known Solutions

1. f (x) = ax2 + bx + c is solved using the quadratic formula

2. f (x) = x− e−x is solved using the Lambert W function
To use the Lambert W function, remark
that y = xex if and only if W(y) = x.

In general, nonlinear systems of equations may have one, two, or
even infinitely-many roots. We want to develop a method for approx-
imating these roots by rapidly converging sequences of points.

Bisection Method

We will make use of the following fact,

Lemma 1. Suppose f ∈ C([a, b]) and,

sign(f (a)) ̸= sign(f (b))

then ∃ξ ∈ (a, b) satisfying f (ξ) = 0.

The basic idea of the bisection method is to,

1. Assume that sign(f (a)) ̸= sign(f (b)) on the interval [a, b]

2. Define a variable for the midpoint of the interval, m = a + b/2

3. If sign(f (a)) ̸= sign(f (m)), consider the new interval [a, m]

4. Otherwise, consider the interval [m, b]

5. Repeat the previous steps until the interval length is small.

Remark. The bisection method will return a root, if one exists, but
it will not specify which root it has returned.

We want to know how quickly the bisection method converges.

Theorem 6. The number of iterations k to reach an accuracy of ϵ is,

log (b− a)− log ϵ

log 2
≤ k

using the bisection method.

Proof. We will use the following notation,

1. ak and bk are the left and right endpoints of the k-th interval

2. xk is the midpoint of the interval [ak, bk]

MATH 317 Numerical Analysis Lecture Notes | 14

Algorithm 1: The Bisection Method

1 function bisection(a, b, tol)
// Assume f is defined

// and that sign(f (a)) ̸= sign(f (b))
2 while b− a > tol do

3 m← (a + b)/2
4 if sign(f (a)) ̸= sign(f (b)) then
5 b← m

6 else

7 a← m

8 return m

Observe that,

|x∗ − xk| ≤ bk − ak ≤
1
2
(bk−1 − ak−1)

By iterating the recurrence, we obtain that,

|x∗ − xk| ≤
(

1
2

)k
(b0 − a0) =

b− a
2k︸ ︷︷ ︸
ak

Since {ak} converges Q-linearly to zero, the bisection method con-
verges R-linearly. Using the monotonicity of the logarithm function,

b− a
2k ≤ ϵ ⇐⇒ b− a

ϵ
≤ 2k

implies that,

log
(

b−a
ϵ

)
log 2

≤ k ⇐⇒ log (b− a)− log ϵ

log 2
≤ k

Fixed Point Iteration

Definition (Fixed Point). A point x∗ ∈ R is a fixed point for a func-
tion g : R→ R if the condition g(x∗) = x∗ holds.

Fixed points and roots of functions can be related as follows.

1. If x∗ is a root of f , then x∗ is a fixed point of g(x) := x + f (x).

2. If x∗ is a fixed point of g, then x∗ is a root of f (x) := g(x)− x Note that there are many other choices
for relating g(x) and f (x).

MATH 317 Numerical Analysis Lecture Notes | 15

Theorem 7 (Fixed Point Theorem). Suppose g ∈ C([a, b]).

1. If a ≤ g(x) ≤ b for all x ∈ [a, b], then g has a fixed point,

x∗ ∈ [a, b]

2. If g is differentiable on (a, b) and ∃L ∈ (0, 1) so that,

|g′(x)| ≤ L

for all x ∈ (a, b), then there is at most one fixed point in [a, b]

Proof. We will prove each claim in turn.

1. (Existence) Suppose g(a) = a or g(b) = b. Then a or b is a fixed
point of g. Otherwise, a < g(a) < b since a ≤ g(x) ≤ b by as-
sumption. Define a function f (x) := x − g(x). We know that
f (a) = a− g(a) < 0 and f (b) = b− g(b) > 0. By the Interme-
diate Value Theorem, there exists ξ ∈ (a, b) so that f (ξ) = 0.
That is, ξ = g(ξ) is a fixed point of g.

2. (Uniqueness) Suppose g is differentiable on (a, b) and ∃L ∈ (0, 1)
so that |g′(x)| ≤ L. Assume that x∗, y∗ ∈ [a, b] are fixed points.
By the Mean Value Theorem, there exists ξ ∈ (x∗, y∗) such that,

∣∣g′(ξ)∣∣ = ∣∣∣∣ g(y∗)− g(x∗)
y∗ − x∗

∣∣∣∣ = ∣∣∣∣y∗ − x∗

y∗ − x∗

∣∣∣∣ = 1

This contradicts that |g′(x)| ≤ L < 1 for all x ∈ (a, b).

Visualization of the existence criteria for
the fixed point theorem.

Definition (Fixed Point Iteration). Let x0 ∈ [a, b]. The fixed point iter-
ation sequence is the sequence defined inductively by,

x1 = g (x0)

x2 = g (x1) = g (g (x0))

...

xk = g(xk−1) = g (. . . (g (x0)) . . .)︸ ︷︷ ︸
k times

We will establish conditions for the convergence of the fixed point
iteration sequence in the theorem that follows.

MATH 317 Numerical Analysis Lecture Notes | 16

Theorem 8 (Fixed Point Iteration Theorem). Suppose g satisfies the hy-
pothesis of the Fixed Point Theorem with a unique fixed point x∗.

1. |xk − x∗| ≤ Lk · |x0 − x∗|

2. |xk − x∗| ≤ Lk ·max {|x0 − a| , |x0 − b|}

for 0 ≤ L < 1 and {xk} defined as the fixed point iteration sequence.
Observe that (1) states that xk converges R-linearly to x∗.

Proof. To prove (1),

|xk − x∗| = |g (xk−1)− g (x∗)|

by definition of {xk} and the fact that x∗ = g(x∗). By the Mean Value
Theorem, there exists ξ ∈ (xk−1, x∗) such that,

|xk − x∗| = |g (xk−1)− g (x∗)|
=
∣∣g′ (ξk−1)

∣∣ |xk−1 − x∗|
≤ L|xk−1 − x∗|

Iterating the recurrence gives that,

|xk − x∗| ≤ Lk |x0 − x∗| → 0 as k→ ∞

To prove (2), we use that,

|x0 − x∗| ≤ max {|x0 − a| , |x0 − b|}

because x0 and x∗ are in the interval [a, b].

Algorithm 2: Fixed Point Iteration

1 function FPI(a, b, tol)
// Assume g is defined and that it satisfies the

fixed point theorem hypothesis

2 x ← x0

3 x′ ← g(x)
4 while |x′ − x| > tol do

5 x ← x′

6 x′ ← g(x)

7 return x′ We could have used,

|xk − xk−1|
|xk |

< tol

|xk − g (xk)| < tol

as our stopping criteria.

MATH 317 Numerical Analysis Lecture Notes | 17

Example 11: Finding the root of f (x) = x− e−x

We want to know how quickly the fixed point method converges.

Theorem 9. Under the following conditions,

1. g satisfies the hypothesis of the Fixed Point Theorem

2. g′ ∈ C([a, b]) with g′(x∗) ̸= 0

Then, {xk}k converges Q-linearly with A.E.C |g′(x∗)|.

Proof. Since x∗ = g(x∗) and xk+1 = g(xk), then by the Mean Value
Theorem ∃ξk ∈ (xk, x∗) such that,

|xk+1 − x∗| = |g (xk)− g (x∗)| =
∣∣g′ (ξk)

∣∣ |xk − x∗|

by the Mean Value Theorem. Taking k → ∞, we obtain xk → x∗

and ξk → x∗. By the continuity of g′, we conclude that,

lim
k→∞

|xk+1 − x∗|
|xk − x∗| = lim

k→∞

∣∣g′ (ξk)
∣∣ = ∣∣g′ (x∗)

∣∣
with 0 < |g′ (x∗)| < 1 implying Q-linear convergence.

The continuity of g′ justifies us in
bringing the limit inside.

Remark. If g′(x∗) = 0, then the fixed point iteration might converge
faster than linearly because a smaller A.E.C. gives faster convergence.

Theorem 10. Suppose g ∈ Cp([a, b]) has a fixed point x∗. If the fixed
point iteration of g converges, g(i) (x∗) = 0 for all i ∈ [p− 1], and
g(p) (x∗) ̸= 0, then the fixed point iteration converges at order p.

MATH 317 Numerical Analysis Lecture Notes | 18

Proof. This is left as an exercise on Assignment 1.

Newton’s Method

Previously, we saw that,

1. g′(x∗) ̸= 0 =⇒ fixed point iteration converges linearly

2. g′(x∗) = 0 =⇒ fixed point iteration may converge at higher order If f ′ (x∗) = 0, then Newton’s Method is
undefined or converges linearly.

The goal of Newton’s Method is to construct a fixed point function g
to find a root of f at quadratic order. To do this, we define,

g(x) = x + ϕ(x) f (x)

for some unknown function ϕ(x). This ensures that,

f (x∗) = 0 =⇒ g (x∗) = x∗

We require that g′(x∗) = 0 whenever f (x∗) = 0 for the fixed point
iteration to be of quadratic order. This is equivalent to,

0 = g′ (x∗) = 1 + ϕ′ (x∗) f (x∗)︸ ︷︷ ︸
=0

+ϕ (x∗) f ′ (x∗)

which suggests that ϕ is of the form,

ϕ (x∗) = − 1
f ′ (x∗)

with the fixed point function,

g(x) = x− f (x)
f ′(x)

Therefore, we define the fixed point iteration,

xk+1 = xk −
f (xk)

f ′ (xk)

given some x0 chosen in advance.

Example 12: Recovering the Babylonian Sequence

Given a > 0, we can compute
√

a using Newton’s method and

f (x) = x2 − a

f ′(x) = 2x

We will iterate the recurrence,

xk+1 = xk −
x2

k − a
2xk

MATH 317 Numerical Analysis Lecture Notes | 19

to recover the Babylonian sequence.
Newton’s Method is not guaranteed to
converge for every choice of x0 ∈ [a, b].

The following theorem establishes that Newton’s Method will con-
verge if the initial choice x0 is sufficiently close to x∗.

Theorem 11 (Local Convergence Theorem). Let f ∈ C2[a, b] and x∗ ∈
[a, b] be a root of f with f ′(x∗) ̸= 0. There exists δ > 0 such that
Newton’s Method converges quadratically ∀x0 ∈ [x∗ − δ, x∗ + δ].

We can generalize Newton’s method to functions in n variables,

xk → xk

f (xk)→ f (xk)

f ′ (xk)→ J f (xk)

where J f is the Jacobian matrix. Recall that,

Jf(x) =


∂ f1
∂x1

(x) . . . ∂ f1
∂xn

(x)
...

. . .
...

∂ fn
∂x1

(x) . . . ∂ fn
∂xn

(x)

 for f (x) =


f1(x)

...
fn(x)


We select x0 in advance, and then we iterate as follows,

Jf (xk) (xk+1 − xk) = −f (xk)

In practice, we can first solve for sk := xk+1 − xk in,

Jf (xk) sk = −f (xk)

and then update xk+1 = xk + sk.

Newton’s method can be computation-
ally intensive in higher dimensions
because we must compute O(n2)
derivatives per iteration.

Secant Method

One disadvantage of Newton’s Method is that evaluating f ′(x) can
be costly or difficult. This motivates the secant method, which in-
stead approximates f ′ using a secant line between f (xk) and f (xk−1).

f [xk−1, xk] =
f (xk)− f (xk−1)

xk − xk−1

The basic idea is to pick x0 and x1 and then iteratively define,

xk+1 = xk −
f (xk)

f [xk−1, xk]

In order to converge, the Secant Method
requires two initial guesses x0 and x1
which are sufficiently close to x∗.

MATH 317 Numerical Analysis Lecture Notes | 20

Definition (Lagrange Interpolation Error). Let f ∈ C2[a, b] and z0, z1 ∈
[a, b]. There exists ξ(x) between z0, z1 such that,

f (x) = f (z0) + f [z1, z0] (x− z0)︸ ︷︷ ︸
f1(x)

+
f ′′(ξ(x))

2!
(x− z0) (x− z1)︸ ︷︷ ︸

R1(x)

for all x ∈ [a, b].

Remark. The Lagrange Interpolation Error is analogous to Tay-
lor’s Theorem with the derivative replaced by the secant. f1(x)
represents P1(x) and R1(x) represents the remainder term.

Theorem 12. The secant method converges superlinearly, but slower
than quadratic. Its convergence order is equal to the golden ratio.

Proof. We can re-write the secant method at the k-th iteration as,

0 = f (xk) + f [xk−1, xk] (xk+1 − xk)

By the Mean Value Theorem, there exists ηk such that,

0 = f (xk) + f ′ (ηk) (xk+1 − xk)

By definition of the Lagrange Interpolation Error with,

z0 = xk z1 = xk−1 x = x∗

we obtain the following,

0 = f (xk)+ f [xk−1, xk] (x∗ − xk)+
f ′′ (ξ (x∗))

2
(x∗ − xk) (x∗ − xk−1)

Subtracting the two equations gives that,

x∗ − xk+1 = Ak (x∗ − xk) (x∗ − xk−1) where Ak =
f ′′ (ξ (x∗))

2 f ′ (ηk)

If a sequence {xk}k converges to x∗ at order p, then for large k there
exist constants C1, C2 > 0 and r ∈ (0, 1) such that,

C1rpk ≤ |x∗ − xk| ≤ C2rpk

MATH 317 Numerical Analysis Lecture Notes | 21

Consequently,

C1rpk+1 ≤ |x∗ − xk+1|
= |Ak| |x∗ − xk| |x∗ − xk−1|

≤ |Ak|
(

C2rpk
) (

C2rpk−1
)

Moreover,

|Ak|
(

C1rpk
) (

C1rpk−1
)
≤ |Ak| |x∗ − xk| |x∗ − xk−1|

= |x∗ − xk+1| ≤ C2rpk+1

Re-arranging gives that,

0 <
C1

|Ak|C2
2
≤ rpk+pk−1−pk+1 ≤ C2

|Ak|C2
1

where |Ak| →
| f ′′ (x∗)|
2 | f ′ (x∗)|

since r ∈ (0, 1), these inequalities require that,

0 = pk + pk−1 − pk+1 = pk−1
(

p + 1− p2
)

Solving gives the golden ratio,

p =
1 +
√

5
2

≈ 1.61803 . . .

Summary

We saw the following numerical methods,

Method Convergence Criteria Order

Bisection f ∈ C[a, b] and x0 ∈ [a, b] Linear

Fixed Point - Fixed Point Theorem (1)
- Fixed Point Theorem (2) Linear
- g′ (x∗) ̸= 0

Newton - f ′ (x∗) ̸= 0
- f ′′ (x∗) ̸= 0 Quadratic
- x0 close to x∗

Secant - f ′ (x∗) ̸= 0
- f ′′ (x∗) ̸= 0 Golden Ratio
- x0 close to x∗

MATH 317 Numerical Analysis Lecture Notes | 22

Topic 3. Interpolation and Polynomial Approximation

Defining Interpolation Problems

Given a set of data points {(xi, yi)}n
i=0 ⊆ Rm ×Rm, we want to find

a function fn : Rm → Rm so that fn(xi) = yi for 0 ≤ i ≤ m. For
simplicity, we will first consider the case where m = 1.

In contrast to curve fitting, these equa-
tions are not satisfied exactly. They are
satisfied in the least square sense.

Definition (Interpolant). Given a sequence of points {yi}n
i=0 sampled

from an unknown function f , we call fn the interpolant of f .

Our objective is to obtain the interpolant fn of f and to evaluate it on
data points that we have not yet observed. For instance,

There are infinitely many ways to select
the interpolant, so we will focus on
choices of fn which have desirable
approximation properties, e.g.,

1. Polynomials

2. Piece-wise Polynomials

3. Trigonometric Functions

Since linear equations are easier to solve than non-linear ones, we
will choose our interpolant to be a span by a set of functions,

fn(x) =
N

∑
i=1

cj · ϕj(x)

where {ϕj(x)}N
j=0 is a set of linearly independent basis functions.

Definition (Linear Independence). A set of functions {ϕj(x)}N
j=0 is

called linearly independent on an interval [a, b] if,

N

∑
i=1

cj · ϕj(x) = 0 on [a, b] =⇒ cj = 0 ∀j ∈ [N]

Otherwise, we call the set of functions linearly dependent.

There are three cases to consider,

1. If N > n, then fn exists but is not unique

2. If N < n, then fn does not exist

MATH 317 Numerical Analysis Lecture Notes | 23

3. If N = n, then fn exists and is unique

Suppose that we are given a set of data points {(xi, yi)}n
i=0 on an

interval [a, b] of real numbers. With {ϕj(x)}N
j=0 as a set of basis func-

tions on [a, b], observe that the coefficients cj satisfy that,

yi = fn(xi) =
N

∑
i=1

cj · ϕj(x)

which we can write in matrix form as follows,
ϕ0 (x0) ϕ1 (x0) . . . ϕn (x0)

ϕ0 (x1) ϕ1 (x1) . . . ϕn (x1)
...

...
...

ϕ0 (xn) ϕ1 (xn) . . . ϕn (xn)


︸ ︷︷ ︸

:=A


c0

c1
...

cn

 =


y0

y1
...

yn



Remark. A is invertible since {ϕi(x)}N
i=0 are basis functions, i.e., the

columns of A are linearly independent.

Definition (Condition Number). If A is invertible, then the condition
number of A with respect to the matrix norm ∥ · ∥ is,

κ(A) := ∥A−1∥ · ∥A∥

Otherwise κ(A) := ∞.

Remark. For invertible A, the condition number κ(A) satisfies that,

1. If κ(A) = κ(A−1), then 1 ≤ κ(A) < ∞ since

κ(A) = ∥A−1∥∥A∥ ≥ ∥A−1 A∥ = 1

2. κ(cA) = κ(A) for any constant c ̸= 0
The norm of a matrix A measures how
much the mapping induced by that
matrix can stretch vectors.

A matrix A is singular if and only if its
determinant det(A) is 0.

A is called well-conditioned if κ(A) is close to 1 since small changes
in b imply small changes in x. Otherwise, A is called ill-conditioned
and small changes in b may result in large changes in x.

MATH 317 Numerical Analysis Lecture Notes | 24

Example 13: Ill-Conditioned Matrices

The following matrix is ill-conditioned in the ℓ∞ norm.

A =

(
0.123 0.456
0.789 2.92507

)

A−1 = −2.5641× 106

(
2.92507 −0.456
−0.789 0.123

)

We will compute ∥A∥∞ and ∥A−1∥∞.

∥A∥∞ = max{0.123 + 0.456, 0.789 + 2.92507}
= max{0.579, 3.71407} = 3.71407

∥A−1∥∞ = 2.5641× 106 ·max{2.92507 + 0.456, 0.789 + 0.123}
= 2.5641× 106 ·max{3.3811, 0.9120} = 8.6695× 106

It follows that κ(A) = ∥A∥∞ · ∥A−1∥∞ = 3.2199× 107

The value of κ(A) depends on the ma-
trix norm, but these are all technically
related due to norm equivalences in Rn.

∥A∥p = sup
x ̸=0

∥Ax∥p

∥x∥p

∥A∥1 = max
1≤j≤n

m

∑
i=1

∣∣aij
∣∣

∥A∥∞ = max
1≤i≤m

n

∑
j=1

∣∣aij
∣∣

If A and B are matrices and x is a
vector, then the following hold,

∥AB∥ ≤ ∥A∥∥B∥
∥Ax∥ ≤ ∥A∥∥x∥

Monomial Basis Functions

Consider a set of data points {(xi, yi)}n
i=0. We want the interpolant to

be a degree n polynomial fn(x) = ∑n
j=0 cjxj, so the first natural choice

of basis functions is the monomial basis ϕj(x) = xj for j ∈ [n]. The
resulting linear system for interpolation is then,

1 x0 x2
0 . . . xn

0
1 x1 x2

1 . . . xn
1

...
...

...
...

1 xn x2
n . . . xn

n


︸ ︷︷ ︸

:=V


c0

c1
...

cn

 =


y0

y1
...

yn



which is called the Vandermonde matrix.

Remark. In general, V is ill-conditioned since,

det(V) = ∏
i ̸=j

(
xi − xj

)
≈ 0 if any xi ≈ x

which implies κ(A)→ ∞. The proof is by induction, using the fact
that det A = a11 · det(A11) + a12 · det(A12) + . . . + a1n · det(A1n)

This motivates our study of the Lagrange basis functions.

The Kronecker’s delta δij is defined,

δij =

{
1 i = j
0 i ̸= j

MATH 317 Numerical Analysis Lecture Notes | 25

Lagrange Basis Functions

Consider a set of data points {(xi, yi)}n
i=0. The Lagrange basis func-

tions
{
ℓj(x)

}n
j=0 are the n-th order polynomials satisfying,

ℓj (xi) = δji =

{
0, if j ̸= i
1, if j = i

with the corresponding linear system,
1 0 . . . 0
0 1 0
...

. . .
...

0 0 . . . 1


︸ ︷︷ ︸

A


c0

c1
...

cn

 =


y0

y1
...

yn

⇒ ci = yi

for interpolation. The matrix A is well-conditioned with κ(A) = 1.
We will see two types of Lagrange basis functions,

1. Linear Lagrange Polynomials

2. Quadratic Lagrange Polynomials

Suppose that n = 1. We will define the linear Lagrange polyno-
mial. Given {x0, x1}, we want to find linear polynomials ℓ0(x) and
ℓ1(x) so that ℓj (xi) = δji. Without loss of generality, let ℓ0(x) =

c (x− x1) so that ℓ0 (x1) = 0. Thus, 1 = ℓ0 (x0) = c (x0 − x1) and,

ℓ0(x) =
x− x1

x0 − x1

ℓ1(x) =
x− x0

x1 − x0

Suppose that n = 2. We will define the quadratic Lagrange
polynomial. Given {x0, x1, x2}, we want to find ℓ0(x), ℓ1(x), and
ℓ2(x) so that ℓi (xi) = δii. As in the linear case, we set ℓ0(x) =

c (x− x1) (x− x2) to obtain that ℓ0 (x1) = 0 = ℓ0 (x2). This gives
1 = ℓ0 (x0) = c (x0 − x1) (x0 − x2) and therefore,

ℓ0(x) =
(x− x1) (x− x2)

(x0 − x1) (x0 − x2)

ℓ1(x) =
(x− x0) (x− x2)

(x1 − x0) (x1 − x2)

ℓ2(x) =
(x− x0) (x− x1)

(x2 − x0) (x2 − x1)

MATH 317 Numerical Analysis Lecture Notes | 26

Theorem 13 (Lagrange Basis Formulas). Given a sequence {xi}n
i=0,

the j-th Lagrange basis function is the n-th degree polynomial,

ℓj(x) =
(x− x0) · · ·

(
x− xj−1

) (
x− xj+1

)
· · · (x− xn)(

xj − x0
)
· · ·
(

xj − xj−1
) (

xj − xj+1
)
· · ·
(
xj − xn

)
which gives the interpolant,

fn =
n

∑
j=0

yjℓj(x) =
n

∑
j=0

yj · ∏
0≤k≤n

k ̸=j

x− xk
xj − xk

Proof. Check that ℓi (xi) = δii.

Example 14: Lagrange Interpolation

We want to find the Lagrange polynomial for
{(0, 5), (1, 4), (3,−2)}. Let x0 = 0, x1 = 1, and x2 = 3. Then,

f2(x) = y0ℓ0(x) + y1ℓ1(x) + y2ℓ2(x) =
1
3

(
−2x2 − x + 15

)
Observe that fn interpolates on these three points,

f2(0) =
15
3

= 5

f2(1) =
−2− 1 + 15

3
=

12
3

= 4

f2(3) =
−18− 3 + 15

3
=
−6
3

= −2

MATH 317 Numerical Analysis Lecture Notes | 27

Newton Basis Functions

Consider a set of data points {(xi, yi)}n
i=0. The Newton basis func-

tions
{

nj(x)
}n

j=0 are the j-th order polynomials defined as follows,

nj(x) =
j−1

∏
k=0

(x− xk)

The resulting linear system for interpolation is,
1 0 . . . 0
1 x1 − x0 0
1 x2 − x0 0
...

...
. . .

...
1 xn − x0 . . . ∏n−1

k=0 (xn − xk)




c0

c1

c2
...

cn

 =


y0

y1

y2
...

yn


and, as with Lagrange interpolation, it is well-conditioned.

Remark. This matrix is lower triangular, so we can use forward
substitution to find the coefficients cj.

c0 = y0 =: f [x0]

c1 =
y1 − c0

x1 − x0
=

y1 − y0

x1 − x0
=

f [x1]− f [x0]

x1 − x0
=: f [x0, x1]

c2 =
1

x2 − x1
(f [x0, x2]− f [x0, x1]) =: f [x1, x0, x2] = f [x0, x1, x2]

Definition (Newton’s Divided Differences). Given a set of data points
{(xi, yi)}n

i=0, the k-th order divided difference of f is,

k = 0 : f [xi] := yi

k > 0 : f [xi, . . . , xi+k] := f [xi+1,...,xi+k]− f [xi ,...,xi+k−1]
xi+k−xi

Example 15: Newton’s Divided Differences

Fix x0, x1, and x2. Then,

f [x0, x1] =
y1 − y0

x1 − x0

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

y2−y1
x2−x1

− y1−y0
x1−x0

x2 − x0

It can be shown that
f [xσ(1), xσ(2), . . . , xσ(n)] is equal to
f [x0, x1, . . . , xn] for any permutation
σ : {0, . . . , n} → {0, . . . n}. Thus, we
can always reorder the arguments with
increasing indices.Remark. By induction on forward substitution, it can shown that

the coefficients cj in Newton basis are just f
[
x0, . . . , xj

]

MATH 317 Numerical Analysis Lecture Notes | 28

Theorem 14 (Newton’s Divided Difference Interpolation Formula).
Given a set of data points {(xi, yi)}n

i=0, the polynomial interpola-
tion can be expressed using the Newton basis as,

fn(x) = f [x0] +
n

∑
k=1

f [x0, . . . , xk]
k−1

∏
i=0

(x− xi)

= fn−1(x) + f [x0, . . . , xn]
n−1

∏
i=0

(x− xi)
The second statement of Newton’s
Divided Difference Interpolation
Formula can be useful if additional data
points are added incrementally.Example 16: Revisiting our Lagrange Interpolation Example

Given {(0, 5), (1, 4), (3,−2)}, we found that

f2(x) =
1
3

(
−2x2 − x + 15

)
If we add one data point (6, 1), then f3(x) can be easily com-
puted using Newton’s Divided Difference Interpolation For-
mula. We need only compute f [0, 1, 3, 6]:

f3(x) = f2(x) + f [0, 1, 3, 6](x− 0)(x− 1)(x− 3)

=
11
45

x3 − 74
45

x2 +
18
45

x + 5

To do this, we will maintain a table:

Lagrange and Newton basis functions
are preferred because they are well-
conditioned, but all three interpolation
methods give the same polynomial
satisfying fn(xi) = yi for all 0 ≤ i ≤ n.

MATH 317 Numerical Analysis Lecture Notes | 29

Error Analysis

We want to quantify how well fn(x) approximates f (x) on the inter-
val [a, b]. This error depends on the choice of {x0, x1, · · · , xn}, as well
as the derivatives of f , and it is captured by the following theorem.

Lemma 2 (Generalized Rolle’s Theorem). If g ∈ Cn+1([a, b]) and
g = 0 on n + 2 distinct points {x0, . . . , xn, xn+1} in [a, b], then ∃ξ

between two points in {x0, . . . , xn, xn+1} so that g(n+1)(ξ) = 0.

Theorem 15 (Lagrange Interpolation Error). Let f ∈ Cn+1([a, b]). Fix
x1, · · · xn ∈ [a, b]. For all x ∈ [a, b], ∃ξ(x) ∈ (a, b) so that,

f (x) = fn(x) +
f (n+1)(ξ(x))
(n + 1)!

(x− x0) · · · (x− xn)︸ ︷︷ ︸
Error

Proof. Let x ∈ [a, b]. If x = xi for all i ∈ [n], then f (xi) = fn(xi) +

0 and the statement holds. Assume that this is not the case.

1. (Step 1) Construct a function g with n + 2 distinct roots using
f and fn. For fixed x ∈ [a, b] and a dummy variable t,

g(t) := f (t)− fn(t)− (f (x)− fn(x))
(t− x0) · · · (t− xn)

(x− x0) · · · (x− xn)︸ ︷︷ ︸
Denominator ̸=0

2. (Step 2) If t = xi, then for any i ∈ [n], we have that,

g (xi) = f (xi)− fn (xi)− (f (x)− fn(x))× 0

Moreover, if t = x, then,

g(x) = f (x)− fn(x)− (f (x)− fn(x))× 1

That is, g = 0 on n + 2 distinct points {x0, . . . , xn, x}. By the
generalized Rolle’s Theorem, g(n+1)(ξ(x)) = 0 for some ξ(x).

3. (Step 3) Computing g(n+1)(t),

g(n+1)(t) = f (n+1)(t)− f (n+1)
n (t)

− (f (x)− fn(x))
d(n+1)

dt(n+1)

(
(t− x0) · · · (t− xn)

(x− x0) · · · (x− xn)

)

MATH 317 Numerical Analysis Lecture Notes | 30

and simplifying at t = ξ(x) gives,

0 = g(n+1)(ξ(x))

= f (n+1)(ξ(x))− (f (x)− fn(x))
(n + 1)!

(x− x0) · · · (x− xn)

which can be re-arranged to obtain the result,

f (x) = fn(x) +
f (n+1)(ξ(x))
(n + 1)!

(x− x0) · · · (x− xn)

Corollary. We can bound the error as follows,

| f (x)− fn(x)| =
∣∣∣∣∣ f (n+1)(ξ(x))

(n + 1)!
(x− x0) · · · (x− xn)

∣∣∣∣∣
≤ Mn+1

(n + 1)!
max

x∈[a,b]
|(x− x0) · · · (x− xn)|

since
∣∣∣ f (n+1)(ξ(x))

∣∣∣ ≤ maxx∈[a,b]

∣∣∣ f (n+1)(x)
∣∣∣ =: Mn+1.

Remark. If f is a polynomial of degree less than or equal to n,
i.e., f (n+1)(x) = 0, then the interpolation is exact.

In general, the value of Mn+1 depends
on how fast f is changing on the
interval [a, b]. The product terms of
the upper bound will depend on how
{x0, · · · , xn} are chosen on [a, b].

For a fixed function f , we want to pick {x0, · · · , xn} to minimize the
error. A natural choice is to select points with a uniform spacing
h := b−a

n . Specifically, we will define xi := a + ih for i ∈ [n].

Theorem 16 (Error Bound for Uniformly-Spaced Points).

| f (x)− fn(x)| ≤ Mn+1
hn+1

4(n + 1)
=

Mn+1(b− a)n+1

4nn+1(n + 1)

Proof. The proof is left as an exercise on Assignment 2.

Runge’s Phenomenon

High degree interpolation does not always imply high accuracy. Con-
sider the function f (x) = 1/(1 + 25x2) on [−1, 1] shown in the mar-
gin. There exist some x ∈ (−1, 1) such that limn→∞ | f (z)− fn(z)| =
∞. We will formulate a minimization problem that allows us to inter-
polate on points with non-uniform spacing. We want to minimize,

max
x∈[a,b]

| (x− x0) · · · (x− xn)︸ ︷︷ ︸
=xn+1+anxn+···+a0

|

MATH 317 Numerical Analysis Lecture Notes | 31

since we have no control over Mn+1. Write,

Pn = {p(x) = anxn + · · ·+ a0 : ai ∈ R}

for the set of all polynomials of degree n with real coefficients, and,

P̃n = {p(x) ∈ Pn : an = 1}

for the set of all monic polynomials of degree n. Let

(x− x0) · · · (x− xn) ∈ P̃n+1

and consider the interval [−1, 1], which we can transform to [a, b] via

x :=
(b− a)t + (b + a)

2
∈ [a, b]

for t ∈ [−1, 1]. We want to find q̃(t) ∈ P̃n+1 so that

max
t∈[−1,1]

|q̃(t)| ≤ max
t∈[−1,1]

| p̃(t)| (⋆)

for all p̃(t) ∈ P̃n+1. The unique monic polynomial solving our mini-
mization problem (⋆) is defined by the roots of the polynomial:

(⋆) is called the optimal monic poly-
nomial problem, and the unique monic
polynomial that solves it is the Cheby-
shev polynomial.

Definition (Chebyshev Polynomial). The Chebyshev polynomial Tn

is the n-th degree polynomial defined on [−1, 1] by,

Tn(t) = cos(n arccos(t))
Recall the cosine angle sum identities,

sin(α + β) = sin α cos β + cos α sin β

cos(α + β) = cos α cos β− sin α sin β

sin(α− β) = sin α cos β− cos α sin β

cos(α− β) = cos α cos β + sin α sin βRemark. Computing Tn for n = 0, 1, 2,

T0(t) = cos(0) = 1

T1(t) = cos(arccos(t)) = t

T2(t) = cos(2 arccos(t)︸ ︷︷ ︸
θ

) = cos(2θ) = 2 cos2 θ − 1 = 2t2 − 1

where the result for Tn follows by trigonometric identities. With
T0 constant, this gives the following recurrence relation,

T2(t) = 2tT1(t)− T0(t)

which, by induction, generalizes to,

Tn+1(t) = 2tTn(t)− Tn−1(t)

∈ 2t
(

2n−1tn + Pn−2

)
+ Pn−1 ⊂ 2ntn+1 + Pn−1

MATH 317 Numerical Analysis Lecture Notes | 32

Remark. The zeroes of Tn+1 are,

tk = cos
(
(2k + 1)π
2(n + 1)

)
k = 0, 1, · · · , n

The extremal points Tn+1 are,

zk = cos
(

kπ

n + 1

)
k = 0, 1, · · · , n + 1

with values Tn+1 (zk) = (−1)k.

Theorem 17 (Chebyshev Equioscillation). The polynomial,

Tn+1(t)
2n

is the unique monic polynomial that solves our minimization
problem (⋆). Specifically, for any p̃n+1(x) ∈ P̃n+1,

1
2n = max

t∈[−1,1]

∣∣∣∣Tn+1(t)
2n

∣∣∣∣ ≤ max
t∈[−1,1]

| p̃n+1(t)|

Proof. Assume that there exists another monic polynomial,

p̃n+1(x) ̸= Tn+1(t)
2n

with a smaller maximum absolute value,

max
t∈[−1,1]

| p̃n+1(t)| < max
t∈[−1,1]

∣∣∣∣Tn+1(t)
2n

∣∣∣∣ = 1
2n

Define a polynomial Q(t) as follows,

Q(t) :=
Tn+1(t)

2n − p̃n+1(t)

Tn+1 and p̃n+1 have an+1 = 1, so Q(t) is a polynomial of order n.
Evaluating Q on all extremal points zk of Tn+1 for all k ∈ [n + 1],

Q (zk) =
(−1)k

2n − p̃n+1 (zk)

{
≥ 1

2n − | p̃n+1 (zk)| > 0, if k even
≤ − 1

2n + | p̃n+1 (zk)| < 0, if k odd

By the Intermediate Value Theorem, it follows that Q(t) has a
zero between [zk, zk+1] for k = 0, · · · , n. This implies that Q(t)
has n + 1 distinct zeroes, and consequently that Q(t) must be

MATH 317 Numerical Analysis Lecture Notes | 33

the zero polynomial (since Q(t) is of degree n). Thus,

p̃n+1(t) =
Tn+1(t)

2n Returning to our previous example, we
see that interpolating on,

tk = cos
(
(2k + 1)π
2(n + 1)

)
produces a polynomial interpolant with
no unbounded oscillations.

Spline Interpolation

There are four main drawbacks of polynomial interpretation.

1. On uniformly-spaced points (e.g., data collected over time inter-
vals), higher-order interpolation leads to unbounded oscillations

2. Special data is needed to interpolate using the Chebyshev method

3. We have a lack of control and accuracy of the error,

| f (x)− fn(x)| ≤ Cnhn

since Cn depends on f (n) on [a, b] and may grow for large n

4. Changing one data point affects the interpolant globally

The solution to these drawbacks is to use splines. Formally,

Definition (Spline). Consider a set of points {(xi, yi)}n
i=0 with

a = x0 < x1 < · · · < xn−1 < xn = b

A piece-wise polynomial interpolant S(x), called a spline, has

• S(x) = pi(x) on [xi, xi+1) for 0 ≤ i ≤ n− 1

• pi(x) is a polynomial of some fixed degree

• S (xi) = yi, that is, S interpolates the data

The points xi are called breakpoints or knots

We will see three methods, each of which has a complexity in O(n),
for spline interpolation. These are summarized in the table below,

Spline Interpolant Locality Error Smoothness

Piecewise
constant

Single
sub-intervals

O(h) Bounded
on [a, b]

Piecewise
linear

Two
sub-intervals

O(h2) C[a, b]

Piecewise
cubic

Neighboring
sub-intervals

O(h4) C2[a, b]

MATH 317 Numerical Analysis Lecture Notes | 34

Piece-wise constant splines are defined as follows,

1. pi(x) = ai are polynomial of zeroth degree for 0 ≤ i ≤ n− 1

2. S(xn) = an so n + 1 unknowns need to be determined

For each interval [xi, xi+1) where 0 ≤ i ≤ n− 1,

yi = S (xi) = pi (xi) = ai ⇒ ai = yi

and the right-most endpoint is an. It follows that,

S(x) =

yi, x ∈ [xi, xi+1)

yn, x = xn

Remark. The local interpolation error is,

| f (x)− S(x)| ≤ M1

1!
· max

x∈[xi−1,xi]
|x− xi−1| = M1 · hi−1

since S(x) is a polynomial of zeroth degree on each [xi, xi+1).
Letting h := max1≤i≤n hi−1, the global interpretation error is,

max
x∈[a,b]

| f (x)− S(x)| ≤ O(h)

If continuity is an important feature for our model, then we can use a
linear polynomial on each interval. That is, pi(x) := ai + bi (x− xi)

on the interval [xi, xi+1) for each 0 ≤ i ≤ n− 1. We impose,

1. (Interpolation Condition) yi = S (xi) = pi (xi) = ai ⇒ ai = yi to
ensure that our curve passes through our data points.

2. (Continuity Condition) For 1 ≤ i ≤ n − 1, we want S
(
x−i
)
=

S
(

x+i
)

at each xi. Applying the definition of pi, this implies that,

yi−1 + bi−1 (xi − xi−1) = pi−1 (xi) = S
(

x−i
)
= S

(
x+i
)
= pi (xi) = yi

which gives that,

bi−1 =
yi − yi−1

xi − xi−1
= f [xi−1, xi]

and at the right-most end-point,

yn = S (xn) = pn−1 (xn) = yn−1 + bn−1 (xn − xn−1)

MATH 317 Numerical Analysis Lecture Notes | 35

In summary, we have,

S(x) =

yi + f [xi, xi+1] (x− xi) , x ∈ [xi, xi+1)

yn−1 + f [xn−1, xn] (x− xn−1) , x ∈ [xn−1, xn]

with the property that changes to yi will only affect S(x) on the inter-
vals [xi−1, xi) and [xi, xi+1). Our error analysis for piece-wise linear
splines is similar to piece-wise constant splines.

Remark. The local interpolation error is,

| f (x)− S(x)| ≤ M2

2!
max

x∈[xi−1,xi]
|(x− xi−1) (x− xi)|︸ ︷︷ ︸

maximized at midpoint

=
M2

8
h2

i−1

Letting h := max1≤i≤n hi−1, the global interpolation error is,

max
x∈[a,b]

| f (x)− S(x)| ≤ O(h2)

The drawback associated with piece-wise linear splines is that many
applications require continuity in the first and second derivatives.
This leads us to define cubic piece-wise splines. We will use a cubic
polynomial on each interval. That is, pi(x) = ai + bi (x− xi) +

ci (x− xi)
2 + di (x− xi)

3 for each 0 ≤ i ≤ n− 1. We impose,

1. (Interpolation Condition) yi = S (xi) = pi (xi) = ai ⇒ ai = yi

to ensure that the curve passes through our data points. We pick
yn = S (xn) = pn−1 (xn) at the right-most end-point.

2. (Continuity Condition # A) For 1 ≤ i ≤ n− 1, S
(

x−i
)
= S

(
x+i
)

3. (Continuity Condition # B) For 1 ≤ i ≤ n− 1, S′
(

x−i
)
= S′

(
x+i
)

4. (Continuity Condition # C) For 1 ≤ i ≤ n− 1, S′′
(
x−i
)
= S′′

(
x+i
)

Conditions (2), (3), and (4) involve n− 1 equations, while (1) requires
n + 1. In total, this is 4n− 2 equations with 4n unknowns. We require
two more conditions to determine an interpolate uniquely:

1. (Free Boundary Condition) We assume that,

f ′′ (x0) = 0 and f ′′ (xn) = 0

=⇒ S′′ (x0) = 0 and S′′ (xn) = 0

The resultant S(x) is called the natural spline

MATH 317 Numerical Analysis Lecture Notes | 36

2. (Clamped Boundary Condition) We collect two additional data
points z0 and zn to specify the first derivative at the endpoints,

S′ (x0) = z0 and S′ (xn) = zn

The resultant S(x) is called the complete spline

3. (Not-a-Knot Condition) We assume that,

p′′′0 (x1) = p′′′1 (x1) and p′′′n−2 (xn−1) = p′′′n−1 (xn−1)

The resultant S(x) is called the not-a-knot spline
The not-a-knot end condition means
that, at the first and last interior break,
even the third derivative is continuous
(up to round-off error).Given these different boundary conditions, we need to find the coeffi-

cients ai, bi, ci, and di to construct our polynomial. We write,

pi(x) = ai + bi (x− xi) + ci (x− xi)
2 + di (x− xi)

3

p′i(x) = bi + 2ci (x− xi) + 3di (x− xi)
2

p′′i (x) = 2ci + 6di (x− xi)

Recall that hi = xi+1 − xi for i ∈ [n − 1] since our intervals are not
uniformly spaced. The interpolation condition completely deter-
mines the constant terms ai since for all n equations,

yi = S (xi) = pi (xi) = ai ⇒ ai = yi

Plugging in hi and using our right end-point condition,

yn = S (xn) = pn−1 (xn) = yn−1 + bn−1hn−1 + cn−1h2
n−1 + dn−1h3

n−1

⇒ f [xn−1, xn] = bn−1 + cn−1hn−1 + dn−1h2
n−1

We will use # A to obtain,

f [xi−1, xi] = bi−1 + ci−1hi−1 + di−1h2
i−1

f [xn−1, xn] = bn−1 + cn−1hn−1 + dn−1h2
n

B to obtain,

bi = bi−1 + 2ci−1hi−1 + 3di−1h2
i−1

bn = bn−1 + 2cn−1hn−1 + 3dn−1h2
n−1

and # C to obtain,

di−1 =
ci − ci−1

3hi−1

dn−1 =
cn − cn−1

3hn−1

We have 4n equations with two additional auxiliary variables given
by boundary conditions. It remains to solve bi in terms of ai and ci.
Substituting the expressions of di−1 into the equations for # B,

bi−1 = f [xi−1, xi]−
hi−1

3
(ci + 2ci−1)

MATH 317 Numerical Analysis Lecture Notes | 37

We can find equations for ci by substituting these expressions for bi−1

and di−1 into the equations for # B. Re-arranging the result,

hi−1ci−1 + 2 (hi + hi−1) ci + hici+1 = 3 (f [xi, xi+1]− f [xi−1, xi])

This is a tridiagonal linear system of n − 1 equations with n − 1
equations and n + 1 unknowns. The cubic spline boundary condi-
tions will give the remaining two equations. In summary, The system takes O(n) to solve.

Example 17: Natural Cubic Spline

We have c0 = 0 = cn, producing the (n− 1)× (n− 1) system,

A · c = b

where A is the matrix,
2 (h0 + h1) h1

h1 2 (h1 + h2)
.

2 (hn−3 + hn−2) hn−2

hn−2 2 (hn−2 + hn−1)


and c and b are given by,

c1

c2
...

cn−2

cn−1




3 (f [x1, x2]− f [x0, x1])

3 (f [x2, x3]− f [x1, x2])
...

3 (f [xn−2, xn−1]− f [xn−1, xn−2])

3 (f [xn−1, xn]− f [xn−2, xn−1])



Example 18: Clamped Cubic Spline

Combining equations for ci gives the (n− 1)× (n− 1) system,

A · c = b

where A is the matrix,
2h0 h0

h0 2 (h0 + h1) h1
.

hn−2 2 (hn−2 + hn−1) hn−1

hn−1 2hn−1



MATH 317 Numerical Analysis Lecture Notes | 38

and c and b are given by,
c1

c2
...

cn−2

cn−1




3 (f [x0, x1]− b0)

3 (f [x1, x2]− f [x0, x1])
...

3 (f [xn−1, xn]− f [xn−2, xn−1])

3 (bn − f [xn−1, xn])



Remark. Writing down the tridiagonal linear system for the
not-a-knot cubic spline is left as an exercise.

Since the ci coefficients are related through a linear system, a change
in data for cubic splines is technically non-local. However, if only yi

is changed, it can be shown that the largest change occurs at ci, with
changes in other cj decaying as a function of |i− j|. Thus,

max
x∈[a,b]

| f (x)− S(x)| ≤ CM4h4 = O
(

h4
)

where C > 0 depends on the type of boundary conditions imposed.

The accuracy for cubic splines is com-
parable to Lagrange interpolation, but
Runge’s phenomenon is avoided on
equally-spaced points.

Hermite Interpolation

We have seen how to interpolate function values using a polynomial
interpolant. However, we may want to impose additional conditions,
e.g., incorporating a specified slope at each point. This is the motiva-
tion for Hermite interpolation, which considers data on derivative
values for the polynomial interpolant.

Definition (Hermite Interpolation). Given a set of data points
{(xi, yi, zi)}n

i=0 with slope values zi, Hermite interpolation finds
a polynomial f2n+1 so that f2n+1(xi) = yi and f ′2n+1 (xi) = zi.

Remark. We select a degree 2n + 1 polynomial because,

• The number of coefficients that we require is 2n + 2

• The number of data points required to interpolate is n + 1
(function values) plus n + 1 (derivative values)

We call f2n+1 the Hermite interpolant.
We will not use monomial basis functions, because we saw that they
were ill-conditioned. Instead, we will introduce,

MATH 317 Numerical Analysis Lecture Notes | 39

Definition (Hermite Basis Functions). The Hermite basis functions
hk(x) and ĥk(x) are degree 2n + 1 polynomials that satisfy,

hk (xi) =

{
0, if i ̸= k
1, if i = k

and ĥ′k (xi) =

{
0, if i ̸= k
1, if i = k

for all i ∈ [n]. Moreover,

h′k (xi) = 0 and ĥk (xi) = 0

These requirements are similar to the ones that we imposed for La-
grange basis functions. We write the Hermite basis functions as,

hk(x) =
(
1− 2 (x− xk) ℓ

′
k (xk)

)
ℓ2

k(x)

ĥk(x) = (x− xk) ℓ
2
k(x)

where ℓk(x) are the k-th Lagrange basis functions of order n. We
will not see the derivation for this proof. Now, we can express the
Hermite interpolant as a linear combination of hk(x) and ĥk(x),

f2n+1(x) =
n

∑
k=0

akhk(x) +
n

∑
k=0

bk ĥk(x)
{h0(x), . . . , hn(x), ĥ0(x), . . . , ĥn(x)} form
a set of linear independent functions,
i.e., they form a basis for P2n+1.To find the coefficients ak and bk, observe that,

yi = f2n+1 (xi) =
n

∑
k=0

ak hk (xi)︸ ︷︷ ︸
=0 if k ̸=i

+
n

∑
k=0

bk ĥk (xi)︸ ︷︷ ︸
=0

= ai

zi = f ′2n+1 (xi) =
n

∑
k=0

ak h′k (xi)︸ ︷︷ ︸
=0

+
n

∑
k=0

bk ĥ′k (xi)︸ ︷︷ ︸
=0 if k ̸=i

= bi

since f2n+1(x) interpolates yi, zi on xi.
Similar constructions as the Newton
basis for Lagrange interpolation can be
constructed for Hermite interpolation.

Theorem 18 (Hermite Interpolation Error). If f ∈ C2n+1([a, b]), then

f (x) = f2n+1(x) +
f (2n+2)(ξ(x))
(2n + 2)!

(x− x0)
2 · · · (x− xn)

2

for some ξ(x) ∈ (a, b).

Since Hermite interpolation requires knowledge of the derivative
values, it can be more accurate that Lagrange interpolation. However,
Runge’s phenomenon may still occur for Hermite interpolation.

MATH 317 Numerical Analysis Lecture Notes | 40

Topic 4. Numerical Differentiation and Integration

We will approximate the derivative D f and the integral I f of a real-
valued function f : R→ R restricted to [a, b]. Recall that,

D(f)(x0) = lim
h→0

f (x0 + h)− f (x0)

h

for every point x0 ∈ [a, b]. In this way, D(f)(x0) is said to be deter-
mined by local information about f around x0. In contrast,

I f |ba = lim
n→∞

n

∑
i=1

f (xi)∆x where ∆x :=
b− a

n

is determined by global information about f on [a, b].

We will use the following notation,

D(f) := exact derivative of f

Dh(f) := approximate derivative of f

I(f) := exact integral of f

Ih(f) := approximate integral of fDefinition (Degree of Accuracy). We say that,

1. Dh(f) has degree of accuracy of p if p is the largest positive
integer with D(xi) = Dh(xi) for any x and i = 0, · · · p

2. Ih(f) has degree of accuracy of p if p is the largest positive
integer with I(xi) = Ih(xi) for any x and i = 0, · · · p

Numerical Differentiation

The simplest method for approximating D(f) is to use Taylor’s re-
mainder theorem. Define a partition of the interval [a, b] using

xk = a + kh where h :=
b− a

n

and expand f about xk. There exists ξ(x) ∈ (x, xk) such that,

f (x) = f (xk) + f ′(xk)(x− xk) +
f ′′(ξ(x))

2
(x− xk)

2

Setting x = xk+1 gives that,

f (xk+1) = f (xk) + f ′ (xk) h +
f ′′ (ξ (xk+1))

2
h2

MATH 317 Numerical Analysis Lecture Notes | 41

which we can re-arrange to obtain,

f ′ (xk)︸ ︷︷ ︸
D(f (xk))

=
f (xk+1)− f (xk)

h︸ ︷︷ ︸
Dh(f (xk))

+
− f ′′ (ξ (xk+1))

2
h︸ ︷︷ ︸

O(h)

From this, we obtain the forward difference formula. Similarly,
thebackward difference formula is obtained by setting x = xk−1.

Definition (Forward Difference). The forward difference is,

Dh(f (xk)) :=
f (xk+1)− f (xk)

h

Definition (Backward Difference). The backward difference is,

Dh(f (xk)) :=
f (xk)− f (xk−1)

h

The error term that we derived

−h
2
· f ′′ (ξ (xk+1))

is proportional to f ′′. This implies that Dh(f (xi)) is exact for i ∈
{0, 1}, that is, has a degree of accuracy of 1.

Definition (Second Derivative Central Difference). We define,

D2
h(f (xk)) :=

f (xk+1)− 2 f (xk) + f (xk−1)

h2

as the second derivative central difference.

We expand f up to the fourth order using Taylor’s Theorem around
xk. This gives the second derivative central difference,

f (x) = f (xk) + f ′ (xk) (x− xk) +
f ′′ (xk)

2
(x− xk)

2

+
f (3) (xk)

3!
(x− xk)

3 +
f (4)(ξ(x))

4!
(x− xk)

4

Evaluating f at x = xk+1 gives,

f (xk+1) = f (xk)+ f ′ (xk) h+
f ′′ (xk)

2
h2 +

f (3) (xk)

3!
h3 +

f (4) (ξ (xk+1))

4!
h4

Evaluating f at x = xk−1 gives,

f (xk−1) = f (xk)− f ′ (xk) h+
f ′′ (xk)

2
h2− f (3) (xk)

3!
h3 +

f (4) (ξ (xk−1))

4!
h4

MATH 317 Numerical Analysis Lecture Notes | 42

Adding these two formulas and re-arranging gives,

f ′′ (xk)︸ ︷︷ ︸
D2(f (xk))

=
f (xk+1)− 2 f (xk) + f (xk−1)

h2︸ ︷︷ ︸
D2

h(f (xk))

− f (4) (ξ (xk+1)) + f (4) (ξ (xk−1))

4!
h2︸ ︷︷ ︸

O(h2) Expanding f up the third order would
have given an O (h) error term.

The error term that we derived is proportional to f (4). This implies
that D2

h(f (xi)) is exact for i ∈ {0, 1, 2, 3}, that is, has a degree of
accuracy of 3. We can simplify the error term as follows,

Remark. There exists ξk between ξ(xk−1) and ξ(xk+1) so that,

f (4) (ξk) =
f (4) (ξ (xk+1)) + f (4) (ξ (xk−1))

2

Proof. Apply the Intermediate Value Theorem.

We want to design more accurate finite difference approximations.
Our current approximation schemes are a linear combination of the
function values f (xk−1), f (xk), f (xk+1). The natural extension is to
use more function values at different points:

Dh(f (xk)) =
R

∑
i=−L

ai · f (xk+i)

where the neighbouring points xk+i of xk form the stencil of Dh(f).
The constants ai are the coefficients associated with the stencil. We
will derive the finite difference approximation for D(f) using

Dh f (x) = a f (x + h) + b f (x) + c f (x− h)

and maximizing for degree of accuracy. There are three parameters,
a, b, and c, so we can achieve a degree of accuracy of two.

0 = D(1) = Dh(1) = a + b + c⇒ a + b + c = 0

Next, we have that,

1 = D(x) = Dh(x) = a(x + h) + bx + c(x− h)

= (a + b + c)︸ ︷︷ ︸
=0

x + (a− c)h⇒ a− c =
1
h

Finally,

2x = D(x2) = Dh(x2) = a(x + h)2 + bx2 + c(x− h)2

= (a + b + c)︸ ︷︷ ︸
=0

x2 + (a− c)h︸ ︷︷ ︸
1

·2x + (a + c)h2

⇒ a + c = 0

MATH 317 Numerical Analysis Lecture Notes | 43

This gives the central difference formula,

Dh(f (x)) :=
f (x + h)− f (x− h)

2h

which has a degree of accuracy of 2. Expand using Taylor’s Theorem
around x and evaluate x + h and x− h. For some ξ± ∈ (x, x± h),

f (x + h) = f (x) + f ′(x)h +
f ′′(x)

2
h2 +

f (3) (ξ+)
3!

h3

f (x− h) = f (x)− f ′(x)h +
f ′′(x)

2
h2 − f (3) (ξ−)

3!
h3

Subtracting these two equations and re-arranging gives,

f ′(x)︸ ︷︷ ︸
D f (x)

=
f (x + h)− f (x− h)

2h︸ ︷︷ ︸
Dh f (x)

+
f (3) (ξ+) + f (3) (ξ−)

12
h2︸ ︷︷ ︸

O(h2)

which we can simplify by the Intermediate Value Theorem to,

h2

6
· f (3)(ξ(x))

Example 19: Caveat in Numerical Differentiation

Consider the central difference approximation Dh(f (x)) for,

f (x) = sin(x)

h |D f (π)−Dh f (π)|
100 0.158529015192104

10−1 0.00166583353171768
10−2 1.66665833548629e− 05
10−3 1.66666768497414e− 07
10−4 1.66455649264208e− 09
10−5 1.01152419773598e− 11
10−6 1.39611433525033e− 10
10−7 1.63658042673376e− 09

...
...

10−12 8.89005823410116e− 05

Errors that occur when computing f (x + h) and f (x − h) are
amplified by the division by h because h tends to ϵmach.

Due to round-off and discretization, f̃ approximates f up to ϵ.

| f̃ (x + h)− f (x + h)| ≤ ϵ

| f̃ (x− h)− f (x− h)| ≤ ϵ

MATH 317 Numerical Analysis Lecture Notes | 44

Therefore, the actual error can be estimated in three parts,

∣∣ f ′(x)−Dh f̃ (x)
∣∣ = ∣∣∣∣ f ′(x)− f̃ (x + h)− f̃ (x− h)

2h

∣∣∣∣
=

∣∣∣∣(f ′(x)− f (x + h)− f (x− h)
2h

)
+

(
f (x + h)− f̃ (x + h)

2h

)
+

(
f̃ (x− h)− f (x− h)

2h

)∣∣∣∣
≤
∣∣∣∣∣ f (3)(ξ(x))

3!
· h2

∣∣∣∣∣+ ϵ

2h
+

ϵ

2h

≤ M3

6
· h2 +

ϵ

h
↛ 0 as h→ 0

by applying the triangle inequality. We want to determine how small
h can be before the error dominates. Applying standard results from
single-variable calculus, it is left as an exercise to show that

M3

6
· h2 +

ϵ

h

is minimized at the point,

h∗ =
(

3ϵ

M3

) 1
3

In summary,

Finite Difference Method Error Degree of Accuracy

Forward and Backward Difference O(h) 1
Central Difference O

(
h2) 2

Second Derivative Central Difference O
(
h2) 3

Numerical Integration

Numerical integration is called numerical quadrature. The first idea
will be to approximate integrals using Lagrange interpolants. This
approach is called Newton-Cotes quadrature. As usual, we will
begin by defining a partition of the interval [a, b] using

xk = a + kh where h :=
b− a

n

By the Lagrange Interpolation Theorem, there is ξ ∈ [a, b] such that,

f (x) = fn(x) +
f (n+1)(ξ(x))
(n + 1)!

(x− x0) · · · (x− xn)

MATH 317 Numerical Analysis Lecture Notes | 45

Integrating both sides on [a, b] gives,

I(f) =
∫ b

a
f (x)dx

=
∫ b

a
fn(x)dx︸ ︷︷ ︸
Ih(f)

+
∫ b

a

f (n+1)(ξ(x))
(n + 1)!

(x− x0) · · · (x− xn) dx︸ ︷︷ ︸
En(f)

The midpoint rule is used if n = 0, in which case f0(x) is the
constant function. We define f0(x) to be the midpoint value of f ,

f0(x) = f
(

a + b
2

)
which implies that,

Ih(f) =
∫ b

a
f0(x)dx =

∫ b

a
f
(

a + b
2

)
dx = (b− a) · f

(
a + b

2

)

Definition (Midpoint Rule). The midpoint rule is,

Ih(f) = (b− a) · f
(

a + b
2

)

The trapezoid rule is used if n = 1, in which case we use New-
ton’s Divided Difference Formula with x0 = a and x1 = b,

f1(x) = f (a) +
f (b)− f (a)

b− a
· (x− a)

which implies that

Ih(f) =
∫ b

a
f1(x)dx =

∫ b

a

(
f (a) +

f (b)− f (a)
b− a

(x− a)
)

dx

= (b− a) · f (a) +
f (b)− f (a)

b− a
(x− a)2

2

∣∣∣∣b
a
= (b− a) · f (a) + f (b)

2

Definition (Trapezoidal Rule). The trapezoid rule is,

Ih(f) = (b− a) · f (a) + f (b)
2

Simpson’s rule is used if n = 2, in which case we use Newton’s
Divided Difference Formula with the parameters,

m =
a + b

2
x0 = a x1 = m x2 = b

to obtain the formula,

f2(x) = f (a) + f [a, m](x− a) + f [a, m, b](x− a)(x−m)

MATH 317 Numerical Analysis Lecture Notes | 46

where

f [a, m] =
2(f (m)− f (a))

b− a
and f [a, m, b] =

2(f (b)− 2 f (m) + f (a))
(b− a)2

Integrating by parts gives,

Ih(f) =
∫ b

a
f2(x)dx

=
∫ b

a
(f (a) + f [a, m](x− a) + f [a, m, b](x− a)(x−m))dx

= (b− a) f (a) + f [a, m]
(b− a)2

2
+ f [a, m, b]

(b− a)3

12

Definition (Simpson’s Rule). Simpson’s rule is,

Ih(f) = (b− a) · f (a) + 4 f (m) + f (b)
6

As with numerical differentiation, we need to determine the de-
gree of accuracy of Newton-Cotes quadrature. By definition, we
check the largest p so that I(xi) = Ih(xi) for i ∈ [p].

En(f) :=
∫ b

a

f (n+1)(ξ(x))
(n + 1)!

(x− x0) · · · (x− xn) dx

is our error, which gives En
(

xi) = 0 for all i = 0, . . . , n. It follows that
n + 1 point Newton-Cotes quadrature has degree of accuracy ≥ n.

Lemma 3 (Weighted Mean Value Theorem for Integrals). If h ∈
C([a, b]) and g does not change sign on [a, b], then for η ∈ (a, b),∫ b

a
h(x)g(x)dx = h(η)

∫ b

a
g(x)dx

Proposition 1. For the Trapezoidal rule (n = 1),

E1(f) =
∫ b

a

f ′′(ξ(x))
2︸ ︷︷ ︸

h(x)

(x− a)(x− b)︸ ︷︷ ︸
g(x)

dx

Proof. Define g and h as follows,

h(x) =
f ′′(ξ(x))

2
g(x) = (x− a)(x− b)

MATH 317 Numerical Analysis Lecture Notes | 47

Since g does not change sign on [a, b], we have,

E1(f) = h(η)
∫ b

a
(x− a)(x− b)dx

= − f ′′(ξ(η))
(b− a)3

12

= O
(
(b− a)3

)
by the Weighted Mean Value Theorem. The error term is pro-
portional to f (2), so the trapezoidal rule has degree of accuracy
equal to 1.

Similar calculations can be done for the Midpoint and Simpson rules.

Proposition 2. For the Midpoint rule (n = 0),

E0(f) = − f ′′(ξ(η))
24

(b− a)3 = O
(
(b− a)3

)
that is, we have a degree of accuracy of 1.

Proposition 3. For the Simpson rule (n = 2),

E2(f) = − f (4)(ξ(η))
90

(
b− a

2

)5
= O

(
(b− a)5

)
that is, we have a degree of accuracy of 3. Consider an even number n. The

(n + 1) point Newton-Cotes quadrature
has degree of accuracy of n + 1 due to
cancellations in the error term.

Gauss Quadrature

Newton-Cotes quadrature is a linear combination of f (xk),

Ih(f) = c0 f (a) + c1 f (a + h) + · · ·+ cn f (b) =
n

∑
k=0

ck · f (a + kh)

In this subsection, we will no longer restrict xk to be uniformly
spaced. This will produce quadratures with a higher order of ac-
curacy. For simplicity, we will look at integration over t ∈ [−1, 1].

Example 20: Two Point Gauss Quadrature

We want to find w0, w1, t0, and t1 so that the quadrature of the
form Ih(f) = w0 · f (t0) + w1 · f (t1) has the highest degree of

MATH 317 Numerical Analysis Lecture Notes | 48

accuracy. With 4 parameters, we can satisfy

2 =
∫ 1

−1
1dt = I(1) = Ih(1) = w0 + w1

0 =
∫ 1

−1
tdt = I(t) = Ih(t) = w0t0 + w1t1

2
3
=
∫ 1

−1
t2dt = I(t2) = Ih(t2) = w0t2

0 + w1t2
1

0 =
∫ 1

−1
t3dt = I(t3) = Ih(t3) = w0t3

0 + w1t3
1

up to degree of accuracy of 3. Solving the 4 equations gives,

w0 = 1 = w1 and − t0 =
1√
3
= t1

Thus, the two point Gauss quadrature on [−1, 1],

Ih(f) = f
(
− 1√

3

)
+ f

(
1√
3

)
has degree of accuracy up to 3.

In general, the goal has been to design approximations Ih(f) that
maximize the degree of accuracy with respect to I f . We can de-
compose I f as I f = Ih(f) + En(f). Letting the integral be a linear
combination of n function values f (tk),

Ih(f) =
n−1

∑
k=0

wk · f (tk)

where tk are called Gauss points.
Gauss quadrature has 2n parameters
for n points. This implies a degree of
accuracy of 2n− 1.

Remark. Relative to Newton-Cotes, Gauss quadrature is more
accurate for the same number of function evaluations.

Example 21: Common Gauss Quadrature on [−1, 1]

n wk tk Degree of Accuracy

1 2 0 1
2 1, 1 − 1√

3
, 1√

3
3

3 5
9 , 8

9 , 5
9 −

√
3
5 , 0,

√
3
5 5

MATH 317 Numerical Analysis Lecture Notes | 49

Definition (Legendre Polynomials). The Legendre polynomials
Pk(x) are defined recursively for k ∈N by the base case,

P0(x) = 1

P1(x) = x

and the recursion formula,

Pk+1(x) := x
(

2k + 1
k + 1

)
Pk(x)−

(
k

k + 1

)
Pk−1(x)

Theorem 19. For an n-point Gauss quadrature,

1. The Gauss points {tk}n−1
k=0 are given by the zeros of Pn(x)

2. The weights {wk}n−1
k=0 are given by

wj =
∫ 1

−1
ℓj(x)dx

where ℓj(x) is the j-th Lagrange function interpolating {tk}n−1
k=0 . To obtain the highest degree of accuracy

with n points, we select tk to be the
zeroes of the Legendre polynomials.Example 22: Two Point Gauss Quadrature

We will recover tk and wk for a two point Gauss quadrature.

P2(x) =
3
2

xP1(x)− 1
2

P0(x) =
3
2

x2 − 1
2
=

3
2

(
x2 − 1

3

)
which implies that −t0 = 1√

3
= t1, Moreover,

ℓ0,1(x) =
1∓
√

3x
2

⇒ w0,1 =
∫ 1

−1

1∓
√

3x
2

dx = 1

which implies that w0 = 1 = w1.

We can generalize our analysis from [−1, 1] to intervals [a, b] by
changing coordinates. We use the formula for x(t) given by,

x =
b− a

2
t +

b + a
2

We obtain the formula,

I(f) =
∫ b

a
f (x)dx =

∫ 1

−1
f
(

b− a
2

t +
b + a

2

)
· b− a

2
dt

so the n point Gauss quadrature becomes,

Ih(f) =
b− a

2
·

n−1

∑
k=0

wk · f
(

b− a
2

tk +
b + a

2

)

MATH 317 Numerical Analysis Lecture Notes | 50

We will derive an error term for the Gauss quadrature.

Theorem 20. Denote the n point Gauss quadrature as,

Ih(f) =
b− a

2
·

n−1

∑
k=0

wk · f (x (tk))

where x(t) = b−a
2 t + b+a

2 . Write,

I(f) =
∫ b

a
f (x)dx

If f ∈ C(2n)([a, b]), then for ξ ∈ (a, b),

I(f) = Ih(f) +
f (2n)(ξ)

(2n)!

∫ b

a
(z− x (t0))

2 · · · (z− x (tn−1))
2 dz

This is consistent with a degree of
accuracy of 2n− 1 for the n point Gauss
quadrature.

Composite Quadrature

We have looked at Newton-Cotes or Gauss quadrature over a general
interval [a, b]. We found that the error is O ((b− a)p) for some posi-
tive integer p. To reduce the quadrature error, we will subdivide [a, b]
into smaller intervals of uniform length. Observe,

I(f) =
∫ b

a
f (x)dx =

n−1

∑
k=0

∫ xk+1

xk

f (x)dx

=
n−1

∑
k=0

Ih,k(f)︸ ︷︷ ︸
quadrature on

[xk, xk+1]

+ Eh,k(f)︸ ︷︷ ︸
local error on

[xk, xk+1]

This is the main idea behind composite quadrature,

Ih,c(f) :=
n−1

∑
k=0

Ih,k(f)

Eh,c(f) :=
n−1

∑
k=0

Eh,k(f)

Example 23: Composite Midpoint Rule

For ξk ∈ (xk, xk+1) on each [xk, xk+1],∫ xk+1

xk

f (x)dx = h f
(

xk+ 1
2

)
︸ ︷︷ ︸

Ih,k(f)

− f ′′ (ξk)
h3

24︸ ︷︷ ︸
Eh,k(f)

MATH 317 Numerical Analysis Lecture Notes | 51

where xk+ 1
2

:= xk+xk+1
2 . Putting this together,

I(f) = h
n−1

∑
k=0

f
(

xk+ 1
2

)
− h3

24

n−1

∑
k=0

f ′′ (ξk)

= h
n−1

∑
k=0

f
(

xk+ 1
2

)
︸ ︷︷ ︸

Ih,c

− (b− a)
24

f ′′(ξ)h2︸ ︷︷ ︸
Eh,c

where the composite error is in O
(
h2).

Proposition 4. Suppose f ∈ Cp([a, b]) and ξk ∈ [a, b] for k ∈ [n −
1]. Using the Intermediate Value Theorem, we can show that

1
n

n−1

∑
k=0

f (p) (ξk) = f (p)(ξ)

for some ξ ∈ (a, b).

Proof. This is left as an exercise.

Example 24: Composite Trapezoidal and Simpson Rule

We can derive the Composite Trapezoidal Rule,

I(f) =
h
2

n−1

∑
k=0

(f (xk) + f (xk+1))︸ ︷︷ ︸
Ih,c

− (b− a)
12

f ′′(ξ)h2︸ ︷︷ ︸
Eh,c

as well as the Composite Simpson’s Rule,

I(f) =
h
6

n−1

∑
k=0

(
f (xk) + 4 f

(
xk+ 1

2

)
+ f (xk+1)

)
︸ ︷︷ ︸

Ih,c

− (b− a)
90

f ′′(ξ)h4︸ ︷︷ ︸
Eh,c

The error terms are in O
(
h2) and O

(
h4), respectively.

In summary,

Newton-Cotes Composite Error Degree of Accuracy

Midpoint O(h2) 1
Trapezoidal O

(
h2) 1

Simpson O
(
h4) 3

MATH 317 Numerical Analysis Lecture Notes | 52

Topic 5. Numerical Methods for Initial Value Problems

Defining Initial Value Problems

We can write the initial value problem,y′(t) = f (t, y(t))

y(0) = y0

for t ∈ [0, T] as

y(t) = y0 +
∫ t

0
f (s, y(s))︸ ︷︷ ︸

y′(s)

ds

using the Fundamental Theorem of Calculus. In many cases, we
cannot obtain an explicit formula for y(t). Using numerical methods,
f can be approximated by a reasonably smooth function.

We will choose a uniformly spaced step size h = T/N to step
forward on each tn = nh by solving a discrete set of algebraic equa-
tions for yn that approximates the value of y(tn). This discrete set
of algebraic equations is called a discretization. One way to find a
discretization is to approximate y′ by a finite difference.y′(t) = f (t, y(t))

y(0) = y0
→

Dh(y(tn)) = f (tn, yn)

y0 is given

Definition (Explicit Discretization). A discretization is explicit if
yn+1 can be solved for explicitly. Otherwise, it is called implicit.

Remark. Implicit methods require root finding at each time step
tn to solve for yn+1. This makes them costly computationally,
but they generally have better stability properties.

Definition (k-Step). A discretization is called k-step if it requires
knowing k previous steps yn, · · · , yn−k+1 to compute yn+1.

Methods based on Numerical Differentiation

Example 25: Explicit and Implicit Discretization

We have seen the following approximations for Dh(y(tn)):

1. The forward difference formula is a 1 step explicit method

yn+1 = yn + h f (tn, yn)

MATH 317 Numerical Analysis Lecture Notes | 53

2. The backward difference formula is 2 step implicit method

yn+1 = yn + h f (tn+1, yn+1)

3. The central difference formula is 2 step explicit method

yn+1 = yn−1 + 2h f (tn, yn)

Example 26: Studying Population Dynamics

Let N(t) be the number of individuals in a given population
at time t. Consider the differential equation,

dN
dt

=
r
k
(K− N(t)) · N(t)

for a positive rate r and a carrying capacity k of the environ-
ment. Consider the initial value problem,y′ = 1

5 (10− y)y

y0 = 5

We will use Euler’s Method with the Forward Difference:

yn+1 := yn + h · 1
5
(10− yn) · yn

y0 = 5

which we can solve in Matlab as follows,

r = 2; % growth rate

K = 10 % carrying capacity

N0 = 5; % initial condition

h = .01 % step size

N = 300 % step count

% memory allocation

y = zeros(1, N+1);

y(1) = N0;

% forward euler

for n = 1:N

y(n+1) = y(n) + h*(1/5)*(10-y(n))*y(n)

end

MATH 317 Numerical Analysis Lecture Notes | 54

Methods based on Numerical Integration

Rather than discretizing the derivative, we can discretize the integral,

y(tn+1) = y(tn) +
∫ tn+1

tn
f (s, y(s))ds

leads to the following initial value problem,yn+1 = yn + Ih,n(f)

y0 is given

One simple strategy for approximating the integral is to use the 1
step implicit trapezoidal method. We can visualize it as follows,

Definition (Trapezoidal Method). The trapezoidal method is,

yn+1 = yn +
h
2
· (fn+1 + fn)

which is 1-step implicit.

We will see two alternatives to this method,

Definition (Adam-Bashford). The Adam-Bashford method is,

yn+1 = yn +
h
2
· (3 fn − fn−1)

which is 2 step explicit.

Definition (Adam-Moulton). The Adam-Moulton method is,

yn+1 = yn +
h

12
· (5 fn+1 + 8 fn − fn−1)

which is 2 step implicit.

MATH 317 Numerical Analysis Lecture Notes | 55

Example 27: Newton’s Law of Cooling

Given a constant k > 0, the change in temperature T(t) of an
object due to conduction is as follows,T′(0) = −k(T(t)− Tenv)

T(0) = T0

where Tenv is the environment temperature, and T0 is the
initial temperature. The exact solution is,

T(t) = (T0 − Tenv)e−kt + Tenv

We can use the three 1-step methods to solve our system,

1. Forward Euler’s Method gives,

Tn+1 = Tn + h (−k (Tn − Tenv))

2. Backward Euler’s Method gives,

Tn+1 = Tn + h (−k (Tn+1 − Tenv))

3. The Trapezoidal Method gives,

Tn+1 = Tn +
h
2
(−k (Tn+1 − Tenv)− k (Tn − Tenv))

To compare the accuracy of each method, we look at the error

|TN(1)− T(1)|

N increases, equivalently, as h decreases.

h Forward Backward Trapezoidal

0.05 1.0318971 0.9981259 0.0169282
0.025 0.5117345 0.5032799 0.0042299

0.0125 0.2548108 0.2526965 0.0010574
0.00625 0.1271411 0.1266125 0.0002643

We can estimate the order O (hp) of each method using the
slope of the log-log plot in the error versus h. We get that,

1. Forward and Backward Euler have a slope of 1, i.e., O(h)

2. The Trapezoidal Method has a slope of 2, i.e., O(h2)

MATH 317 Numerical Analysis Lecture Notes | 56

Error Analysis

We want to quantify the error in approximating initial value prob-
lems as the step size approaches 0. To do this, we will re-write our
k-step discretization scheme as the zero of a map ϕ,

ϕh(tn, yn+1, yn, · · · , yn−k+1) = 0

which is satisfied for the unknown yn+1.

Definition (Local Truncation Error). The local truncation error is,

τh (tn) := Φh (tn, y (tn+1) , y (tn) , . . . , y (tn−k+1))

Remark. In general, τh (tn) = O (hp) for some power p.

Example 28: Local Truncation Error for Euler’s Method

We will bound the local truncation error for Euler’s method.
Let y be a solution to the initial value problem. Then,

τh (tn) := Φh (tn, y (tn+1) , y (tn))

= y (tn+1)− y (tn)− h f (tn, y (tn))

=

(
y (tn) + y′ (tn) h +

y′′ (ξn)

2
h2
)
− y (tn)− h f (tn, y (tn))

= h
(
y′ (tn)− f (tn, y (tn))︸ ︷︷ ︸

=0

+
y′′ (ξn)

2
h2

for ξn ∈ (tn, tn+1) obtained by Taylor’s Theorem. Define,

M2 := max
t∈[0,T]

∣∣y′′(t)∣∣
It follows that,

|τh (tn)| ≤
M2

2
h2

and therefore τh (tn) = O
(
h2).

Definition (Global Truncation Error). The global truncation error is,

τh
h

=
1
h
· max

0≤n≤N
|τh (tn) |

MATH 317 Numerical Analysis Lecture Notes | 57

Remark. A method is of order p if,

τh
h

= O (hp)

This condition holds if and only if τh (tn) = O
(
hp+1).

Definition (Consistency). A method is consistent if,

lim
h→0

τh
h

= 0

Remark. If a method is of order p > 0, then it is consistent.

Example 29: Consistency of Euler’s Method

We determined in the previous example that,

|τh (tn)| ≤ Ch2

for some C > 0 independent of tn. Thus,

τh
h

= max
0≤n≤N

|τh (tn)|
h

= O(h)

so Euler’s method is of order 1 and hence consistent.

Definition (Convergence). A method is called convergent if,

lim
h→0

max
0≤n≤N

| y(tn)− yn︸ ︷︷ ︸
en

| = 0

where en denotes the error at time tn.

Theorem 21 (Convergence of Euler’s Method). Let f : [0, T]×R → R

be continuous in t and continuously differentiable in y. If there
exists L > 0 such that∣∣∣∣∂ f

∂z
(t, y)

∣∣∣∣ ≤ L∀(t, y) ∈ [0, T]×R

then the Euler method converges.

Proof. By definition of Euler’s method,

(⋆) yn+1 = yn + h f (tn, yn)

MATH 317 Numerical Analysis Lecture Notes | 58

and the local trunction error is,

τh (tn) = y (tn+1)− y (tn)− h f (tn, y (tn))

Re-arranging for y(tn+1) gives that,

y (tn+1) = y (tn) + h f (tn, y (tn)) + τh (tn)

Subtracting by (⋆) gives that,

en+1 = en + h (f (tn, y (tn))− f (tn, yn)) + τh (tn)

By the Mean Value Theorem, ∃ξn ∈ (y(tn), tn) such that,

f (tn, y (tn))− f (tn, yn) =
∂ f
∂z

(tn, ξn) (y (tn)− yn)

The following inequalities hold by assumption and by definition,∣∣∣∣∂ f
∂z

(t, z)
∣∣∣∣ ≤ L |τh (th)| ≤ τh

It follows that,

|en+1| ≤ |en|+ hL |en|+ τh

= (1 + hL) |en|+ τh

≤ (1 + hL) ((1 + hL) |en−1|+ τh) + τh

= (1 + hL)2 |en−1|+ (1 + (1 + hL))τh

≤ . . .

Repeating inductively,

|en+1| ≤ (1 + hL)n+1 |e0|+ (1 + (1 + hL) + . . . + (1 + hL)n) τh

where |e0| = 0. Summing the geometric series,

n

∑
i=0

(1 + hL)i =
(1 + hL)n+1 − 1
(1 + hL)− 1

so that our bound can be simplified as follows,

|en+1| ≤
(1 + hL)n+1 − 1

hL
τh

≤ e(n+1)hL − 1
L

τh
h

since 1 + x ≤ ex for all x ∈ R

≤ eNhL − 1
L

τh
h

since 0 ≤ n + 1 ≤ N

MATH 317 Numerical Analysis Lecture Notes | 59

Using the fact that T = n · h,

|en+1| ≤
eTL − 1

L︸ ︷︷ ︸
C

·τh
h

It follows that Euler’s method is consistent since C is a constant
that does not depend on h. That is, as h→ 0,

|en+1| ≤ C
τh
h
→ 0

While all 1 step methods are convergent, we will see that not every
consistent k-step method converges. We require some additional
notion of stability to guarantee convergence for k ≥ 2 step methods.

Definition (Linear Multistep Method). A k-step method is a linear
multistep method if the discretization can be written as

yn+1 +
k−1

∑
i=0

ak−1−iyn−i = h

(
bk fn+1 +

k−1

∑
i=0

bk−1−i fn−i

)

where ai and bi are constants and fi = f (ti, yi). Equivalently,

Φh := yn+1 +
k−1

∑
i=0

ak−1−iyn−i − h

(
bk fn+1 +

k−1

∑
i=0

bk−1−i fn−i

)
= 0

Remark. The discretization Φh of a k-step linear multistep
method is linear in yn+1, . . . , yn−k+1 and fn+1, . . . , fn−k+1.

Remark. If bk = 0, then the method is explicit. Otherwise,

yn+1 +
k−1

∑
i=0

ak−1−iyn−i = h

(
k−1

∑
i=0

bk−1−i fn−i

)

and the method is implicit.

Example 30: Central Difference Method

Pick a0 = −1, a1 = 0, b0 = 0, b1 = 2, and b2 = 0. This gives,

yn+1 = yn−1 + 2h fn

MATH 317 Numerical Analysis Lecture Notes | 60

Example 31: Adam-Bashford Method

Pick a0 = 0, a1 = −1, b0 = − 1
2 , b1 = 3

2 and b2 = 0. This gives,

yn+1 = yn +
h
2
(3 fn − fn−1)

Example 32: Adam-Moulton Method

Pick a0 = 0, a1 = −1, b0 = − 1
12 , b1 = 2

3 and b2 = 5
12 . This gives,

yn+1 = yn +
h

12
(5 fn+1 + 8 fn − fn−1)

Using Taylor’s Theorem, we can derive a set of order and consistency
conditions for k-step linear multistep methods. These are:

Theorem 22 (Consistency Conditions). A k-step linear multistep
method is consistent if and only if we have:

k−1

∑
i=0

ai = −1

k

∑
i=0

bi = k +
k−1

∑
i=0

i · ai

Theorem 23 (Order Conditions). A k-step linear multistep method
is of order p if and only for q = 1, . . . , p we have:

k−1

∑
i=0

ai = −1

q
k

∑
i=0

iq−1 · bi = kq +
k−1

∑
i=0

iq · ai

Not all consistent linear multistep
methods are convergent.

Example 33: Consistent but Divergent Linear Multistep Methods

Consider the following 2 step explicit linear multistep method,

yn+1 + 4yn − 5yn−1 = h (4 fn + 2 fn−1)

The constants ai and bi are determined as follows,

a1 = 4, a0 = −5 and b2 = 0, b1 = 4, b0 = 2

This method is of order 3 by the order conditions and hence it

MATH 317 Numerical Analysis Lecture Notes | 61

is consistent. We will apply it to the IVP{
y′(t) = −y(t)
y(0) = 1

which we know has the following solution

y(t) = e−t

for all t ≥ 0. Using Euler’s method to initialize y1, we obtain
an error that tends to infinity as h→ 0. This is shown below,

h |y(1)− yN |
0.2 11.7
0.1 6.51× 103

0.05 2.37× 108

Therefore, consistency is insufficient for convergence.

The previous example motivates the need for aa stronger condition
that consistency to guarantee convergence. We require some idea of
the stability of the system, which we will formalize using the concept
of zero-stability. We begin with basic definitions.

Definition (Characteristic Polynomial). Let {ai} be the coefficients of
a linear multistep method. The characteristic polynomial is,

p(λ) = λk + ak−1λk−1 + . . . a1λ + a0

Definition (Zero-Stability). Let {λ1, · · · , λk} be the roots of the
characteristic polynomial. The conditions for zero-stability are,

1. |λi| ≤ 1

2. |λi| = 1 =⇒ λi ̸= λj for all j ̸= i

That is, all roots have modulus less than or equal to 1 and all
roots of modulus equal to 1 are distinct.

Example 34: Central Difference Method

Since a0 = −1 and a1 = 0,

p(λ) = λ2 − 1 = (λ− 1)(λ + 1)

and zero-stability holds.

MATH 317 Numerical Analysis Lecture Notes | 62

Example 35: Divergent Method

Since a0 = −5 and a1 = 4,

p(λ) = λ2 + 4λ− 5 = (λ + 5)(λ− 1)

and zero-stability does not hold.

Theorem 24 (Convergence of Linear Multistep Methods). Consistent
linear multistep methods converge ⇐⇒ zero-stability holds.

Corollary. If a consistent linear multistep method converges, then
it converges at the same order as the consistency error.

In summary,

1. Consistency implies convergence for
1 step methods

2. Consistency and the order condi-
tions imply convergence for linear
multistep methods

3. Consistent linear multistep methods
converge if and only if zero-stability
holds

Example 36: Adam-Bashford

We want to find the order of the Adam-Bashford method and
show that it converges. This method is 2 step explicit,

yn+1 = yn +
h
2
(3 fn − fn−1)

Re-arranging gives,

yn+1 − yn =
h
2
(3 fn − fn−1)

and hence the coefficients are a0 = 0, a1 = −1, b0 = − 1
2 , b1 =

3
2 , and b2 = 0. The characteristic polynomial is,

p(λ) = λ2 − λ + 0 = λ(λ− 1)

which implies zero-stability. By the convergence theorem for
linear multistep methods, it is sufficient so prove consistency.
While this can be done using the conditions, we will prove it
directly from the definitions. Since,

Φh = yn+1 − yn −
h
2
(3 fn − fn−1) = 0

the local truncation error τh (tn) is,

= y (tn+1)− y (tn)−
h
2

3 f (tn, y (tn))︸ ︷︷ ︸
=y′(tn)

− f (tn−1, y (tn−1))︸ ︷︷ ︸
=y′(tn−1)


where y(t) is the exact solution to the IVP. Applying Taylor’s
Theorem to y and y′ around tn gives that,

y (tn+1) = y (tn) + y′ (tn) h +
y′′ (tn)

2
h2 +

y(3) (ξn)

3!
h3

y′ (tn−1) = y′ (tn)− y′′ (tn) h +
y(3) (ηn)

2
h2

MATH 317 Numerical Analysis Lecture Notes | 63

for ξn ∈ (tn, tn+1) and νn ∈ (tn−1, tn). Thus,

τh(tn) =
1

12

(
2y(3) (ξn) + 3y(3) (ηn)

)
h3

Define a constant M3 = maxt∈[0,T]

∣∣∣y(3)(t)∣∣∣ so that,

|τh (tn)| ≤
5M3

12
h3

The consistency error is,

τh
h

= max
0≤n≤N

|τh (tn)|
h

≤ 5M3

12
h2 = O

(
h2
)
→ 0 as h→ 0

from which we conclude that Adam-Bashford is consistent of
order 2 and zero-stable. This is sufficient for convergence.

Case Study: A-Stability

The zero-stability condition is useful in concluding that a consistent
linear multi-step method converges in the limit as h → 0. In practice,
we want to work with a fixed non-zero h. For efficiency, we want to
take h to be as large as possible. However, there are restrictions on h
that arise based on the methods that is being used.

Consider the following problem. Fix λ ∈ C with Re(λ) < 0.{
y′(t) = λy(t)
y(0) = y0

(2)

has y(t) = y0 · eλt as an exact solution. We call the problem stiff if
Re(λ) ≪ 0. Observe that y → 0 as t → ∞, but numerical solutions
do not always have this property. We will apply 1 step methods,
beginning with Euler’s method, to see why this is the case.

Example 37: Applying Euler’s Method to (1)

Iterating the recurrence that we obtain by definition:

yn+1 = yn + hλyn

= (1 + hλ)yn

= (1 + hλ)2yn−1

· · ·
= (1 + hλ)n+1y0

We require that |1 + hλ| < 1 for yn → 0 as n → ∞ when h is

MATH 317 Numerical Analysis Lecture Notes | 64

fixed. This condition is equivalent to the condition that,

(1 + x)2 + y2 < 1

where λh = x + iy. Observe that,

|1 + hλ| = |1 + x + iy| ≤ |1 + x|+ |iy| = (1 + x)2 + y2

This region forms a circle in R2,

If λ ∈ R, then we require

|1 + hλ| < 1 ⇐⇒ −2 < hλ < 0 ⇐⇒ 0 < h < − 2
λ

so the stiffer the problem, the smaller h is required to be.

Example 38: Applying Backward Euler to (1)

Iterating the recurrence that we obtain by definition:

yn+1 = yn + hλyn+1

=
yn

1− hλ

· · ·

=
y0

(1− λh)n+1

For fixed h, we require the same condition,

|1− hλ| > 1 ⇐⇒ (1− x)2 + y2 > 1

to have yn → 0 as n→ ∞. This region forms a circle in R2,

MATH 317 Numerical Analysis Lecture Notes | 65

If λ ∈ R, then we require

|1− hλ| > 1 ⇐⇒ hλ < 0 or hλ > 2

but hλ < 0 is satisfied since

Re(λ) < 0

so there is no restriction on h.

Example 39: Applying Trapezoidal to (1)

We obtain by definition that,

yn+1 = yn +
h
2
· (fn+1 + fn)

where f (tn, yn) = λ · yn. Re-arranging and iterating,

yn+1 =
yn

(
1 + h

2 λ
)n+1(

1− h
2 λ
)

If hλ satisfies the inequality,

1 +
hλ

2
< 1− hλ

2

that is h < 0 then yn → 0 as n → ∞. If λ ∈ R, then Re(λ) < 0
is satisfied. Hence, there is no restriction on the size of h.

These examples on explicit and implicit 1 step methods motivate
the following definition of A-stability for problem (1):

Definition (A-Stability). Let h be fixed. If yn is the solution at tn of
a method applied to (1), then the region of A-stability is

R =
{

hλ ∈ C | lim
n→∞

yn → 0, for a fixed h
}
⊆ C

MATH 317 Numerical Analysis Lecture Notes | 66

Remark. An A-stable method is one with no restrictions on h.

Example 40: A-Stability

1. Euler’s method is not A-stable

2. All explicit methods are not A-stable

3. Backward Euler and the Trapezoidal method are A-stable For stiff problems, use an A-stable
method or non-A stable method with
a large region R in the left half of the
complex plane.

Implicit methods tend to have larger
regions of A-stability.

A-stability applies to equations other than (1). We begin with
definitions. Consider a one-dimensional autonomous system,

y′(t) = f (y(t)) (3)

An equilibrium solution of (2) is a solution y∗ ∈ R such that
f (y∗) = 0. We call y∗ asymptotically stable if f ′(y∗) < 0.

y′ = f (y) = f (y∗)︸ ︷︷ ︸
=0

+ f ′ (y∗) (y− y∗) +
f ′′(η)

2
(y− y∗)2

for some η guaranteed by Taylor’s remainder theorem. For ỹ(t) :=
y(t)− y∗, we can approximate the IVP as,

ỹ′ ≈ f ′ (y∗) ỹ

which is the same form as (1) with λ = f ′(y∗). This last step can be
justified by the linearization theorem from dynamical systems.

Remark. If y∗ is asymptotically stable equilibrium, then A-stable
methods will compute the correct y∗ without restrictions to h. In
contrast, a method which is not A-stable can lead to unbounded
growh or oscillations near Y∗ if h is not small enough.

Example 41: A-Stability

Suppose that a method is A-stable. We may be tempted to
take h large enough to compute y(T) with one time step.

1. The error is still O(hp)

2. Since all A-stable methods are implicit, root finding meth-
ods may not converge if h is too large

Predictor-Corrector Methods

While implicit methods have notable stability properites, one main
drawback is the requirement that we use root finding methods. In

MATH 317 Numerical Analysis Lecture Notes | 67

this section, we will explore predictor-corrector as a potential so-
lution to this. The basic idea will be to use an explicit method to
predict yn+1, prior to correct yn+1 using the implicit method.

Definition (Improved Euler Method). The I-Euler method is,

yn+1 = yn +
h
2
(f (tn, yn) + f (tn+1, ỹn+1))

which is obtained by using the Euler method to predict yn+1,

ỹn+1 = yn + h f (tn, yn) (predict)

yn+1 = yn +
h
2 (f (tn, yn) + f (tn+1, ỹn+1)) (correct)

in the original trapezoidal method,

yn+1 = yn +
h
2
(f (tn, yn) + f (tn+1, yn+1))

Substituting ỹn+1,

yn+1 = yn +
h
2
(f (tn, yn) + f (tn+1, yn + h f (tn, yn)))

This is a 1 step method, so it suffices to show consistency in order
to show convergence. It is not multistep, so we cannot use the order
conditions. We will compute the consistency error.

Φh = yn+1 − yn −
h
2
(f (tn, yn) + f (tn+1, yn + h f (tn, yn)))

Let y be the exact solution to the IVP. So the local truncation error is,

y (tn+1)− y (tn)−
h
2
(f (tn, y (tn)) + f (tn+1, y (tn) + h f (tn, y (tn))))

which we can simplify as follows,

y′ (tn) h +
y′′ (tn)

2
h2 +O

(
h3
)

− h
2
(f (tn, y (tn)) + f (tn+1, y (tn) + h f (tn, y (tn))))

Since y′ = f (t, y), differentiating in t implies that,

y′′ = ft(t, y) + fy(t, y)y′ = ft(t, y) + fy(t, y) f (t, y)

Applying Taylor’s Theorem to f about the point (t, y),

f (t + h, y + ch) = f (t, y) + ft(t, y)h + fy(t, y)ch +O(h2)

and setting t = tn, y = y(tn), and c = f (tn, y(tn)) gives,

f (tn+1, y (tn) + h f (tn, y (tn)))

MATH 317 Numerical Analysis Lecture Notes | 68

which evaluates to,

f (tn, y (tn)) + ft (tn, y (tn)) h + fy (tn, y (tn)) f (tn, y (tn)) h +O(h2)

Simplifying τh (tn) using this expression tells us that τh (tn) = O(h3),
therefore, τh = O(h2). Hence, the method is of order 2.

Runge-Kutta Methods

Explicit 1 step methods are fast and easy to implement, but they have
low order accuracy. One idea is to generalize to higher order and
take fractional time steps that allow us to compute yn+1 in stages.
This is the idea behind Runge-Kutta (RK) methods. The general
form of an s-stage explicit RK method is,

k1 = f (tn + c1h, yn)

k2 = f (tn + c2h, yn + ha2,1k1)

k3 = f (tn + c3h, yn + h (a3,1k1 + a3,2k2))

...

ks = f (tn + csh, yn + h (as,1k1 + as,2k2 + · · ·+ as,s−1ks−1)

yn+1 =yn + h (b1k1 + · · ·+ bsks)

The coefficients bi are called weights, ci are called nodes, ki are
stages, and the entries ai,j form the RK matrix.

Remark (Butcher Tableau). Runge-Kutta methods are specified by

c A
bT

where c is the column vector of nodes, bT is the row vector of
weights, and A is the RK matrix.

Corollary. A must be strictly lower triangular for the explicit RK
method. Otherwise, the RK methods are implicit.

Example 42: Improved Euler as an RK Method

I-Euler method can be written as a 2 stage explicit RK method:
k1 = f (tn, yn)

k2 = f (tn + h, yn + hk1) ,

yn+1 = yn + h
(

1
2

k1 +
1
2

k2

)

MATH 317 Numerical Analysis Lecture Notes | 69

Arranged in the RK Tableau, this becomes,

0
1 1

1/2 1/2

Example 43: 4 Stage Explicit Runge-Kutta Method

The most popular Runge-Kutta method is the following,

k1 = f (tn, yn)

k2 = f
(

tn +
h
2

, yn +
h
2

k1

)
k3 = f

(
tn +

h
2

, yn +
h
2

k2

)
k4 = f (tn + h, yn + hk3)

yn+1 = yn + h
(

1
6

k1 +
1
3

k2 +
1
3

k3 +
1
6

k4

)
Arranged in the RK Tableau, this becomes,

0
1/2 1
1/2 0 1/2

1 0 0 1
1/6 1/3 1/3 1/6

It can be shown that this method is of order 4. RK4 is not A-stable, but both RK4 and
I-Euler have larger regions of A-stability
than previous explicit method, e.g.,
Euler and Adam-Bashford.

First-Order Systems of ODEs

We can generalize methods for solving first-order initial value prob-
lems to systems. Consider the system of first-order ODEs,{

y′(t) = f(t, y(t))
y(0) = y0

Euler’s method can be written as,

yn+1 = yn + hf (tn, yn)

and the Backward Euler method can be written as,

yn+1 = yn + hf (tn, yn+1)

For implicit methods, root finding methods are required to solve the
system. These include fixed point iteration and Newton’s method.

MATH 317 Numerical Analysis Lecture Notes | 70

Linear multistep methods can also be applied to first order systems,
where consistency and zero-stability results will hold. For example,
A-stability can be applied to an autonomous system,

y′ = f (y)

where near an equilibrium solution y∗,

y′ ≈ JF (y∗) (y− y∗)

Since the Jacobian JF (y∗) is a matrix, the stiffness of the system will
be determined by the eigenvalues of JF (y∗) with negative real com-
ponents. Predictor-corrector and Runge-Kutta methods also general-
ize. For instance, the I-Euler method can be generalized as,

k1 = f (tn, yn)

k2 = f (tn + h, yn + hk1)

yn+1 = yn + h
(

1
2

k1 +
1
2

k2

)
The next example will show how we can write a higher-order IVP as
a first-order system by introducing the appropriate variables.

Example 44: Solving Higher-Order IVPs

Consider the second-order IVP,
x′′(t) = f

(
t, x(t), x′(t)

)
x(0) = a

x′(0) = b

Define the following variables,

y := x′

x′′ = f
(
t, x, x′

)
⇐⇒ y′ = f (t, x, y)

Hence, the second-order IVP can be written as,

x′(t) :=

(
x′(t)
y′(t)

)
=

(
y(t)

f (t, x(t), y(t))

)
=: f(t, x(t))

x(0) :=

(
x(0)
y(0)

)
=

(
a
b

)
=: x0

	Topic 1. Error Sources and Floating Point Numbers
	Topic 2. Iterative Methods for Nonlinear Systems of Equations
	Topic 3. Interpolation and Polynomial Approximation
	Topic 4. Numerical Differentiation and Integration
	Topic 5. Numerical Methods for Initial Value Problems

