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The Geometry of Euclidean Space

n-Dimensional Euclidean Space

Let Rn be the vector space of n-tuples x = (x1, x2, . . . , xn) with entries
from R, defined under the operations of coordinate-wise addition
and multiplication. For x, y ∈ Rn and c ∈ R, we have that,

x + y = (x1 + y1, . . . , xn + yn)

cx = (cx1, cx2, . . . , cxn)

We will consider the Euclidean inner product on Rn defined by,

⟨x, y⟩ 7−→ x · y

x · y :=
n

∑
i=1

xi · yi

For x ∈ Rn, we define the norm of x to be,

∥x∥ =
√
⟨x, x⟩ =

√
x · x

The Euclidean distance between x, y ∈ Rn is defined as,

d(x, y) = ∥x − y∥ =

√
n

∑
i=1

(xi − yi)
2

The geometric significance of the norm
∥ · ∥ in R2 is shown below. Recall that,

cos θ =
x · y

∥x∥∥y∥

Remark. For x, y, z ∈ Rn and α, β ∈ R, we have,

1. (αx + βy) · z = α(x · z) + β(y · z)

2. x · y = y · x

3. x · x ≥ 0

4. x · x = 0 if and only if x = 0

Theorem 1 (Cauchy-Schwartz Inequality). Let x, y ∈ Rn. Then,

|x · y| ≤ ∥x∥ · ∥y∥

Proof. Let x, y ∈ Rn and λ ∈ R+. If either x = 0 or y = 0, then
the statement holds trivially. Assume that this is not the case. Then,

p(λ) := (x + λy) · (x + λy)

= x · x + λ · y · x + λ · x · y + λ2(y · y)

= ∥x∥2︸︷︷︸
c

+λ · 2(y · x)︸ ︷︷ ︸
b

+λ2 ∥y∥2︸︷︷︸
a

≥ 0

with the second equality holding by the commutativity of the
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dot product. We have a quadratic polynomial with discriminant,

4(x · y)− 4∥x∥2 · ∥y∥2

which must be non-positive because,

p(λ) ≥ 0

Simplifying gives that (x · y)2 ≤ ∥x∥2 · ∥y∥2 and therefore,

|x · y| ≤ ∥x∥ · ∥y∥

Example 1: Characterizing p(λ)

Corollary (Triangle Inequality). Let x, y ∈ Rn. Then,

∥x + y∥ ≤ ∥x∥+ ∥y∥

Proof. We will consider the case where λ = 1.

∥x + y∥2 = ∥x∥2 + 2|y · x|+ λ2∥y∥2

≤ ∥x∥2 + 2∥x∥ · ∥y∥+ ∥y∥2

= (∥x∥+ ∥y∥)2

since |x · y| ≤ ∥x∥ · ∥y∥ by Cauchy-Schwartz. This gives that,

∥x + y∥2 ≤ (∥x∥+ ∥y∥)2

which implies the desired result: ∥x + y∥ ≤ ∥x∥+ ∥y∥.

An orientation is a choice of ordering
for our basis e1, e2, e3. By convention,

e1 × e2 = e3

e3 × e1 = e2

e2 × e3 = e1

e1 × e1 = 0

e2 × e2 = 0

e3 × e3 = 0
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Understanding the Cross Product

Definition (Cross-Product). Let e1, e2, e3 be the standard basis of R3.
The cross-product × : R3 × R3 → R3 is the map defined by,

x × y =

∣∣∣∣∣∣∣
e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣
for two vectors x and y in R3.

x × y is perpendicular to both x and
y. Moreover, ∥x × y∥ is the area of the
parallelogram spanned by x and y.

Remark. Let x and y be two vectors in R3. Then,

x × y = (x1e1 + x2e2 + x3e3)× (y1e1 + y2e2 + y3e3)

Expanding and using the fact that,

e1 × e2 = e3

e1 × e3 = −e2

e2 × e3 = e1

gives the following equality,

x × y = e3 (x1y2 − x2y1)− e2 (x1y3 − x3y1) + e1 (x2y3 − x3y2)

but this is the determinant of the matrix,∣∣∣∣∣∣∣
e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣
Corollary. Two vectors x, y ∈ R3 are linearly independent if and
only if their cross-product is non-zero. This result does not hold
in higher dimensions because the normal n satisfying,

x × y = (∥x∥∥y∥ sin Θ) · n

is no longer unique.

Graphs and Level-Sets

The graph of a function of two variables
taking values in R is,

Definition (Graphs of Functions). The graph of a function,

f : U ⊆ Rn → R
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is the subset of Rn+1 given by,

graph( f ) :=
{
(x, f (x)) ∈ Rn+1 | x ∈ U

}
The level set is called a level curve if
n = 2 and a level surface if n = 3.

Definition (Level Set). Let f : U ⊆ Rn → R and c ∈ R. The level
set of value c is the subset of Rn given by,

{x ∈ U | f (x) = c} = f−1({c})

Remark. If c1, c2 ∈ range( f ) are such that c1 ̸= c2, then,

f−1({c1}) ∩ f−1({c2}) = ∅

Examples of Graphs in R3

Paraboloid of Revoluation

f (x, y) = x2 + y2

Paraboloid of Translation

f (x, y) = x2 + 1

Lower Hemisphere

f (x, y) = −
√

1 − (x2 + y2)

Example 2: Paraboloid of Revolution

The function f : R2 → R defined by

f (x, y) = x2 + y2

is a paraboloid of revolution. It has range( f ) = [0, ∞) and

f−1({0}) = {(0, 0)} and f−1({c}) is a circle of radius
√

c

Example 3: Paraboloid of Translation

The function f : R2 → R defined by

f (x, y) = x2 + 1

is a paraboloid of translation. It has range( f ) = [1, ∞) and,

f−1({c}) is a pair of lines at ±
√

c − 1

Example 4: Lower Hemisphere

The function f : R2 → R defined by

f (x, y) = −
√

1 − (x2 + y2)

is a lower hemisphere. It has range( f ) = [−1, 0] and,

f−1({c}) is a circle of radius
√

1 − c2
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Example 5: Connected Components of the Level Sets

Level sets of a single value need not belong to a single con-
nected component. The function f : R2 → R defined by

f (x, y) = xy

has range( f ) = (−∞, ∞). Geometrically,

We can also analyze functions taking
values from R3. For instance,

f (x, y, z) = x + y + z

has range( f ) = R and

f−1({c}) = {(x, y, z) | x + y + z = c}

is a plane intersecting the x-axis at c.
This can be visualized as follows,

Remark. We will briefly review the six quadratic surfaces. These are,

1. The ellipsoid, which is called a sphere when a = b = c

x2

a2 +
y2

b2 +
z2

c2 = 1

2. The elliptic paraboloid, which is along the z-axis,

z
c
=

x2

a2 +
y2

b2

3. The hyperbolic paraboloid,

z
c
=

x2

a2 − y2

b2

4. The cone,
z2

c2 =
x2

a2 +
y2

b2

5. The hyperboloid of one sheet, with sheets along z,

x2

a2 +
y2

b2 − z2

c2 = 1
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6. The hyperboloid of two sheets, with sheets along z,

− x2

a2 − y2

b2 +
z2

c2 = 1

Example 6: Quadratic Surfaces

The function f : R3 → R defined by

f (x, y, z) = x2 + y2 + z2

has range( f ) = (∞, ∞) and,

f−1({c}) = 0 and f−1({c}) is a sphere for c > 0

If we had instead considered the function,

f (x, y, z) = x2 − y2 + z2

then we would have had that,

f−1({c}) is a


Hyperboloid of Two Sheets for c < 0

Circular Cone for c = 0

Hyperboloid of One Sheet for c > 0

Limits and Continuity

Limits of Functions

Definition (Open Disk). Let x ∈ Rn. Given r > 0,

Dr(x0) := {x ∈ Rn | ∥x − x0∥ < r}

is the open ball of radius r centered at x.

Definition (Open Subset). A subset U ⊂ Rn is open if,

∃r > 0 such that Dr(x0) ⊆ U for all x0 ∈ U

Proposition 1. Dr(x0) is open according to the preceding definition.

Proof. Let x0 be arbitrary. We need to show that there exists s > 0
such that Ds(x0) ⊆ Dr(x0). Choose s := r − ∥x − x0∥. Now,

∥y − x0∥ = ∥y − x + x − x0∥ ≤ ∥y − x∥+ ∥x − x0∥ < s + ∥x − x0∥
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since y ∈ Ds(x). By our choice of s, it follows that,

∥y − x0∥ < r

and consequently Dr(x0) is open.

Choosing s to prove that Dr(x0) is open.

We say that a neighborhood of x ∈ Rn

is an open set U such that x ∈ U.

Definition (Boundary Point). We call x ∈ Rn a boundary point of an
open set A if every neighborhood of x contains a point in A and a
point in Ac. We write ∂A for the set of boundary points of A.

Corollary. ∂Dr(x0) = {x | ∥x − x0∥ = r}

Definition (Limit of a Function). Let f : A ⊆ Rn → Rm be a function
defined on an open subset A of Rn. Let x0 ∈ A ∪ ∂A. Then,

1. f is eventually in N as x approaches x0 if ∃U, a neighborhood
of x0, such that if x ̸= x0 and x ∈ A ∩ U, then f (x) ∈ N

2. f (x) approaches b as x approaches x0 if, given any neighbor-
hood N of b, f is eventually in N as x approaches x0

where b ∈ range( f ) ⊆ Rm. In either case, we write,

lim
x→x0

f (x) = b

Example of a boundary point x.

The following are properties of limits of functions,

Remark (Uniqueness of Limits). Suppose that,

lim
x→x0

f (x) = b1

lim
x→x0

f (x) = b2

Then b1 = b2. That is, if f has a limit at x0, then that limit is unique.
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Remark (Limit Properties). Suppose that A ⊂ Rn, x0 ∈ A ∪ ∂A, and
f and g are functions on A taking values in Rm. If we have that,

lim
x→x0

f (x) = b1 and lim
x→x0

f (x) = b2

Then the following properties hold,

1. limx→x0 c f (x) = cb1 for c ∈ R

2. limx→x0( f (x) + g(x)) = b1 + b2

3. If m = 1, then limx→x0 f (x) · g(x) = b1 · b2

4. If m = 1 and f (x) ̸= 0 ∀x ∈ A, then limx→x0 1/ f (x) = 1/b1

Continuity

Definition (Continuity). A function f : A ⊆ Rn → Rm is called con-
tinuous on A if it is continuous at every point x0 ∈ A.

Theorem 2 (Continuity of Compositions). Let f : A ⊆ Rn → Rm and
g : B ⊆ Rm → Rl be two functions with f (A) ⊆ B. If f is contin-
uous at x0 and g is continuous at f (x0), then the composition,

g ◦ f : A ⊆ Rn → Rl

is continuous at x0.

We want to formulate the property of continuity precisely.

Theorem 3. Consider f : A ⊆ Rn → Rm. Let x0 ∈ A or x0 ∪ ∂A.

1. If ∀ϵ > 0, ∃δ(ϵ) > 0 such that ∥x − x0∥ < δ implies that,

∥ f (x)− b∥ < ϵ

then we have that limx→x0 f (x) = b

2. f is continuous at x0 ∈ A if and only if limx→x0 f (x) = f (x0)
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Example 7: Continuity via Composition

We can prove that the function f : R3 → R defined by,

f (x, y, z) = e−(x2+y2+z2)

is continuous for all x ∈ R3 using continuity of compositions:

1. f1(t) = e−t is continuous for all t ∈ R

2. f2(x, y, z) = −(x2 + y2 + z2) is continuous for all t ∈ R3

Thus, f = f1 ◦ f2 = e−(x2+y2+z2) is continuous for all x ∈ R3.

The graph of f : R2 → R defined by,

f (x, y) =
4x2y

x2 + y2

The graph of f : R2 → R defined by,

f (x, y) =
x2y2

x2 + y2

Example 8: f (x, y) = x + y

We will prove that the function,

f : R2 → R

f (x, y) = x + y

is continuous. Let ϵ > 0 be arbitrary and define δ(ϵ) := ϵ
2 .

Suppose that ∥x − x0∥ < δ. Then,

|x + y − (x0 + y0)| ≤ |x − x0|︸ ︷︷ ︸
<δ(ϵ)

+ |y − y0|︸ ︷︷ ︸
<δ(ϵ)

<
ϵ

2
+

ϵ

2
= ϵ

since,

δ > ∥x− x0∥ =
√
(x − x0)2 + (y − y0)2 ≥

√
(x − x0)2 = |x− x0|

and

δ > ∥x− x0∥ =
√
(x − x0)2 + (y − y0)2 ≥

√
(x − x0)2 = |y− y0|

Example 9: f (x, y) = 4x2y/x2 + y2

We will prove that the function,

f : R2 → R

f (x, y) =
4x2y

x2 + y2

approaches 0 as (x, y) → (0, 0). Let ϵ > 0 be arbitrary and
define δ(ϵ) = ϵ

4 . Suppose that ∥x − 0∥ = ∥x∥ < δ.∣∣∣∣ 4x2y
x2 + y2

∣∣∣∣ ≤ ∣∣∣∣4x2y
x2

∣∣∣∣ = 4|y| ≤ 4∥x∥ < ϵ
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Example 10: f (x, y) = x2y2/x2 + y2

We will prove that the function,

f : R2 → R

f (x, y) =
x2y2

x2 + y2

approaches 0 as (x, y) → (0, 0). Let ϵ > 0 be arbitrary and
define δ(ϵ) =

√
ϵ. Suppose that ∥x − 0∥ = ∥x∥ < δ.∣∣∣∣ x2y2

x2 + y2

∣∣∣∣ = |x|2 ·
∣∣∣∣ y2

x2 + y2

∣∣∣∣︸ ︷︷ ︸
<1

≤ |x|2 ≤ ∥x∥2 < ϵ

Differentiation

Defining the Derivative

Given a function f : U ⊆ R → R. The derivative of f is,

d f
dx

(x) = lim
h→0

f (x + h)− f (x)
h

We want to generalize this to functions of more than one variable.

Definition (Partial Derivative). Let U ⊆ Rn be an open set. Given a
function f : U ⊆ Rn → R, the partial derivative of f is,

∂ f
∂xj

(x1, · · · , xn) = lim
h→0

f
(

x1, . . . , xj + h, . . . , xn
)
− f (x1, . . . , xn)

h

Remark. If the partial derivative of a function, e.g., f : R2 → R,
is being evaluated at a point, e.g., x0 = (x0, y0) ∈ R2, we write,

fx(x0, y0) or
∂ f
∂x

(x0, y0) or
∂ f
∂x

∣∣∣∣
x0

The graph of f : R2 → R defined by,

f (x, y) = x1/3 · y1/3

does not have a tangent plane at (0, 0),

Its contour plot is shown below,
Example 11: Existence of the Partial Derivatives

Let f (x, y) = x1/3 · y1/3. By definition,

fx(0, 0) = lim
h→0

f (h, 0)− f (0, 0)
h

= lim
h→0

0 − 0
h

= 0

fy(0, 0) = lim
h→0

f (0, h)− f (0, 0)
h

= lim
h→0

0 − 0
h

= 0
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Thus, fy(0, 0) = fx(0, 0) = 0. Consider the restriction of f (x, y)
to the line y = x. We obtain f (x, x) = x2/3, which we know
from one-variable calculus is not differentiable at (0, 0).

Example 12: Computing Partial Derivatives

Let f : R2 → R be defined by f (x, y) = ex2y. We compute,

∂ f
∂x

= ex2y · 2xy and
∂ f
∂y

= ex2y · x2

Definition (Linear Approximation). The linear approximation L f |x0

to graph( f ) at the point x0 = (x0, y0) is given by,

z = f (x0, y0) +

[
∂ f
∂x

(x0, y0)

]
(x − x0) +

[
∂ f
∂y

(x0, y0)

]
(y − y0)

Definition (Differentiability). A function f : R2 → R is differentiable
at x0 if the partial derivatives fx and fy exist and we have that,

lim
x→x0

f (x)− L f |x0

∥x − x0∥
= 0

Corollary. If f is differentiable at x0, then L f |x0 is called the tangent
plane of graph( f ) at the point (x0, y0, f (x0, y0)) ∈ R3.

Example 13: Finding the Equation of the Tangent Plane

Consider the function f : R2 → R defined by,

f (x, y) = 1 − x2 − y2

The equation of the tangent plane at,

(x0, y0) = (1/
√

3, 1/
√

3)

is given by,

z − 1/3 = − 2√
3

(
x − 1√

3

)
− 2√

3

(
y − 1√

3

)
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Definition (Jacobian). Let U ⊆ Rn be an open set. Given a function
f : U ⊆ Rn → Rm, the derivative (D f )(x) is,

(D f )(x) =


∂ f1
∂x1

· · · ∂ f1
∂xn

...
...

∂ fm
∂x1

· · · ∂ fm
∂xn


which we call the Jacobian matrix.

Remark. The Jacobian matrix can be thought of as a linear map from
Rn to Rm. When m = 1, the gradient ∇ f is the 1 × n matrix,

∇ f := (D f ) =
[

∂ f
∂x1

· · · ∂ f
∂xn

]

Definition. Let U ⊆ Rn be an open set. A function f : U ⊆ Rn →
Rm is differentiable at x0 if the partial derivatives exist at x0 and,

lim
x→x0

∥ f (x)− (L f |x0)∥
∥x − x0∥

= 0

where,
L f |x0 = f (x0)︸ ︷︷ ︸

∈Rm

+ (D f )(x0)︸ ︷︷ ︸
Rn→Rm

· (x − x0)︸ ︷︷ ︸
∈Rm

The graph of f : R2 → R defined by,

f (x, y) :=

{ xy
x2+y2 for (x, y) ̸= (0, 0)

0 otherwise

Its contour plot is shown below,
Theorem 4. Let f : U ⊆ Rn → Rm. Then,

1. If f is differentiable at x0, then f is continuous at x0

2. If the partial derivatives ∂ fi/∂xj exist and are continuous in a
neighborhood of x0, then f is differentiable at x0

Example 14: Continuity of the Partial Derivatives

The existence of the partial derivatives does not guarantee
continuity. Consider the function f : R2 → R defined by,

f (x, y) :=


xy

x2+y2 for (x, y) ̸= (0, 0)

0 otherwise
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The partial derivatives of f exist,

fx(0, 0) = lim
h→0

f (h, 0)− f (0, 0)
h

= lim
h→0

0
h2 − 0

h
= 0

fy(0, 0) = lim
h→0

f (0, h)− f (0, 0)
h

= lim
h→0

0
h2 − 0

h
= 0

but f is not continuous at the origin,

lim
x→0

f (x, x) =
1
2
̸= f (0, 0)

graph( f ) is shown in the margin.

Sums, Products, and Quotients

Theorem 5 (Sums, Products, and Quotients). Let f : U ⊂ Rn → Rm

and g : U ⊂ Rn → Rm be differentiable at x0 ∈ U.

1. (Constant Rule) Let c ∈ R. c f (x) is differentiable at x0, and,

(Dc f ) (x0) = c(D f ) (x0)

2. (Sum Rule) f (x) + g(x) is differentiable at x0, and,

(D( f + g)) (x0) = (D f ) (x0) + (Dg) (x0)

The following two properties hold when m = 1,

1. (Product Rule) g(x) f (x) is differentiable at x0, and,

D(g f )(x0) = g(x0)(D f )(x0) + f (x0)(Dg)(x0)

2. (Quotient Rule) f (x)/g(x) is differentiable at x0, and,

D( f /g)(x0) =
g(x0)(D f )(x0) + f (x0)(Dg)(x0)

(g(x0))2 and g(x0) ̸= 0

Chain Rule

Theorem 6 (Chain Rule). Let g : U ⊂ Rn → Rm and f : U ⊂ Rm →
Rp. If g is differentiable at x0 and f is differentiable at g(x0), then,

D( f ◦ g) (x0) = (D f ) (y0) (Dg) (x0)
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Example 15: Polar Coordinates

We can relate a set of polar coordinates (r, θ) to each point
(x, y) ∈ R2 expressed in Cartesian coordinates. Observe,

x = r cos θ and y = r sin θ

where r ≥ 0 and 0 ≤ θ < 2π. Consider the composition,

(r, θ)
f7−→ (x = r cos θ, y = r sin θ)

g−→ g(x, y)

Fix a point x0 = (r, θ). We will compute (Dg)(x0):

(D f )(x0) =

(
∂ f1
∂r

∂ f1
∂θ

∂ f2
∂r

∂ f2
∂θ

)
=

(
cos θ −r sin θ

sin θ r cos θ

)

(Dg) ( f (x0)) =
(

∂g
∂x

∂g
∂y

)
(x = r cos θ, y = r sin θ)

Therefore,

D(g ◦ f ) =
(

∂g
∂x

∂g
∂y

)( cos θ −r sin θ

sin θ r cos θ

)

=

(
∂g
∂x

cos θ +
∂g
∂y

sin θ − ∂g
∂x

r sin θ +
∂g
∂y

r cos θ

)
by the Chain Rule.

Example 16: Simple Function Composition

Consider f : R → R2 and g : R2 → R defined by,

f (t) = (t, t2)

g(x, y) = x2 + y2

We begin by computing the partial derivatives of f and g,

∇g = (2x 2y) and ∇ f =

(
1
2t

)
We can compute (Dg ◦ f )(t) as follows,

(Dg ◦ f )(t) = (Dg)( f (t)) · (D f )(t)

=
(

2t, 2t2
)
·
(

1
2t

)
= 2t + 2t

= 4t

since (Dg)( f (t)) =
(
2t, 2t2).
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Paths and Curves

Definition (Curve). A curve is the image of a set of real numbers,
called a path. We write t for the independent variable, so that
c(t) is its position. The path c is said to parameterize the curve.

Example 17: Two Simple Curves

Define two curves c1 and c2 on the interval [0, 1] as follows,

c1(t) = (t, t)

c2(t) = (2t, 2t)

Observe that c1([0, 1]) = c2([0, 1]) but c′1(t) ̸= c′2(t),

c′1(t) = (1, 1) c′2(t) = (2t, 2t)

∥c1(t)∥ is constant, but ∥c1(t)∥ is not.

∥c1(t)∥ = ∥(1, 1)∥ =
√

12 + 12 =
√

2

∥c2(t)∥ =
√

4t2 + 4t2 = 2
√

2t

Example 18: Unit Circle

Define a curve c on the interval [0, 2π] as follows,

c(t) = (cos t, sin t)

The unit circle {(x, y) | x2 + y2 = 1} is parameterized by c.
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Theorem 7 (Differentiation of Paths). If a path c with component func-
tions x1(t), · · · , xn(t) is differentiable, then its derivative is

z′(t) =


dx1/dt
dx2/dt

...
dxn/dt



Proposition 2. c′(t) is the tangent vector at the point c(t).
We can apply the typical differentiation
rules to the components of c(t).

Directional Derivatives

Definition (Directional Derivative). Let f : R3 → R. The directional
derivative of f at x0 along the vector v is,

(∇v f ) (x0) =
d
dt

∣∣∣∣
t=0

f (x0 + tv) = lim
h→0

1
h
( f (x0 + hv)− f (x0))

Remark. Conventionally, we take v so that ∥v∥ = 1.

Example 19: Computing Rate of Change in a Direction

We will compute the rate of change of

f (x, y) =
(

x2 + y2
)
· e−(x2+y2+10)

at (2, 1) in the direction pointing towards (0, 0). To do this, we
will find (∇v f ) (2, 1), where v is the unit vector pointing from
(2, 1) towards (0, 0). We require the partial derivatives,

fx = 2x · e−(x2+y2+10) +
(

x2 + y2
)
· e−(x2+y2+10)(−2x)

fy = 2y · e−(x2+y2+10) +
(

x2 + y2
)
· e−(x2+y2+10)(−2y)
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Evaluating fx and fy at (2, 1),

fx(2, 1) = −16e−15

fy(2, 1) = −8e−15

We obtain the final result,

(∇v f ) (2, 1) =
256√

5
· e−15

Theorem 8. (∇v f ) (x0) = v · (∇ f ) (x0)

Proof. Observe that,

d
dt

f (x0 + tv) = (∇ f ) (x0 + tv) · d
dt

(x0 + tv)

= (∇ f ) (x0 + tv) · v

Plugging in t = 0,

d
dt

∣∣∣∣
t=0

f (x0 + tv) = (∇ f ) (x0) · v

Corollary. If x0 ∈ U is such that (∇ f ) (x0) ̸= 0, then (∇ f ) (x0) in-
dicates the direction of steepest increase for f at x0.

Proof. Using Theorem 7,

(∇v f ) (x0) = v · (∇ f ) (x0)

= ∥v∥ · ∥(∇ f ) (x0) ∥ cos θ

= ∥(∇ f ) (x0) ∥ cos θ since v is a unit vector

This expression is maximized when θ = 0, which occurs when v
and (∇ f ) (x0) are parallel. That is, when v points to (∇ f ) (x0).

(∇ f ) (x0) indicates the direction of
steepest increase for the function f .

Remark. The gradient points in the direction in which the values of
f change most rapidly, whereas a level surface lies in the directions
in which they do not change at all. Hence, for f reasonably behaved,
the gradient and the level surface will be perpendicular.
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Example 20: f (x, y) = 1 − x2 − y2

Consider the curve f : R2 → R defined by

f (x, y) = 1 − x2 − y2

The gradient of f is given by,

(∇ f )(x) = (−2x − 2y)

which at (x0, y0, z0) =
(

1√
3

, 1√
3

, 1
3

)
gives the tangent plane,

z − 1
3
= − 2√

3
(x − 1√

3
)− 2√

3
(y − 1√

3
)

Higher-Order Derivatives

Iterated Partial Derivatives

The second-order iterated derivatives for a function f : R2 → R are,

∂ f
∂x2︸︷︷︸
f xx

=
∂

∂x

(
∂ f
∂x

)
∂ f

∂xy︸︷︷︸
f xy

=
∂

∂x

(
∂ f
∂y

)

∂ f
∂yx︸︷︷︸
f yx

=
∂

∂y

(
∂ f
∂x

)
∂ f
∂y2︸︷︷︸
f yy

=
∂

∂y

(
∂ f
∂y

)

where f is assumed to be of class C2.

We say that f ∈ Ck if

∂k f
∂xi1 · · · ∂xik

all exist and are continuous in U.Example 21: Computing Iterated Partials

Consider the following function,

f : R2 → R

f (x, y) = x3 + x2y + y2

We will compute the iterated partials of f ,

fxx = 6x + 2y and fyy = 2

fyx = fxy = 2x

Theorem 9. If fxy and fyx are continuous in U, then they are equal.
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Taylor’s Theorem

We can generalize Taylor’s Theorem to functions f : U ⊂ Rn → R in
n variables. The first-order formula is given by,

f (x0 + h) = f (x0) +
n

∑
i=1

hi
∂ f
∂xi

(x0) + R1 (x0, h)

where R1 (x0, h) /∥h∥ → 0 as h → 0 in Rn and f is assumed to be
differentiable. The second-order formula is given be,

f (x0 + h) = f (x0) +
n

∑
i=1

hi
∂ f
∂xi

(x0) +
1
2

n

∑
i,j=1

hihj
∂2 f

∂xi∂xj
(x0) + R2 (x0, h)

where R2 (x0, h) /∥h∥2 → 0 as h → 0 and f is assumed to have
continuous partial derivatives of third order.

Remark. We can obtain an explicit formula for Rk(x0, h) by repeat-
edly applying Integration by Parts,

Rk (x0, h) :=
ˆ x0+h

x0

1
k!

(x0 + h − z)k f (k+1)(z)dz

Example 22: Computing the 2nd Order Taylor Polynomial

We will compute the 2nd order Taylor polynomial for,

f (x, y) = ex2+y

at the point x0 = (1, 1). The partial derivatives of f are,

fx = 2x · ex2+y =⇒ fx (x0) = 2e2

fy = ex2+y =⇒ fy = (x0) = e2

The iterated partial derivatives of f are,

fxx = 2ex2+y + 4x2 · ex2+y =⇒ fxx (x0) = 6e2

fxy = 2x · ex2+y =⇒ fxy(x0) = 2e2

fyx = 2x · ex2+y =⇒ fyx(x0) = 2e2

fyy = ex2+y =⇒ fyy (x0) = e2

This gives the following 2nd order approximation,

e2︸︷︷︸
f (x0)

+ 2e2 · h1 + e2 · h2︸ ︷︷ ︸
∑ ∂ f

∂xi
(x0)hi

+
1
2

e2(6 · h2
1 + 2 · 2 · h1h2︸ ︷︷ ︸

fxy ·h1h2+ fyx ·h2h1

+ 1 · h2
2︸ ︷︷ ︸

fyy ·h2
2

)
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Defining Extreme, Critical, and Saddle Points

Let f : U ⊆ Rn → Rm, where U is an open set.

Definition (Local Maxima and Minima). We say that,

1. f has a local maximum at x0 if there exists an open neighbor-
hood N of x0 such that f (x) ≥ f (x0) for all x ∈ N

2. f has a local minimum at x0 if there exists an open neighbor-
hood N of x0 such that f (x) ≤ f (x0) for all x ∈ N

The local extremum are called strict if the inequalities are strict. Extrema can be local or global. De-
pending on the choice of U, these
extrema may or may not be captured by
the first-derivative test.

Definition (Critical Points). There are (3) types of critical points,

• x0 ∈ U is extreme if x0 is a local minimum or maximum

• x0 ∈ U is critical if,

– f is not differentiable at x0

– f is differentiable at x0 and

(D f )(x0) = 0 ⇐⇒ (∇v f ) (x0) = 0

• x0 ∈ U is a saddle point if x0 is critical but not extreme

First-Derivative Test for Local Extrema

Theorem 10 (First-Derivative Test for Local Extrema). Let x0 be a local max-
imum or minimum. If f is differentiable at x0, then D f (x0) = 0.

Proof. Suppose that f achieves a local maximum at x0.

1. If m = 1, then for any h ∈ Rn, the function g(t) = f (x0, th)
has a local maximum at t = 0. From one-variable calculus,

g′(0) = 0

By the chain rule,

g′(0) = [(D f ) (x0)] · h = 0

This implies that D f (x0) = 0.

2. If m > 1, then we can use the same idea. Given x0 and h fixed,

d
dt

f (x0 + th) = (∇ f ) (x0 + th) · h
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Evaluated at t = 0,

0 = (∇f) (x0) · h ⇒ (∇f) (x0) = 0

The case where f achieves a local minimum is analogous.

Example 23: Critical Points which are not Local Extremum

The function f : R2 → R defined by

f (x, y) = xy

has (0, 0) as a critical point, but it is not a local extremum.

Functions can have many critical points:

Example 24: Geometric Interpretation of Critical Points

Second Derivative Test

We will establish an analog of the second derivative test. At a critical
point x0, Taylor’s Theorem tells us that,

f (x0 + h) = f (x0)+
n

∑
i=1

∂ f
∂xi

(x0) hi +
1
2
·

n

∑
i,j=1

∂2 f
∂xixj

(x0) hihj +R2 (x0, h)
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implying in particular that,

f (x0 + h)− f (x0) =
1
2 ∑

i,j

∂2 f
∂xixj

(x0) hihj︸ ︷︷ ︸
(∗)

+R2 (x0, h)

where (∗) is quadratic in h and the remainder decays faster than
quadratically. We require the following algebraic terminology:

Definition (Quadratic Function). A function g : Rn → R defined

g (h1, . . . , hn) =
n

∑
i,j=1

aijhihj

for an n × n matrix A with entries aij is called quadratic.

Example 25: Quadratic Function: n = 3

g (h1, h2, h3) = [h1, h2, h3]

 1 −1 0
−1 0 0

0 0 1


 h1

h2

h3


= h2

1 − 2h1h2 + h2
3

Proposition 3 (Properties of Quadratic Forms). Observe that,

1. g is homogeneous of degree 2,

g(λh1, · · · λhn) = λ2g(h1, · · · , hn)

2. We may assume that the matrix A is symmetric, i.e., aij = aji
for all i, j. If not, then we can write

aij =
1
2
(aij + aji)︸ ︷︷ ︸

bij

+
1
2
(aij − aji)︸ ︷︷ ︸

cij

where bij = bji (symmetric) and cij = −cji (skew-symmetric).

∑ aij · hihj = ∑ bij · hihj +

=0︷ ︸︸ ︷
∑ cij · hihj

and choose the symmetric matrix B.
Every matrix can be written as a func-
tion of a symmetric matrix and a skew
symmetric matrix.



MATH 248 Honours Vector Calculus Lecture Notes | 26

Definition (Positive and Negative Definite). A quadratic form is

• Positive definite if g(h) ≥ 0 for all h ∈ Rn

• Negative definite if g(h) ≤ 0 for all h ∈ Rn

with the added condition that g(h) = 0 if and only if h = 0.

Definition (Hessian). Suppose that f : U ⊆ Rn → R has second-
order continuous derivatives at x0 ∈ U. The Hessian of f at x0 is

(H f ) (x0) (h) =
1
2
·

n

∑
i,j=1

∂2 f
∂xi∂xj

(x0) hihj

=
1
2
[h1, . . . , hn]


∂2 f

∂x1∂x1
· · · ∂2 f

∂x1∂xn
...

∂2 f
∂xn∂x1

· · · ∂2 f
∂xn∂xn




h1
...

hn


which is a quadratic function by equality of the mixed partials.

g(h) = h2
1 + h2

2 g(h) = h2
1 · h2

2 g(h) = −h2
1 − h2

2

A =

(
1 0
0 1

)
A =

(
0 1

2
1
2 0

)
A =

(
−1 0
0 −1

)

Positive Definite Neither Negative Definite

Proposition 4. Let g : Rn → R be a positive definite quadratic form.
There exists a constant M > 0 such that,

g(h) ≥ M · ∥h∥2

Theorem 11 (Second Derivative Test). Let f : U ⊆ Rn → R be a func-
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tion of class C3. Consider a critical point x0 of f . Then,

(H( f )) (x0) (h) =

{
Positive Definite ⇒ x0 is a local minimum
Negative Definite ⇒ x0 is a local maximum

Proof. If f : U ⊆ Rn → R is of class C3, then,

f (x0 + h)− f (x0) = (H f )(x0)(h) + R2(x0, h)

by Taylor’s Theorem, where R2(x0, h/∥h∥2 → 0 as h → 0 and x0 ∈
U is a critical point. Since (H f )(x0)(h) is positive definite,

(H f )(x0)(h) ≥ M · ∥h∥2

for some M > 0. There exists δ > 0 such that for 0 < ∥h∥ < δ,

|R2(x0, h| < M · ∥h∥2

Thus, 0 < (H f ) (x0) (h) + R2 (x0, h) = f (x0 + h)− f (x0) for 0 <

∥h∥ < δ. It follows that x0 is a strict relative minimum. The neg-
ative definite case follows by applying this argument to − f .

Proposition 5. For a quadratic form g(h1, h2),

a > 0 and ac − b2 > 0 ⇐⇒ Positive Definite

a < 0 and ac − b2 > 0 ⇐⇒ Negative Definite

Proof. Take

g(h1, h2) =
(

h1 h2

)( a b
c d

)(
h1

h2

)

Expanding this expression gives that,

g(h1, h2) = ah2
1 + 2bh1h2 + ch2

2

Completing the square:

g (h1, h2) =
1
2

a
(

h1 +
b
a

h2

)2
+

1
2

(
c − b2

a

)
h2

2



MATH 248 Honours Vector Calculus Lecture Notes | 28

Suppose that g is positive definite.

h2 = 0 ⇒ 1
2

ah2
1 ⇒ a > 0

h1 = − b
a

h2 ⇒ 1
2

(
c − b2

a

)
︸ ︷︷ ︸

>0

h2
2

Conversely,

a > 0 and ac − b2 > 0 =⇒ g (h1, h2) > 0

since we sum over positive numbers.

Remark (Determinant Test). Let n ≥ 0 and consider

g(h) =
n

∑
i,j=1

aijhihj

with entries taken from the symmetric matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a32 · · · a3n
... ann


With reference to the margin figure,

1. g is positive definite if the determinants of every diagonal em-
bedded minor are positive

2. g is negative definite if the determinants of every diagonal em-
bedded minor alternate signs

Diagonal embedded minors of A

Theorem 12 (Second-Derivative Test). Let f : U ⊆ R2 → R.

• x is a local minimum of f if,

1. fx(x) = fy(x) = 0

2. fxx(x) > 0

3. ( fxx · fyy − f 2
xy)(x) > 0

• x is a local maximum of f if,

1. fx(x) = fy(x) = 0

2. fxx(x) < 0
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3. ( fxx · fyy − f 2
xy)(x) > 0

• x is a saddle type of f if,

1. ( fxx · fyy − f 2
xy)(x) < 0

with the indeterminant case occuring when,

( fxx · fyy − f 2
xy)(x) = 0

Example 26: f (x, y) = x2 − y2 + xy

Consider the function,

f (x, y) = x2 − y2 + xy

fx = 2x + y = 0 and fy = −2y + x = 0

(0, 0) is the unique critical point. Computing the Hessian,∣∣∣∣∣
(

fxx fxy

fxy fyy

)∣∣∣∣∣ =
∣∣∣∣∣
(

2 1
1 −2

)∣∣∣∣∣ = ( fxx · fyy − f 2
xy

)
(0, 0) = −5

shows that (0, 0) is a saddle point.

f (x, y) = x2 − y2 + xy

f (x, y) = ex · cos y

1
3 x3 + 1

3 y3 − 1
2 x2 − 5

2 y2 + xy + 10

f (x, y) = xy + 1
x + 1

y

Example 27: f (x, y) = ex

Consider the function,

f (x, y) = ex · cos y

fx = ex cos y and fy = ex sin y

f has no critical points.

Example 28: f (x, y) = xy + 1
x + 1

y

Consider the function,

f (x, y) = xy +
1
x
+

1
y

fx = y − 1
x2 and fy = x − 1

y2

(1, 1) is the unique critical point. Computing the Hessian,∣∣∣∣∣
(

fxx fxy

fxy fyy

)
(x0, y0)

∣∣∣∣∣ =
∣∣∣∣∣
(

2
x3 1
1 2

y3

)
(1, 1)

∣∣∣∣∣ =
∣∣∣∣∣
(

2 1
1 2

)∣∣∣∣∣ = 3

shows that (1, 1) is a local minimum.
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Example 29: f (x, y) = 1
3 x3 + 1

3 y3 − 1
2 x2 − 5

2 y2 + xy + 10

Consider the function,

f (x, y) =
1
3

x3 +
1
3

y3 − 1
2

x2 − 5
2

y2 + xy + 10

fx = x2 − x and fy = y2 − 5y + 6

(0, 2),(0, 3), (1, 2), and (1, 3) are critical points.(
fxx fxy

fxy fyy

)
=

(
2x − 1 0

0 2y − 5

)

shows that,

(0, 2) is a local minimum

(0, 3) is a saddle point

(1, 2) is a saddle point

(1, 3) is a local minimum

Classifying Global Extrema

The theorems that we saw previously allowed us to classify local
extrema. We want to identify global extrema.

Definition (Global Extrema). Let f : A ⊆ Rn → R. x0 ∈ A is a,Global Maximum if f (x) ≤ f (x0) for all x ∈ A

Global Minimum if f (x) ≥ f (x0) for all x ∈ A A set D ∈ Rn is bounded if there is a
number M > 0 such that ∥x∥ < M for
all x ∈ D. It is closed if it contains all of
its boundary points. For example, the
level sets of a continuous function are
always closed.
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Definition (Compact). A set is compact if it is closed and bounded.

Example 30: Compact Sets

The following two sets are compact,

1. {(x, y) | x2 + y2 ≤ a2}

2. {(x, y) | a ≤ |x| ≤ b}

Theorem 13. If D ⊆ Rn is compact, then f : D ⊆ Rn → R admits
a global maximum and minimum, reached at some points of D.

Example 31: Finding Global Maxima and Minima

Let f : D ⊆ R2 → R be a continuous function defined on a
compact set D. To find the global maximum and minimum,

1. Locate all critical points of f in int(D)

2. Locate all critical points of f on ∂D

3. Compute the value of f on each critical point

4. Compare these values to determine the largest and smallest

Example 32: Finding Global Maxima and Minima

We want to find the absolute maximum and minimum of,

f : A ⊆ R2 → R defined by f (x, y) = x2 + xy + y2

on the set A = {(x, y) | x2 + y2 ≤ 1}. We have that,

∂A = {(x, y) | x2 + y2 = 1}

Let x := cos θ and y := sin θ for 0 ≤ θ < 2π. Then,

f |∂A = f (cos θ, sin θ) = 1 + cos θ sin θ

= 1 +
1
2

sin(2θ) =: g(θ)

Differentiating g(θ) gives that,

g′(θ) = cos(2θ) =⇒ θ =
π

4
,

3π

4
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This gives two points,

f (p0) = f (0, 0) = 0

f (p1) = f
(

cos
(π

4

)
, sin

(π

4

))
=

3
2
=

3
2

f (p1) = f
(

cos
(

3π

4

)
, sin

(
3π

4

))
=

3
2
= f

(
−
√

2
2

,

√
2

2

)
=

1
2

There is a global minimum at p0 and a global maximum at p1.

Example 33: Finding Global Maxima and Minima

We want to find the absolute maximum and minimum of,

f : A ⊆ R2 → R defined by f (x, y) = sin x + cos x

on the set A = {(x, y) | x ∈ [0, 2π] and y ∈ [0, 2π]}. Write,

∂A = γ1 ∪ γ2 ∪ γ3 ∪ γ4

If we consider the restriction,

f |γ1
= f (x, 0) = sin x + 1 := g1(x)

on x ∈ (0, 2π), then we obtain that,

g′(x) = cos x =⇒ x = π/2 and. x = 3π/2

so the critical points are (π/2, 0) and (3π/2, 0). We can repeat
this for each γi to find the global maximum and minimum.

Constrained Extrema and Lagrange Multipliers

We want to find the local extrema of a function f restricted to a level
set g(x0) = c. We call this a constrained extremum.

Theorem 14. Suppose that f : U ⊆ Rn → R and g : U ⊆ Rn → R

are of the class C1. f has a constrained extremum at g(x0) = c if,

(∇ f )(x0) = λ(∇g)(x0)

where λ ∈ R s called a Lagrange multiplier.

Remark. The point x0 is a critical point of f |U. If f |U has a maxi-
mum or minimum at x0, then (∇ f )(x0) is perpendicular to U at x0.
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Remark. λ is an additional variable in the auxiliary function,

L(x1, · · · , xn, λ) = f (x1, · · · , xn)− λ · (g(x1, · · · , xn)− c)

To find the extreme points of f |S we find the critical points of L,

0 = hx1 = fx1 − λgx1

...

0 = hxn = fxn − λgxn

0 = hλ = g(x1, · · · , xn)− c

Example 34: Constrained Extrema

Consider the function f : R3 → R defined by,

f (x, y, z) = xy + z2

on the sphere x2 + y2 + z2 = 1. Define the Lagrange function
L := f + λg = xy + z2 + λ

(
x2 + y2 + z2). Now,

∇L = 0 =⇒


y + 2λx = 0
x + 2λy = 0
2z + 2λz = 0
x2 + y2 + z2 = 0

We can then solve the system.

Example 35: Applications of Lagrange Multipliers

We want to find the points on the curve

g(x, y) = 17x2 + 12xy + 8y2 = 100

which are closest to and farthest from the origin (0, 0). To do
this, define the squared distance function f (x, y) = x2 + y2.

Remark. Given k constraints,

g1(x) = c1, . . . , gk(x) = ck

We have that (∇ f ) (x0) = λ1 (∇g0) (x0) + . . . + λk (∇gk) (x0).
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The Implicit Function Theorem

Example 36: Motivating Example

We can find neighborhoods around points of the circle

x2 + y2 = 1

for which they correspond to the graph of the function

f (x) = ±
√

1 − x2

This does not hold at (1, 0), (−1, 0). The Implicit Function Theorem pro-
vides conditions under which a rela-
tionship of the form f (x, y) = 0 can be
re-written as a function y = f (x) locally.

Theorem 15 (Implicit Function Theorem). Let f : Rn+1 → R be of class
C1. Denote points in Rn+1 by (x, z), where x ∈ Rn and z ∈ R. If,

f (x0, z0) = 0 and
∂ f
∂z

(x0, z0) ̸= 0

for a point (x0, y0) ∈ Rn+1, then there exists,

1. A ball U containing x0 in Rn

2. A neighborhood V of z0 in R

such that there is a unique implicit function z = g(x) satisfying that,

1. z is defined for x in U and z is in V

2. f (x, g(x)) = 0

Moreover, if x ∈ U and z ∈ Z satisfy f (x, z) = 0, then z = g(x).
Finally, z = g(x) is continuously differentiable and,

(Dg)(x) = − 1
∂ f
∂z (x, z)

· Dx f (x, z)

∣∣∣∣∣
z=g(x)
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where Dx f is the partial derivative of f with respect to x. That is,

∂g
∂xi

= −∂ f /∂xi
∂ f /∂z

for all i = 1, 2, · · · , n.

Theorem 16 (General Implicit Function Theorem). Suppose that Fi is C1

for 1 ≤ i ≤ m. Consider the determinant ∆ of the matrix,
∂F1
∂z1

· · · ∂F1
∂zm

...
...

∂Fm
∂z1

· · · ∂Fm
∂zm


evaluated at a point (x0, z0). If ∆ ̸= 0, then

F1 (x1, . . . , xn, z1, . . . , zm) = 0

F2 (x1, . . . , xn, z1, . . . , zm) = 0

Fm (x1, . . . , xn, z1, . . . , zm) = 0

defines a unique set of smooth functions,

zi = zi (x1, . . . , xn) (i = 1, . . . , m)

near the point (x0, z0). The derivatives of zi can be computed
by implicit differentiation.

Example 37: Applications of the Implicit Function Theorem

Consider the functions F1, F2 : R4 → R defined in the system,

F1(x, y, u, v) = x2 + xy − y2 − u = 0

F2(x, y, u, v) = 2xy + y2 − v = 0

We want to show that x and y can be solved for as C1 func-
tions of u and v near the point (x0, y0, u0, v0) = (2,−1, 1,−3).

1. (2,−1, 1,−3) satisfies the constraints,

F1(2,−1, 1,−3) = 4 − 2 − 1 − 1 = 0

F2(2,−1, 1,−3) = −4 + 1 + 3 = 0

2. Computing the determinant of the matrix,(
∂F1
∂x

∂F1
∂y

∂F2
∂x

∂F2
∂y

)
=

(
2x + y x − 2y

2y 2x + 2y

)

at our point gives 3 · 2 − (−2) · 4 = 6 + 8 ̸= 0.
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To compute the partial derivatives via implicit differentiation,

DuF1 : 2xxu + xuy + xyu − 2yyu − 1 = 0

=⇒ xu(2x + y) + yu(x − 2y)− 1 = 0

DuF2 : 2xuy + 2xyu + 2yyu = 0

=⇒ xu(2y) + yu(2x + 2y) = 0

Evaluated at (2,−1, 1,−3), this is,

3xu + 4yu − 1 = 0

−2xu + 2yu = 0

which implies that xu = yu = 1/7.

Example 38: Applications of the Implicit Function Theorem

Consider the function F : R3 → R defined on the level surface,

F(x, y, z) = x + y − z + cos(xyz) = 0

We want to compute Fx(0, 0).

1. (0, 0, 1) satisfies the constraints,

0 + 0 − 1 + cos(0) = 0

To compute the partial derivatives by implicit differentiation,

DxF : 1 − z · zx − [yz + xyzxz] sin(xyz)

=⇒ 1 − zx = 0

DyF : 1 − z · zy −
[
xz + xyzyz

]
sin(xyz)

⇒ 1 − zy = 0

Vector-Valued Functions

Vector Fields

Definition (Vector Field). A vector field in Rn is a map

V : U ⊆ Rn → Rn
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that assigns each x in its domain U a vector V(x).
A map V : U ⊆ Rn → R assigning a
number to each point is a scalar field.

A vector field on Rn has n components.
If each component is a Ck function, then
the vector field is said to be of class Ck .

Example 39: Describing Rotary Motion using a Vector Field

Rotary motion can be described by the vector field,

V(x, y) = −yi + xj

Example 40: Unit Length Vector Fields

The vector field V defined by,

V(x, y) =
x√

x2 + y2
· i +

−y√
x2 + y2

· j

has unit length. It is not defined at the origin,

Example 41: Gradient Vector Fields

The gradient of a C1 function is given by,

∇ f (x, y, z) =
∂ f
∂x

(x, y, z) · i +
∂ f
∂y

(x, y, z) · j +
∂ f
∂z

(x, y, z) · k

We can think of this as an example of a vector field V.

Example 42: Identifying Gradient Vector Fields

• V(x, y) = −yi + xj is not a gradient vector field because the
mixed partials Vxy and Vyx are not equal,

Vx = −y and Vy = x
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• V(x, y) = yi + xj is a conservative because the mixed par-
tials Vxy and Vyx are equal to 1,

Vx = y and Vy = x

Example 43: Equipotential Surfaces

Given the gradient of V,

∇V = (x, 2y, 3z) = xi + 2j + 3z

we can recover the original function V : R2 → R,

V =
1
2

x2 + y2 +
3
2

z2

The level curves of V are called equipotential surfaces.

Definition (Flow Line). A flow line c(t) for a vector field V has

c′(t) = V(c(t))

Example 44: Rays

Consider the vector field V(x, y) = xi + yj, where ∥V∥ = r.

x′(t) · i + y′(t) · j︸ ︷︷ ︸
c′(t)

= x(t) · i + y(t) · j︸ ︷︷ ︸
F(c(t))

gives the following differential equation,

x′(t) = x(t) =⇒ x(t) = c1 · et

y′(t) = y(t) =⇒ y(t) = c2 · et

implying that the flow lines are rays through the origin.
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Example 45: Concentric Circles

Consider the vector field V(x, y) = xi − yj, where ∥V∥ = r.

x′(t) · i − y′(t) · j︸ ︷︷ ︸
c′(t)

= x(t) · i + y(t) · j︸ ︷︷ ︸
F(c(t))

gives the following differential equation,

x′(t) = x(t) =⇒ x(t) = c1 · cos t

y′(t) = y(t) =⇒ y(t) = c2 · sin t

implying that the flow lines are concentric circles at the origin.

Exercise: What are the flow lines of:

V =
−y√

x2 + y2
· i +

x√
x2 + y2

· j

Divergence and Curl

Definition (∇). The del operator in n-space is,

∇ =

(
∂

∂x1
,

∂

∂x2
, · · · ,

∂

∂xn

)
The gradient of f is obtained by taking
the ∇ operator and applying it to f .

Definition (div V). The divergence of a vector field V on Rn is,

div V = ∇ · F =
n

∑
i=1

∂Vi
∂xi

=
∂V1

∂x1
+ · · ·+ ∂Vn

∂xn

Definition (Solenoidal). If a vector field V on Rn has div V(x) = 0,
then V is called solenoidal.

Remark. We evaluate the divergence at a point x.

1. If div V(x) < 0, then V converges at x

2. If div V(x) > 0, then V diverges at x
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Definition (curl V). The curl of a vector field V on R3 is,

curl V = ∇× V =

∣∣∣∣∣∣∣
i j k

∂x ∂y ∂z

V1 V2 V3

∣∣∣∣∣∣∣
which evaluates to,(

∂V3

∂y
− ∂V2

∂z

)
· i +

(
∂V1

∂z
− ∂V3

∂x

)
· j +

(
∂V2

∂x
− ∂V1

∂y

)
· k

curl(V) tells us how much the flow
lines is V rotate. In particular, a gra-
dient field has no center of rotation or
else the level curves would intersect.

Proposition 6 (Curl of a Gradient). For any C2 function f ,

curl∇ f = ∇× (∇ f ) = 0

That is, the curl of any gradient is the zero vector.

Corollary. If curl V = ∇× V ̸= 0, then V is not a gradient field.

Proposition 7 (Divergence of a Curl). For any C2 vector field V,

div curl V = ∇ · (∇× V) = 0

That is, the divergence of any curl is zero.

Corollary. If div V = ∇ · V ̸= 0, then V is not solenoidal.

Integrals over Paths and Surfaces

Summary

In this section, we will see the following variations of integrals:

Path Integral
´

c f ds =
´ b

a f (c(t)) · ∥c′(t)∥ dt

Line Integral
´

c Fds =
´ b

a F(c(t)) · c′(t)dt

Surface Integral (Scalar)
˜

S f dS =
˜

D f (Φ(u, v)) · ∥Tu × Tv∥ dudv

Surface Integral (Vector)
˜

Φ F · dS =
˜

D F · (Tu × Tv) dudv For an interpretation of double, triple,
and line integrals in terms of weighted
sums, please see this reference.

https://www.math.ucla.edu/~josephbreen/Line_and_Surface_Integrals.pdf
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Line Integrals of Vector Fields

Consider a parameterized curve c(t)

c(t) : [a, b] → U ⊆ R3

t 7→ c(t)

which is assumed to be simple and oriented.

Definition (Path Integral). Given a curve c : [a, b] → R3 that is of
class C1, the path integral of f : R3 → R along c is,

ˆ
c

f ds =
ˆ b

a
f (c(t))

∥∥c′(t)
∥∥ dt

Remark. If c(t) is piecewise C1 or f (c(t)) is piecewise continuous,
then we can break I into pieces over which f (c(t))∥c′(t)∥ is contin-
uous. We then sum the integrals over the pieces.

The assumption that c(t) is simple tells
us that it is a one-to-one on [a, b].

Example 46: Oriented Simple Curves

1. Let 0 ≤ t ≤ 1. The following curves have the same image,

c1(t) = (t, t, t)

c2(t) = (1 − t, 1 − t, 1 − t)

but opposite orientations.

2. Let 0 ≤ t ≤ 1. The following curves have the same image,

c1(t) = (cos t, sin t)

c2(t) = (cos 2t, sin 2t)

but c2(t) is not simple.

We now consider the problem of integrating a vector field along a
path. We can approximate the work done by the force field F on a
particle moving along a path c : [a, b] → R3 as,

ˆ b

a
F(c(t)) · c′(t)dt
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Definition (Line Integral). Given a curve c : [a, b] → R3 that is of class
C1, the line integral of a vector field F on R3 along c is,

ˆ
c

F · ds :=
ˆ b

a
F(c(t)) · c′(t)dt

Remark (Notation). Let c(t) = (x(t), y(t), z(t)). Then,

ˆ b

a
F(c(t)) · c′(t)dt

is the integral,

ˆ b

a
(F1 · i + F2 · j + F3 · k) · (x′(t) · i + y′(t) · j + z′(t) · k)dt

which we can re-write by an abuse of notation as,

ˆ b

a
F1 · x′(t) + F2 · y′(t)dt + F3 · z′(t)dt

Example 47: F = x2 · i + y · j

We will calculate the work of the force field

F = x2 · i + y · j

along the line segment given by,

c(t) = (t, t) 0 ≤ t ≤ 1

By definition, this is,

ˆ
c

F · ds =

ˆ b

a
F(c(t)) · c′(t)dt

which evaluates to,
ˆ 1

0

(
t2 · i + t · j

)
· (i + j)dt =

5
6

Example 48: F = y · i

We will calculate the work of the force field

F = y · i

along the unit circle oriented counter-clockwise,

c(t) = (cos t, sin t) 0 ≤ t ≤ 2π
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By definition, this is,

ˆ
c

F · ds =

ˆ 2π

0
(sin t · i) · (− sin t · i + cos t · j)dt = −π

Example 49: F = y · i

Consider the work of the same force field

F = y · i

along the curve,

c(t) = (cos 2t, sin 2t) 0 ≤ t ≤ 2π

This is not a simple curve because the unit circle is covered
twice by the image of c(t). Computing the line integral,

ˆ
c

F · ds =

ˆ 2π

0
sin 2t · i · (−2 sin 2t · i + 2 cos 2t · j)dt = −2π

as opposed to −π.

Remark. The line integral can be thought of as the path integral of
the tangential component F(c(t)) · T(t) of F along c.

ˆ
F · ds =

ˆ b

a
F(c(t)) · c′(t)dt

=

ˆ b

a

[
F(c(t)) · c′(t)

∥c′(t)∥

] ∥∥c′(t)
∥∥ dt

=

ˆ b

a
[F(c(t)) · T(t)]

∥∥c′(t)
∥∥ dt.

Definition (Reparameterization). Let h : [a, b] → [a′, b′] be a one-to-
one C1 real-valued function. If c : [a′, b′] → R3 is piecewise C1,

p := (c ◦ h) : [a, b] → R3

is a reparameterization of c.

Theorem 17 (Change of Parameterization). Let F be a vector field con-
tinuous on the C1 path c : [a′, b′] → R3. Given a reparameteriza-
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tion p : [a, b] → R3 of p := (c ◦ h) : [a, b] → R3, we have that,

ˆ
p

F · ds =

{
+
´

c F · ds if h increases monotonically
−
´

c F · ds if h decreases monotonically

Corollary. If p is orientation-preserving, then,
ˆ

p
F · ds =

ˆ
c

F · ds

If p is orientation-reversing, then,
ˆ

p
F · ds = −

ˆ
c

F · ds

Example 50: F = x2 · i + y · j

We will calculate the work of the force field

F = x2 · i + y · j

along the line segment given by,

c(t) = (t2, t2) 0 ≤ t ≤ 1

By definition, this is,

ˆ
c

F · ds =

ˆ b

a
F(c(t)) · c′(t)dt

which evaluates to,
ˆ 1

0

(
t4i + t2j

)
· (2ti + 2tj)dt =

5
6

Example 51: F = x2 · i + y · j

We will calculate the work of the force field

F = x2 · i + y · j

along the line segment given by,

c(t) = (1 − t, 1 − t) 0 ≤ t ≤ 1

By definition, this is,

ˆ
c

F · ds =

ˆ b

a
F(c(t)) · c′(t)dt
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which evaluates to,
ˆ 1

0

(
(1 − t)2 · i + (1 − t) · j

)
· (−i − j)dt = −5

6

Remark. Unlike the line integral, the path integral is not oriented.
In fact, path integrals are unchanged under re-parametrizations.

Recall that a vector field F is called a gradient vector field if F = ∇ f
for some real-valued function f . In particular,

F =
∂ f
∂x

i +
∂ f
∂y

j +
∂ f
∂z

k

Theorem 18 (Fundamental Theorem of Calculus). Suppose that f : R3 →
R is of class C1 and c : [a, b] → R3 is piecewise C1. Then,

ˆ
c
∇ f · ds = f (c(b))− f (c(a))

Proof. Define a composite function F : R → R by F(t) = f (c(t)).
Apply the chain rule to compute F′:

F′(t) = ∇ f (c(t)) · c′(t)

By the Fundamental Theorem of Calculus,

ˆ b

a
F′(t)dt = F(b)− F(a) = f (c(b))− f (c(a))

Hence, the result follows from the fact that,
ˆ

c
∇ f · ds =

ˆ b

a
∇ f (c(t)) · c′(t)dt

If we can recognize the integrand as a gradient, then the evaluation
of the integral becomes much easier. This is summarized below:
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Remark. If F is conservative, then F = ∇ f for f : R3 → R. Then,
ˆ

c
F · ds = f (c(b))− f (c(a))

Corollary. The value of the work of a gradient field is independent
of the choice of path connecting the two endpoints. That is,

ˆ
c1

Fds =

ˆ
c2

Fds

if c1 and c2 have the same endpoints.

Corollary. If c is closed, then
´

c ∇ f · ds = 0. If c is a closed curve, then we write,˛
c

Fds

Remark. If c1 and c2 are two curves that differ only in orientation,
ˆ

c1

F · ds = −
ˆ

c2

F · ds

It may be easier to parameterize the
components ci than the whole curve c.

Remark. If c is an oriented curve that is made up of several oriented
component curves c1, · · · , cn, that is, c = c1 + · · · cn, then,

ˆ
c

F · ds =

ˆ
c1

F · ds + · · ·+
ˆ

cn

F · ds

Example 52: Verification of Path Independence

Consider the force field,

F = xi + yj + zk

= ∇
(

1
2

x2 +
1
2

y2 +
1
2

z2
)

along the curve,

c(t) =
(

t, t2, t
)

0 ≤ t ≤ 1

Both from applying the definitions or our theorems,
ˆ

c
F · ds = V(1, 1, 1)− V(0, 0, 0) =

1
2
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Definition (Flux). The flux of a vector field F across c is,

ˆ b

a
F(c(t)) · n(t)dt

where n(t) is the normal vector. Flux and work are independent of the
choice of parameterization for c, but
they are not independent of the choice
of orientation.

Parameterized Surfaces

Definition (Parameterized Surface). A parametrization of a surface

Φ : U ⊆ R2 → R3

is a map defined over a domain U in R2. The surface S corre-
sponding to Φ is its image S = Φ. We can write,

Φ(u, v) = (x(u, v), y(u, v), z(u, v))

Remark. If Φ is C1, then S is called a differentiable surface. This con-
dition is equivalent to saying that x(u, v), y(u, v), and z(u, v) are C1.

Suppose that Φ is differentiable at (u, v) ∈ R2. The tangent vectors
Tu and Tv to the curves Φ(t, u0) and Φ(t, v0) on the surface are,

Tv =
∂Φ

∂v
=

∂x
∂v

(u0, v0) i +
∂y
∂v

(u0, v0) j +
∂z
∂v

(u0, v0) k

Tu =
∂Φ

∂u
=

∂x
∂u

(u0, v0) i +
∂y
∂u

(u0, v0) j +
∂z
∂u

(u0, v0) k

Remark. Tu × Tv is normal to the surface at the point (u0, v0).
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Definition (Regular Surface). We say that a surface S is regular at
Φ(u0, v0) is Tu × Tv ̸= 0 at (u0, v0). If this condition holds at all
points on the surface, then S is called regular.

The condition that Tu × Tv(u, v) ̸= 0
suggests that the partials Φu and Φv
are linearly independent everywhere,
which ensures the existence of the
tangent plane at every point of Φ = S.Example 53: Φ(u, v) = (u, v, f (u, v))

Given a C1 function f , define the map Φ(u, v) = (u, v, f (u, v)).
We have that Tu = (1, 0, fu) and Tv = (0, 1, fv). Therefore,

Tv × Tv =

∣∣∣∣∣∣∣
i j k
1 0 fv

0 1 fv

∣∣∣∣∣∣∣ = − fv · i − fv · j + k ̸= 0

regardless of our choice of f .

Example 54: Upper Sheet of a Cone

The upper sheet of a cone is given by,

Φ(u, v) = (u cos v, u sin v, u)

where u ≥ 0 and 0 < v < 2π. Here,

Tu = (cos v, sin v, 1)

Tv = (−u sin v, u cos v, 0)

and consequently,

Tv × Tv =

∣∣∣∣∣∣∣
i j k

cos v sin v 1
−u sin v u cos v 0

∣∣∣∣∣∣∣ = −u cos vi − u sin vj + uk

We have that Tu × Tv = 0 if and only if ∥Tu × Tv∥ = 0 and,

∥Tu × Tv∥ =
(

u2 cos2 v + u2 sin2 v + u2
)1/2

= 2
√

u

which is 0 if and only if u = 0.

The upper sheet of the cone is,

Φ(u, v) = (u cos v, u sin v, u)

The helicoid is,

Φ(u, v) = (u cos v, u sin v, v)

Example 55: Helicoid

The helicoid is given by,

Φ(u, v) = (u cos v, u sin v, v)

where u ≥ 0 and 0 < v < 2π. Here,

Tu = (cos v, sin v, 0)

Tv = (−u sin v, u cos v, 1)
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and consequently,

Tu × Tv =

∣∣∣∣∣∣∣
i j k

cos v sin v 0
−u sin v u cos v 1

∣∣∣∣∣∣∣
Observe that this is equal to,

sinv i − cos vj + uk

Hence, ∥Tu × Tv∥ =
√

1 + u2 ̸= 0 for all u.

In the next example, we will see how to parameterize the torus of
revolution. This is summarized in the diagram below:

Example 56: Torus of Revolution

The torus of revolution Φ(u, v) is given by,

x(u, v) = (a + r cos v) cos u

y(u, v) = (a + r cos v) sin u

z(u, v) = r sin v

where 0 < u, v < 2π. Here,

Tu = (− sin u(a + r cos v), cos u(a + r cos v), 0)

Tv = (−r sin v cos u,−r sin v sin u, r cos v)

Computing the cross-product and simplifying gives,

∥Tu × Tv∥ = r|(a + r cos v)|

which is non-zero if r ̸= 0 and a > r.
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Example 57: Sphere

Using the spherical coordinate transformation,

Φ(u, v) = (a sin v cos u, a sin v sin u, a cos v)

is a sphere of radius a where 0 < u < 2π and 0 < v < π.

Tu = (−a sin v sin u, a sin v cos u, 0)

Tv = (a cos v cos u, a cos v sin u,−a sin v)

Taking the cross-product and simplifying gives,

∥Tu × Tv∥ = a2 sin v

which is zero if v = 0, π.

Remark. As shown in the previous example, the condition that

∥Tu × Tv∥ ̸= 0

is necessary but not sufficient for the existence of a tangent plane.

Area of a Surface

In this chapter, we will consider piecewise regular surfaces that are
unions of images of parametrized surfaces Φi : Di → R3 for which:

• Di is an elementary region in the plane

• Φi is C1 and one-to-one, except possibly at the boundary

• Si is regular except possibly at a finite number of points

Definition (Surface Area). The surface area A(S) is,

A(S) =
¨

U
∥Tu × Tv∥ dudv

where S is a parameterized surface.
If S is the union of surfaces Si , then the
area is the sum of the areas of Si .

To find the surface area of a function,
we are scaling by the area of the paral-
lelogram spanned by Tu and Tv.

Example 58: Area of a Sphere

In this example, we will verify the standard formula for the
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area of a sphere. Since ∥Tu × Tv∥ = a2 sin v,

A(S) =
ˆ v=π

v=0

ˆ u=2π

u=0
∥Tu × Tv∥ dudv

= 2πa2
ˆ π

0
sin vdv

= 4πa2 Exercise: Compute the area of a cylin-
der of radius a and height h.

Φ(u, v) = (a cos v, a sin v, u)

where 0 < v < 2π and 0 < u < h.
Integrals of Scalar Functions Over Surfaces

In this section, we will define the integral of a scalar function f over
a surface S. This generalizes the area of a surface, which corresponds
to the integral over S of the scalar function f (x, y, z) = 1. Consider a
surface S parameterized by a mapping Φ : D → S ⊆ R3, where D is
an elementary region. We write,

Φ(u, v) = (x(u, v), y(u, v), z(u, v))

Definition (Integral of a Scalar Function Over a Surface). Let f : R3 →
R be a continuous function defined on a parameterized surface S.
¨

S
f (x, y, z)dS =

¨
S

f dS =

¨
D

f (Φ(u, v)) ∥Tu × Tv∥ dudv

is the integral of f over S.
The surface integral is independent of
the choice of the parameterization.

Remark. We can compute the average value of a function f as,
˜

S f ds
|A(S)|

Example 59: Average over a Cone

We want to compute the average of the surface defined by,

f (x, y, z) = x + z2

where D is the portion of the cone x2 + y2 = z2 for which 1 ≤
z ≤ 4. Parameterize the graph z = f (x, y) =

√
x2 + y2.

Φ(u, v) =
(

u, v,
√

u2 + v2
)

Taking the appropriate partials Tu and Tv,

Tu =

(
1, 0,

u√
u2 + v2

)
Tv =

(
0, 1,

v√
u2 + v2

)
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gives ∥Tu × Tv∥ =
√

2. Next,
¨

S
f dS =

¨
D

f (Φ(u, v)) ∥Tu × Tv∥ dudv

=

¨
D

(
u + u2 + v2

)√
2dudv

We can use polar coordinates to compute this integral,

ˆ θ=2π

θ=0

ˆ r=4

r=1

(
r cos θ + r2

)
r
√

2drdθ =
√

2 · 15π

Hence, the average value of f is,
˜

S f ds
|A(S)| =

255
30

= 8.5

Oriented Surfaces

An oriented surface is a two-sided surface with one side specified
as positive ("outside") and one side specified as negative ("inside").
At each point (x, y, z) ∈ S, there are two unit normal vectors n1 and
n2 satisfying n1 = −n2. Each of these normals can be associated
with one side of the surface. Let Φ : D → R3 be a parametrization
of an oriented surface S. Suppose that S is regular at Φ (u0, v0). Let
n (Φ (u0, v0)) be the unit normal to S at Φ(u0, v0). Since,

(Tu0 × Tv0)

∥Tu0 × Tv0∥

exists, it is defined and equal to ±n (Φ (u0, v0)).

Remark. Φ is called orientation-preserving if we have the +

sign, and orientation-reversing if we have the − sign. The definition of an oriented surface
given in this section assumes that a
surface has two sides. This is in fact not
necessary, e.g., the Möbius strip.

Remark. Any one-to-one parameterized surface for which
Tv × Tu ̸= 0 can be considered as an oriented surface with a
positive side determined by the direction of Tv × Tu.

Theorem 19. Let S be an oriented surface and let Φ1 and Φ2 be
two regular orientation-preserving parametrizations, with F a
continuous vector field defined on S. Then¨

Φ1

F · dS =

¨
Φ2

F · dS
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If Φ1 and Φ2 are orientation-reversing, then
¨

Φ1

F · dS = −
¨

Φ2

F · dS

If f is a real-valued continuous function defined on S, and if Φ1

and Φ2 are parametrizations of S, then
¨

Φ1

f dS =

¨
Φ2

f dS

Surface Integrals of Vector Fields

We can define the integral of a vector field F over a surface S.

Definition (Surface Integral of Vector Fields). Let F be a vector field
defined on a surface S, the image of a parameterized surface Φ.

¨
Φ

F · dS =

¨
D

F · (Tu × Tv) dudv

is the surface integral of F over Φ.

Remark. This integral quantifies the flux of F across S.

Remark. The integral
˜

Φ F · dS is not dependent on the choice of
parameterization for S, but it does depend on the orientation.

Integral Theorems and Vector Analysis

Green’s and Stokes’ Theorem

In this section, we will relate a line integral along a closed curve C in
the plane to a double integral over the region enclosed by the curve.
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Theorem 20 (Green’s Theorem). Let D be a simple region with
an oriented piecewise continuous boundary C+. Suppose that
P : D → R and Q : D → R are of class C1. Then,

˛
C+

Pdx + Qdy =

¨
D

(
∂Q
∂x

− ∂P
∂y

)
dxdy

Remark. If F = ∇V is conservative, then ∇× F = 0. Since,

∇× F =

∣∣∣∣∣∣∣
i j k

∂x ∂y ∂z

P(x, y) Q(x, y) 0

∣∣∣∣∣∣∣ = 0 · i + 0 · j +
(

∂Q
∂x

− ∂P
∂y

)
· k

Green’s Theorem quantifies the amount by which F fails to be
conservative by relating the two integrals:

˛
(∂D)+

F · ds and
¨

D

(
∂Q
∂x

− ∂P
∂y

)
dxdy

The corollary of the previous remark is not true.

Remark. If ∇× F = 0, then F is not necessarily conservative.

Proof. Consider the vector field F defined on U = R2 − {(0, 0)}:

F =
−y

x2 + y2 · i +
x

x2 + y2 · j

We will verify that ∇× F = 0 everywhere on U.

∇× F = (Qx − Py) · k

Observe that Px = Qy for all x, y ∈ U.

Qx =
−x2 + y2

x2 + y2 and Py =
−x2 + y2

(x2 + y2)2

It follows that (Qx − Py) · k = 0. However, F was carefully cho-
sen not to be conservative. Assume for a contradiction that F is
conservative. The line integral must satisfy that,

˛
c

F · ds = 0

for any choice of closed curve c(t). Take the unit circle
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c(t) = (cos t, sin t) where 0 ≤ t ≤ 2π. We obtain,

˛
c

F · ds =

ˆ 2π

0
dt ̸= 0

There is more to learn from this counter-example.

Example 60: Visualizing the vector field F

The vector field F = −y
x2+y2 · i + x

x2+y2 · j can be visualized as,

Remark. Let c(t) be an arbitrary closed curve. Consider

F =
−y

x2 + y2 · i +
x

x2 + y2 · j

If c(t) contains (0, 0) in its interior, then,
˛

c
F · ds = 2π

Otherwise, ˛
c

F · ds = 0

Let D be a region in R2 containing
the origin. There exists r > 0 such
that Dr(0) ⊆ D. The area of Br is 2π,
implying that the line integral evaluates
to 2π since the remaining work is 0 by
the previous calculation:

¨
D−Dr(0)

(
Qx − Py

)︸ ︷︷ ︸
=0

dxdy = 0
It is possible for the region D to contain holes, in which case there are
multiple boundary curves. In this case, we write:

˛
∂D+

F · ds =

˛
∂D+

1

F · ds +
˛

∂D+
2

F · ds
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Example 61: Verifying Green’s Formula by an Example

We will verify Green’s Formula for the vector field,

F =
1
2
(−y + x)

where D is taken to be the interior of the ellipse,

x2

a2 +
y2

b2 = 1

Parameterizing the curve gives that,

c(t) = (a cos t, b sin t) where 0 ≤ t ≤ 2π

Taking the derivative of c(t),

c′(t) = (−a sin θ, b cos θ)

Hence, F(c(t)) · c′(t) = 1
2 · ab because,

F(c(t)) =
(

1
2
− b sin θ,

1
2

a cos θ

)
Integrating from t = 0 to t = 2π gives ab · π. Thus,

˛
∂D+

F · ds =
ˆ 2π

0
F(c(t)) · c′(t)dt = ab · π

On the other hand,

P(x, y) = −1
2
· y Q(x, y) =

1
2
· x

Computing the partial derivatives of P and Q,

Py = −1
2

Qx =
1
2

It follows that,
¨

D
(Qx − Py)dxdy =

¨
D

1
2
−
(
−1

2

)
dxdy = ab · π

since this integral is simply the area of an ellipse.

Example 62: Verifying Green’s Formula by an Example

We will verify Green’s Formula on the line integral,
˛

c

(
2x3 − y3

)
dx +

(
x3 + y3

)
dy
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where c is the unit circle in the x-y plane oriented counter-
clockwise. Taking c(t) = (cos(t), sin(t)) for 0 ≤ t ≤ 2π,

˛
c
=

ˆ 2π

0
−2 cos3 t · sin t + sin4 t + cos4 t + sin3 t · cos tdt

Applying the double angle formula, this evaluates to 3π
2 . Now,

Qx = 3x2 and Py = −3y2

so Qx − Py = 3(x2 + y2). In polar coordinates,

¨
D

(
Qx − Py

)
dxdy =

ˆ 2π

0

ˆ 1

0
3r2 · rdrdθ

= 2π

ˆ 1

0
3r2dr

=
3π

2

where r is the Jacobian.

A generalized formulation of Green’s Theorem is that,

Theorem 21 (Stokes’ Theorem). Define the vector field,

F(x, y) = P(x, y) · i + Q(x, y) · j

If F is continuously differentiable and defined on D, then,
˛
(∂D)+

F · ds =

¨
D
(∇× F) · kdA

where the curl of the vector field ∇× F represents its circulation.

Remark. Fix a vector field F as,

F = P(x, y) · i + Q(x, y) · j

Stokes’ Theorem can be seen as generalizing Green’s Theorem:
¨

S
(∇× F) · dS =

¨
S

(
Qx − Py

)
dxdy
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Remark. For any two surfaces S1 and S2,
¨

S1

(∇× F) · dS1 =

¨
S2

(∇× F) · dS2

because Stokes’ Theorem tells us that both integrals are equal to,
˛

c
Fds

where (∂S1)
+ = c = (∂S2)

+

Proposition 8. If S is a closed surface, then,
‹

(∇× F︸ ︷︷ ︸
G

) · dS = 0

where G is called a solenoidal vector field.

Proof. Write S = S1 ∪ S2 and split the integral:
‹

(∇× F︸ ︷︷ ︸
G

) · dS =

¨
S1

+

¨
S2

=

˛
F · dS1 +

˛
F · dS2

Exploiting the orientations of each component,
˛
(δS1)+

F · dS1 +

˛
(δS2)+

F · dS2 =

˛
(δS1)+

F · dS1 +

˛
(δS1)−

F · dS2

so we can cancel terms and obtain the desired integral.

Corollary. The net flux of a solenoidal vector field is always 0.

Gauss’ Divergence Theorem

In this section, we will quantify the extent to which a vector field F
fails to be solenoidal. Recall that a solenoidal vector field,

F = ∇ · F ̸= 0

satisfies that ∇ · F = 0.

Theorem 22 (Gauss’ Divergence Theorem). Let F be a C1 vector field
in U ⊆ R3. Given a bounded open subset V of U where ∂V is
regular or piece-wise regular,

‹
(∂V)+

F · dS =

˚
V
(∇ · F)dxdydz
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where the left-hand side is the flux of F across (∂V)+ and the
right-hand side is the integral divergence of F.

Recall that the sign of ∇ × F is a
measure of the contraction or expansion
of the flow lines of F. Specifically,

F < 0 =⇒ Contraction

F > 0 =⇒ Expansion
Theorem 23 (Gauss’ Law). Consider the vector field

F =
r

∥r∥3 where r = x · i + y · j + z · k

Observe that the norm of F is,

∥F∥ =

∥∥∥∥ r
∥r∥3

∥∥∥∥ =

∥∥∥∥ 1
∥r∥3

∥∥∥∥ · ∥r∥ =
1

∥r∥2 =
1

x2 + y2 + z2

defined on U = R3 − {0}.

‹
S1

F · ds =

4π if 0 ̸∈ S2

0 if 0 ∈ S2 To prove Gauss’ Law, fix a sphere at
the origin and apply the Divergence
Theorem to the region between the
sphere and the surface.

Definition (Outgoing Flux). The outgoing flux of a vector field F is,

ˆ
(∂D)+

Fds =
ˆ b

a
F(c(t)) · n(t)dt

where n(t) = (y′(t),−x′(t)).

Remark. The outgoing flux of F across (∂D)+ satisfies,
ˆ
(∂D)+

Fds =
¨

D
(∇ · F)dxdy

Proof. Since F = P(x, y) · i + Q(x, y) · j,

ˆ b

a
F(c(t)) · n(t)dt =

ˆ b

a
(Pi + Qi) ·

(
y′(t), x′(t)

)
dt

=

ˆ
(∂D)+

− P︸︷︷︸
P̃

dx + Q︸︷︷︸
Q̃

dy

=

¨
D
(Px + Qy)dxdy

=

¨
D
(∇ · F)dxdy
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Appendix

Double and Triple Integrals

The three types of simple domains of integration are,

Definition (Type I). A Type I domain of integration is,

Definition (Type II). A Type II domain of integration is,

Definition (Type III). A Type III domain of integration is,

Remark. To compute a triple integral,
˚

D
f (x, y, z)dxdydz

we decompose D into simple domains of integration,

ˆ x=b

x=a

[ˆ y=l2(x)

y=l1(x)

[ˆ z=Ψ2(x,y)

z=Ψ1(x,y)
f (x, y, z)dz

]
dy

]
dx
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Example 63:
˜

D(x + 2y)dxdy

We will compute
˜

D(x + 2y)dxdy over a Type I domain.

In this case,

ˆ x=1

x=0

[ˆ y=
√

x

y=x2
(x + 2y)dy

]
dx =

ˆ x=1

x=0

[
xy + y2

]y=
√

x

y=x2
dx

=

ˆ x=1

x=0
x3/2 − x3 + x − x4dx

= 9/20

We can also compute
˜

D(x + 2y)dxdy over a Type II domain.

Example 64: Volume of a Sphere of Radius r

The formula for the volume of a sphere is

8
ˆ x=r

x=0

[ˆ y=
√

r2−x2

y=0

[ˆ z=
√

r2−x2−y2

z=0
dz

]
dy

]
dx =

4
3

πr2
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Change of Variables

The formula for change of variables for simple integrals is,

Theorem 24. Under the following conditions,

1. f is continuous

2. u 7→ x(u) is continuously differentiable on [a, b]

we can relate the two integrals,

ˆ b

a
f (x(u))

dx
du

(u) · du =

ˆ x(b)

x(a)
f (x)dx

Suppose that u 7→ x(u) is one-to-one on [a, b] := I∗. Let I be the
interval whose endpoints are given by x(a) and x(b). That is,

I =

[x(a), x(b)] x is increasing ⇐⇒ xu(u) ≥ 0 on [a, b]

[x(b), x(a)] x is decreasing ⇐⇒ xu(u) ≥ 0 on [a, b]

If xu(u) ≥ 0 on [a, b], then,

ˆ b

a
f (x(u))

dx
du

(u) · du =

ˆ x(b)

x(a)
f (x)dx

Otherwise,

ˆ b

a
f (x(u))

dx
du

(u) · du = −
ˆ x(b)

x(a)
f (x)dx

We combine these to obtain,
ˆ

I∗
f (x(u))

∣∣∣∣ dx
du

(u)
∣∣∣∣ du =

ˆ
f (x)dx

where the absolute value covers both cases.

Theorem 25. If T : A∗ ⊆ R2 → A ⊆ R2 is bijective and C1, then,
¨

A=T(A∗)
f (x, y)dxdy =

¨
A∗

f (x(u, v), y(u, v))
∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ dudv

where
∂(x, y)
∂(u, v)

= det

(
xu xv

yu yv

)
︸ ︷︷ ︸

(D(T))

is the determinant of the Jacobian matrix of T.
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Remark. By properties of the determinant,

∂(u, v)
∂(x, y)

= D(T−1) = (D(T))−1 =
1

∂(x,y)
∂(u,v)

Remark. If T : A∗ → A maps ∂A∗ to ∂A in a one-to-one and onto
fashion at det(D)(T) ̸= 0, then T is one-to-one and onto.

Example 65:
˜
(x + y)dxdy

We will compute
˜

A(x + y)dxdy where

A = {(x, y) ∈ R2 | 0 ≤ y ≤ x and 0 ≤ x ≤ 1}

Define the transformation

T : (u, v) 7−→


x(u, v) = u + v =⇒ u =

x + y
2

y(u, v) = u − v =⇒ v =
x − y

2

We first calculate the determinant of the Jacobian,

∂(x, y)
∂(u, v)

= det

(
xu xv

yu yv

)
= det

(
1 1
1 −1

)

which gives the integral,

¨
A∗

2u · 2dudv =

ˆ v=1

v=0

ˆ u=1−v

u=v
2u · 2dudv =

1
2

where x + y = 2u by our choice of x = u + v and y = u − v.

Example 66:
˜

A
(
1 + x2 + y2)3/2 dxdy

We will compute
˜

A
(
1 + x2 + y2)3/2 dxdy where A is the unit

disk in the x − y plane. Define the transformation,

T : (r, θ) 7−→ (x = r cos θ, y = r sin θ)
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We begin by writing A in polar coordinates,

{(r, θ) ∈ R2 | 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π}

The determinant of the Jacobian matrix is,

(D)(T) =

(
xr xθ

yr yσ

)
=

(
cos θ −r sin θ

sin θ r cos θ

)

which implies that,

∂(x, y)
∂(r, θ)

= r cos2 θ + r sin2 θ = r

It follows that the desired integral is,

¨
A∗

(
1 + r2

)3/2
rdrdθ =

ˆ θ=2π

θ=0

ˆ r=1

r=0
(1 + r2)3/2rdrdθ

= 2π

ˆ 2

1
u3/2 1

2
du

=
2π

5
(4
√

2 − 1)

Theorem 26. If T : A∗ ⊆ R3 → A ⊆ R3 is bijective and C1, then,
˚

A=T(A∗)
f (x, y, z)dxdydz

is equal to the integral,

=

˚
A∗

f (x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ dudvdw

Spherical and Cylindrical Coordinates

Cylindrical coordinates involve the transformation,
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with the determinant,

∂(x, y, z)
∂(r, θ, z)

=

 xr xθ xz

yr yq yz

zr zθ zz

 =

 cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

 = r

Example 67:
˝

A
(

x2 + y2 + z2) dxdydz

We will use cylindrical coordinates to compute the integral
˚

A

(
x2 + y2 + z2

)
dxdydz

along the z axis, where,

A = {(x, y, z) | x2 + y2 ≤ 2 and − 2 ≤ z ≤ 3}

Applying the change of variables formula,
˚

A∗
(r2 cos2 θ + r2 sin2 θ + z2)rdrdθdz

We obtain that,

ˆ θ=2π

θ=0

ˆ z=3

z=−2

ˆ r=
√

2

r=0
(r2 + z2)rdrdzdθ = π · 100

3

Spherical coordinates involve the transofmration,

with the determinant,

∂(x, y, z)
∂(r, θ, ϕ)

= det

 xn xθ xϕ

yn yγ yϕ

zn zθ zϕ


which evaluates to, sin ϕ cos θ −r sin ϕ sin θ r cos ϕ cos θ

sin ϕ sin θ − sin ϕ cos ϕ r cos ϕ sin θ

cos ϕ 0 −r sin ϕ

 = −r2 sin ϕ
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Example 68: Two-Step Integration

Let a > 0, b > 0, and c > 0. We will compute the integral,

˚
A

(
x2

a2 +
y2

b2 +
c2

d2

)
dxdydz

where,

A =

{
(x, y, z) ∈ R | x2

a2 +
y2

b2 +
z2

c2 ≤ 1
}

We begin by defining the transformation,

x = au y = bv z = cw

so that,
x2

a2 +
y2

b2 +
z2

c2 =
a2u2

a2 +
b2v2

a2 +
c2w2

c2

Thus, A∗ = {(u, v, w) | u2 + v2 +w2 ≤ 1} is a unit solid sphere.
In particular,

∂(x, y, z)
∂(u, w, w)

= det

 a 0 0
0 b 0
0 0 c

 = abc

Putting everything together,
˚

A∗
(u2 + v2 + w2)abc · dudvdw

evaluates to,
ˆ ϕ=π

ϕ=0

ˆ θ=2π

θ=0

ˆ r=1

r=0
r4 sin ϕdrdθdϕ = abc · 4π

5
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