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VC-Dimension of Visibility on Terrains

James King∗

Abstract

A guarding problem can naturally be modeled as a set
system (U ,S) in which the universe U of elements is
the set of points we need to guard and our collection S
of sets contains, for each potential guard g, the set of
points from U seen by g.

We prove bounds on the maximum VC-dimension of
set systems associated with guarding both 1.5D ter-
rains (monotone chains) and 2.5D terrains (polygonal
terrains). We prove that for monotone chains, the max-
imum VC-dimension is 4 and that for polygonal terrains,
the maximum VC-dimension is unbounded.

1 Introduction

Terrain Guarding A 1.5D (resp. 2.5D) terrain is a
continuous piecewise linear univariate (resp. bivariate)
function. In other words, a 1.5D terrain is a simple
polygonal chain that intersects any vertical line at at
most one point and a 2.5D terrain is a polygonal mesh
with no holes that intersects any vertical line at at most
one point.

On a terrain T , either 1.5- or 2.5-dimensional, we say
that two points see each other if the line segment be-
tween them does not pass under T . To guard T opti-
mally we must find a minimum set G ⊂ T of points on
the terrain such that every point on T is seen by a point
in G.

Guarding 1.5D terrains is not known to be NP-hard
but no polynomial-time exact algorithm has been found.
The best polynomial-time algorithm found so far is a 5-
approximation algorithm1 [10]. Guarding 2.5D terrains
is NP-complete, as proved by Cole and Sharir [4].

Set Cover and VC-Dimension Set Cover is a well-
studied NP-complete optimization problem. Given a
universe U of elements and a collection S of subsets of
U , Set Cover asks for the minimum subset C of S such
that

⋃
S∈C S = U . In other words, we want to cover all

of the elements with the minimum number of sets in S.
In general, Set Cover is not only difficult to solve

exactly (see, e.g., [7]) but is also difficult to ap-
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1An error in the paper was found after publication, and the
only fix found so far increases the approximation factor from 4 to
5.

proximate – no polynomial time approximation algo-
rithm can have an o(log n) approximation factor unless
NP ⊆ DTIME(nlog log n) [6].

However, some instances of Set Cover (we refer to
instances as set systems), are more complex than others.
VC-dimension is a measure of the complexity of a set
system (U ,S). Consider a set S ⊆ U . There are 2|S|

possible subsets of S. We say that S is shattered by a
collection C of 2|S| sets if, for each of the 2|S| subsets
of S, there is a set in C that contains those elements of
S but no other elements of S. The VC-dimension of a
set system (U ,S) is the maximum d for which a set of
d elements from U can be shattered by sets C ⊆ S.

VC-Dimension and Approximate Set Cover Set
Cover is hard to approximate in general, but set sys-
tems with low VC-dimension are simpler and, intu-
itively, should be easier to approximate. Brönnimann
and Goodrich [3] provide a polynomial time O(d log(d ·
OPT))-approximation algorithm for instances of Set
Cover with VC-dimension d, where OPT is the size of
the optimum solution. When d is bounded from above
by a constant, this gives an O(log OPT) approximation
factor.

Set Systems of Guarding Problems Guarding prob-
lems can naturally be expressed as instances of Set
Cover. For an instance of a guarding problem, the
associated set system (U ,S) is constructed with U con-
taining the points that need to be guarded and S con-
taining, for each potential guard g, the set of points
that g can see. For the sake of brevity we sometimes
refer to the VC-dimension of a guarding problem; by
this we mean the maximum possible VC-dimension of a
set system associated with an instance of the problem.

The classic art gallery problem, the problem of guard-
ing the interior of a polygon, is perhaps the best-known
and best-studied guarding problem. If the polygon can
have holes, the problem is as hard to approximate as
general instances of Set Cover [5]. However, if the
polygon to be guarded is simple (i.e. contains no holes),
the associated set system has constant VC-dimension
[9] (it is known to be at least 6 and at most 23 [11]).
This means that the technique of Brönnimann and
Goodrich leads to an O(log OPT)-approximation algo-
rithm, which is the best known. Guarding simple art
galleries is known to be APX-hard [5] but the exact ap-
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Figure 1: A monotone chain with 4 points, a, b, c, d, that are shattered by 16 guards. The guard seeing {a, b, c, d} is
not pictured, but a very high vertex on the left end of the terrain would see all other vertices. Each of the other 15
guards is labeled with the subset of {a, b, c, d} that it sees.

proximability is unknown.
Isler et al. [8] consider guarding the exterior of poly-

gons and polyhedra. For polygons they show that the
maximum VC-dimension is 2 when guards must lie on a
circle containing the polygon and 5 when guards can lie
anywhere outside the convex hull of the polygon. For
polyhedral galleries in R3 they prove that the maximum
VC-dimension is unbounded when guards must lie on a
sphere containing the gallery.

Our Contribution In section 2 we prove that the maxi-
mum VC-dimension of guarding a 1.5D terrain is 4 with
matching upper and lower bounds. In section 3 we show
that the VC-dimension of guarding a polygonal terrain
is unbounded, via a reduction from polygons with holes.

2 VC-Dimension of Guarding 1.5D Terrains

To prove that a monotone chain can have VC-dimension
4, we simply provide an example of a terrain with 4
points that are shattered by 16 guards (see figure 1).

For points a, b on an x-monotone chain, we say that
a < b if a is to the left of b. The Order Claim [2] states
that, for points a, b, c, d with a < b < c < d, if a sees c
and b sees d then a sees d.

For any point set P that is shattered by a set of
guards G let g(p1, . . . , pk) denote the guard in G that
sees p1, . . . , pk ∈ P but no other points in P . We will

now argue, using only the Order Claim, that no set P of
size 5 can be shattered. This gives us the upper bound
of 4 for the VC-dimension.

Let P = {a, b, c, d, e} and assume without loss of gen-
erality that a < b < c < d < e. We can see (figures
2(a) and 2(b) may help) that g(a, c, e) and g(b, d) will
contradict the order claim unless either

• g(b, d) < c and d < g(a, c, e) , or

• g(a, c, e) < b and c < g(b, d).

We assume the former without loss of generality. Now
consider g(b, c, e). There are four potential ranges that
we consider placing g(b, c, e) in:

• left of g(b, d)

• between g(b, d) and d

• between d and g(a, c, e)

• right of g(a, c, e).

It is not difficult to verify that placing g(b, c, e) in any
of these four ranges would contradict the Order Claim
(see figure 2(c) for an example). Therefore 5 points on a
monotone chain cannot be shattered and no monotone
chain can have VC-dimension greater than 4.
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(a) In this configuration the Order Claim is contradicted by
g(b, d), g(a, c, e), d, and e.
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(b) In this configuration the Order Claim is not contradicted.
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(c) The Order Claim is now contradicted by the addition of
g(b, c, e), regardless of its position. In this configuration the
Order Claim is contradicted by g(b, c, e), g(b, d), c, and d.

Figure 2: Examples of configurations of G and P for the
proof that no 5 points on a 1.5D terrain can be shat-
tered. Solid lines indicate clear lines of sight. Dashed
lines indicate blocked lines of sight.

3 VC-Dimension of Guarding 2.5D Terrains

Set Cover can be reduced to the problem of guarding
the perimeter of a polygon with holes using guards on
the perimeter (§4 of Eidenbenz et al. [5]). As a direct
consequence, for any finite set system (U1,S1), there
exists a polygon with holes whose associated set system
is (U2,S2) such that U1 ⊆ U2 and S1 ⊆ S2. This implies
that a polygon with holes can have arbitrarily large VC-
dimension.

For any polygon A with holes we show how to
construct a polygonal terrain of equal or grater VC-
dimension. The idea behind building T is simple. Lines
of sight between points on A are blocked by the exte-
rior of A. On our terrain T we will build corresponding
mountains to block lines of sight.

We start with T as a horizontal rectangle at altitude
0 that will act as a bounding box for A. We then trace
the perimeter of A on this rectangle and call it AT . AT

partitions T into two open sets, T− which corresponds
to the interior of A and T+ which corresponds to the
exterior of A, including the holes.

In terms of vertical projections, AT , T− and T+ will
remain fixed as we change T . However, T− will be low-
ered and T+ will be raised. There are many ways to
perform this raising and lowering, but perhaps the most
elegant is the method of raising roofs from straight skele-
tons (Aichholzer and Aurenhammer [1], in particular
§4). We raise T+ based on its straight skeleton and
lower T− based on its straight skeleton. The result is
that every point in T+ has positive altitude and every
point in T− has negative altitude. Only AT and the
rectangular perimeter of T will be at altitude 0. See
figure 3 for an example.

We can now verify that two points p, q on AT see each
other if and only if the corresponding points p′, q′ on A
see each other. Since p and q are both at altitude 0, all
of (p, q) is at altitude 0. If p sees q then the open line
segment (p, q) contains no point below T so no point on
(p, q) can be the vertical projection of a point in T+.
The corresponding open line segment (p′, q′) therefore
cannot intersect the exterior of A, so p′ and q′ must see
each other. Therefore p sees q if and only if p′ sees q′,
and the converse can be proved similarly.

From any polygon with holes, we can construct a 2.5D
terrain with equal or greater VC-dimension, so 2.5D ter-
rains have unbounded VC-dimension.
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(a) The polygon A with holes indicated in black. (b) A simplified top view of the associated terrain T . Black
lines indicate AT and the terrain’s perimiter, both at altitude
0. T− (white) has negative altitude while T+ (shaded) has
positive altitude.

Figure 3: A polygon A and a top view of the associated terrain T .
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