
Realisation of Degree 10 Minimum

Spanning Trees in 3-Space

James King

king@cs.ubc.ca

Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver, B.C.

V6T 1Z4

Abstract. We show that any tree whose maximum degree is at most
10 can be drawn in 3-space such that it is the minimum spanning tree
of its vertices.

1 Introduction

This paper investigates the realisation problem for minimum weight
Euclidean spanning trees, defined as follows: given a tree T , place
the vertices of T as points in Euclidean space such that T is the
minimum spanning tree of its vertices, or determine that no such
placement exists [1]. If such a placement exists in IRd, we say that
T can be realised in d-space. We refer to the process of placing the
vertices of T as realisation.

The realisation problem has been solved for the case where d = 2.
Monma and Suri [2] provide a linear time algorithm for the placement
of the vertices of T on a plane when no node in T has degree greater
than 5. In the same paper, they prove that no appropriate placement
exists if T has any node with degree greater than 6. For a tree T of
maximum degree 6, Eades and Whitesides [1] prove that determining
whether T can be realised in 2-space is NP-complete.

In the case where the vertices are to be placed in 3-dimensional
Euclidean space, the realisation problem has not been completely
solved. Liotta and Di Battista [3] prove that any tree with maximum
degree at most 9 can be realised in 3-space, and that no tree with

maximum degree greater than 12 can be realised in 3-space. In the
case where a tree T has maximum degree 11 or 12, it is not known
whether there exists a polynomial time realisation algorithm for T ,
or even whether every such T can be realised. Previously this was
also unknown for trees of maximum degree 10.

In this paper we provide a linear-time algorithm for realising trees
of maximum degree at most 10 in 3-space.

2 Preliminaries

2.1 Notation

T is the tree we want to realise. V is the vertex set of T . ∆ is the
maximum degree of any vertex in V . T (x) is the subtree of T rooted
at vertex x. V (x) is the vertex set of T (x). (x, y) is the edge between
two vertices x and y.

2.2 r-caps

Given some r < 1 we now describe a shape that we call an r-cap.
Consider a sphere S of radius l centred at cS and a ball B of radius
rl centred at cB such that cB is a point on S. Start with B, then
remove the region on or within S, not including cB. What we have
now is the r-cap that we denote by C(r, cS, cB). We say that the
centre of this r-cap is cB. Again, cB is included in the r-cap but no
other point on S is.

Fig. 1. From left to right, cross sections of a 1-cap, a 1/2-cap, and a 1/∞-cap.

2.3 Placement and Restriction

As our realisation algorithm runs it places vertices and restricts
vertices to r-caps. When a vertex is placed, its position is fixed and
will never change (except in the case where the entire set of placed
vertices is translated, rotated, or dilated). If a vertex x is restricted
to an r-cap C it means that either x has already been placed in C
or x will eventually be placed somewhere in C. If we say that V (x)
is restricted to C, it means that every vertex in V (x) is restricted
either to C or to another r-cap that lies completely within C.

2.4 The Independence Property

If during the placement of the vertices of T we have a vertex x and
its parent p that have both been placed, the significance of C(r, p, x)
for some positive r < 1 is as follows. If V (x) is restricted to C(r, p, x)
and all other vertices are placed or restricted such that (p, x) is
guaranteed to be the shortest edge between a vertex in V (x) and
a vertex not in V (x), then we say that C(r, p, x) is independent. If
this is the case, we are guaranteed that p and x will be adjacent in
MST(V) when all vertices have been placed. Consider in particular a
placement of V such that, for every vertex x with a parent p, there is
some positive r < 1 such that C(r, p, x) is independent. In MST(V)
every non-root vertex would necessarily be adjacent to its parent, so
MST(V) would be equivalent to T .

2.5 The Construction Lemma

For r2 < r1 < 1 we say that a vertex x is r1 to r2 constructible if,
given an r1-cap C(r1, p, x) where dist(p, x) = l/r1, we can place each
child xi of x in C(r1, p, x) such that

1. dist(x, xi) = l(1− r2)
2. for any xi, xj with i 6= j, dist(xi, xj) ≥ l(1 + r2)
3. C(r2, x, xi) is completely contained within C(r1, p, x).

It is important to note the following: if we place the children of x to
satisfy these conditions, then restrict V (xi) to C(r2, x, xi) for each
xi, the independence of C(r1, p, x) implies the independence of each
C(r2, x, xi).

Lemma 1. (Construction Lemma) For any positive r ≤ 1/2, any
vertex with at most 9 children is r to r2/256 constructible.

Proof. The proof of this lemma describes a scheme for r to r2/256
construction of a vertex x. We have included it separately as Sec-
tion 3.

2.6 The Algorithm

Any nontrivial tree T must have a vertex of degree 1, and we label
one such vertex, which we denote by v1, as the root. We place v1

at (0, 0,−2) and place its child, denoted v2, at the origin. We then
restrict V (v2) to C(1/2, v1, v2). Now C(1/2, v1, v2) is independent
and we can call Recurse(1/2, v1, v2), whose pseudocode is included
as Algorithm 1.

Algorithm 1 Recurse(r,p,x)
Precondition: C(r, p, x) is independent.

if x is a leaf then
return;

end if
place the children of x in C(r, p, x) as in the proof of the Construction Lemma;
for all children xi of x do

restrict V (xi) to C(r2/256, x, xi);
end for
for all children xi of x do

Recurse(r2/256,x,xi);
end for

The independence of C(r, p, x), along with the restriction of each
V (xi) to C(r2/256, x, xi), ensures the independence of each C(r2/256, x, xi).
This means that the algorithm places V (v2) in such a way that ev-
ery vertex x in V (v2) is the centre of an r-cap C(r, p, x) where p
is the parent of x and C(r, p, x) is independent for some positive
r < 1. Therefore the embedding has the property that every vertex
of T (excluding the root) is adjacent to its parent in MST(V). So
MST(V) is equivalent to T . The proof of the algorithm’s correct-
ness is completed by the proof of the Construction Lemma in the
following section.

Each call to Recurse(r, p, x) takes constant time and we make at
most one call for each vertex. There is no superlinear overhead, so
our algorithm runs in linear time.

3 Proof of the Construction Lemma

In this section we describe how to r to 256r2 construct a vertex
x within C(r, p, x), where p is the parent of x. For generality we
can assume that x has 9 children; it should be clear that if we can
realise any complete 9-ary tree we can realise any tree in which all
nodes have at most 9 children (simply realise the complete tree, then
remove unwanted vertices). Recall that our root has only one child
so no vertex can have more than 9 children if ∆ ≤ 10.

As our algorithm runs, it can perform any number of dilations,
translations, and rotations on the set of placed vertices, since these
affine transformations cannot change the topology of MST(V). Note
that the transformations will also be applied to the r-caps to which
vertices are restricted. We can assume that C(r, p, x) is such that x
is located at the origin and p is located at (0, 0,−1/r). If this is not
the case we can simply transform the entire set of placed vertices to
make it so before we place the children of x. This will not affect the
topology of MST(V).

We place the children of x on the sphere of radius λ centred at
the origin, where λ = 1 − r2/256. Starting at λ(1, 0, 0) we place
children around the ‘equator’ of this sphere as the consecutive ver-
tices of a regular hexagon on the plane normal to the z-axis. We
shall henceforth refer to the first, third, and fifth of these vertices as
the equatorial children and refer to the second, fourth, and sixth
as the lowered equatorial children, for reasons that will soon be
clear. We place the last 3 children at coordinates λ(0,

√
1/3,

√
2/3),

λ(1/2,−
√

1/12,
√

2/3), and λ(−1/2,−
√

1/12,
√

2/3). We will refer
to these as the polar children.

The 9 children are now placed such that they are all at distance λ
from the origin and at distance at least λ from each other, but some
are at distance exactly λ from each other. To space out the children

of x, we rotate them about the origin in three steps. First we rotate
each of the lowered equatorial children towards the negative z-axis
by an angle of α. Next we rotate the polar children by an angle of β
so that their z-coordinates do not change but they are closer to the
lowered equatorial children and farther from the equatorial children.
Viewed from the positive z-axis above the points this would simply
be a counterclockwise rotation. Finally, we rotate the polar children
towards the negative z-axis by an angle of γ so that they are farther
away from each other. We must be careful when choosing values for
these parameters. If α is too great, the lowered equatorial children
of x will be too close to the parent of x. If β is too great, the polar
children will be too close to the lowered equatorial children. If γ
is too great, the polar children will be too close to the equatorial
children and the lowered equatorial children. Appropriate values for
the angles are given in the following table.

Parameter Value

α arcsin
“
r
2
− r2

256
− r3

256

”

β arccos

 √
3

„
1− r2

16

«„
1− 2r2

256

«

2

!
− π

6

γ arcsin

„
1√

3
“
1− 2r2

256

”
«
− arcsin

“
1√
3

”

It is not difficult to verify that, for each child xi of x, the angles
ensure that C(r2/256, x, xi) lies completely within C(r, p, x). This
matter is essentially handled by the selection of an adequately small
value for α. The more onerous part of proving that our r to r2/256
construction scheme is correct for vertices with 9 children is checking
that our rotations space out x’s children such that no two are within
a distance of 1 + r2/256 of each other.

We do not need to check all pairs of these 9 children; we actually
only need to check three pairs — for a polar child u, the nearest
equatorial child v, and the nearest lowered equatorial child w, we
need to check (u, v), (u, w), and (v, w). Symmetry, along with the
fact that all three of any kind of child are far enough from each

other (this fact can easily be checked), takes care of the rest. The
inequalities that follow in this section rely heavily upon the fact that,
for our purposes, 0 < r < 1/2.

To verify the distances, we can use

u = λ

cos
(
π
6

+ β
)

√
3
(
1− 2r2

256

) ,− sin
(
π
6

+ β
)

√
3
(
1− 2r2

256

) ,

√√√√1−
(

1√
3
(
1− 2r2

256

)
)2

v = λ(1, 0, 0)

w = λ

(
cosα

2
,−
√

3 cosα

2
,− sinα

)
.

The square of the distance between the polar child u and the nearest
equatorial child v is given by

„
1− r2

256

«2
2
4
0
@1 − cos

`
π
6

+ β
´

√
3
“

1− 2r2

256

”

1
A

2

+

0
@ sin

`
π
6

+ β
´

√
3
“

1− 2r2

256

”

1
A

2

+ 1−

0
@ 1
√

3
“

1 − 2r2

256

”

1
A

23
5

=

„
1− r2

256

«2
2
42 − 2

√
3
“

1− 2r2

256

” cos
“π

6
+ β

”
3
5

=

„
1− r2

256

«2 »
2−

„
1 − r2

16

«–

≥ 1 +
2r2

256
+

r4

2562

=

„
1 +

r2

256

«2

.

The square of the distance between the polar child u and the nearest
lowered equatorial child w is given by

„
1− r2

256

«2
2
4
0
@cos(α)

2
− cos

`
π
6

+ β
´

√
3
“

1 − 2r2

256

”

1
A

2

+

0
@
√

3 cos(α)

2
− sin

`
π
6

+ β
´

√
3
“

1 − 2r2

256

”

1
A

2

+

0
B@sin(α) +

vuuut1 −

0
@ 1
√

3
“

1− 2r2

256

”

1
A

2
1
CA

2
3
775

=

„
1− r2

256

«2

2
64
„

cos2(α)

4
+

3 cos2(α)

4
+ sin2(α)

«
+ 2 sin(α)

vuut1 − 1

3
“

1− 2r2

256

”2

+

2
64

cos2
`
π
6

+ β
´

+ sin2
`
π
6

+ β
´

3
“

1− 2r2

256

”2
+

0
B@1 − 1

3
“

1 + 2r2

256

”2

1
CA

3
75

− cos(α) cos
`
π
6

+ β
´

√
3
“

1 − 2r2

256

” − cos(α) sin
`
π
6

+ β
´

“
1− 2r2

256

”

3
5

=

„
1− r2

256

«2

2
642 + 2 sin(α)

vuut1 − 1

3
“

1 − 2r2

256

”2 − cos(α)

2
4

“
1− r2

16

”

2
+

sin
`
π
6

+ β
´

“
1− 2r2

256

”

3
5

3
75

≥
„

1− r2

256

«2
2
42 +

0
@r −

2r2

256
− 2r3

256√
3
“

1− 2r2

256

”

1
A
s

3

„
1− 2r2

256

«2

− 1− cos(α)

2
4

“
1− r2

16

”

2
+

sin
`
π
6

+ β
´

“
1 − 2r2

256

”

3
5
3
5

≥
„

1− r2

256

«2
2
42 +

0
@r −

2r2

256
− 2r3

256√
3
“

1− 2r2

256

”

1
A
r

2− 4r2

256
+

4r4

2562
−
„

1 − r2

16

«2
4

“
1− r2

16

”

2
+

1 + r2

4

2
“

1 − 2r2

256

”

3
5
3
5

≥
„

1− r2

256

«2
2
42 +

0
@r −

2r2

256
− 2r3

256√
3
“

1− 2r2

256

”

1
A√2

„
1− 2r2

256

«
−

“
1 − r2

16

”“
1 + r2

8

”

“
1− 2r2

256

”

3
5

≥
„

1− r2

256

«2
2
42 +

√
2

r − 2r2

256
− 2r3

256√
3

!
−

“
1 + r2

16

”

“
1− 2r2

256

”

3
5

≥ 1 +
2r2

256
+

r4

2562

≥
„

1 +
r2

256

«2

.

The square of the distance between the equatorial child v and the
lowered equatorial child w is

„
1 − r2

256

«2
"„

1− cos(α)

2

«2

+

„√
3 cos(α)

2

«2

+ (sinα)2

#

=

„
1 − r2

256

«2

[2− cos(α)]

=

„
1 − r2

256

«2 »
2−

q
1 − sin2(α)

–

≥
„

1 − r2

256

«2
"

2 −
r

1 − r2

4
+

r3

256
+

r4

256

#

≥
„

1 − r2

256

«2
2
42−

s„
1 − r2

16

«2

3
5

=

„
1 − r2

256

«2 »
1 +

r2

16

–

≥ 1 +
2r2

256
+

r4

2562

=

„
1 +

r2

256

«2

.

We have now shown that when the children of x are in place they
are at distance 1− r2/256 from x and at distance at least 1 + r2/256
from each other. Since each C(r2/256, x, xi) lies completely within
C(r, p, x), we have proven the Construction Lemma. As a result, the
correctness of our realisation algorithm is proven.

4 Conclusions and Future Work

It was previously unknown whether every tree of maximum degree
10 could have its vertices embedded in 3-space such that it was
the minimum spanning tree of its vertices. We gave a linear time
algorithm for embedding any such tree in this way.

The natural progression is to ask whether or not there exists a
polynomial time algorithm for realisation of degree 11 trees in 3-
space.

Conjecture 1. There are degree 11 trees that cannot be realised as
minimum spanning trees in 3-space.

Our conjecture is based on the observation that one cannot place
10 points on a hemisphere of radius r such that no two of the 10
points are at distance less than r from each other. When a realisation
algorithm places a vertex x of a tree T , there is a bounded region
in which the vertices in V (x) must be placed. As more vertices of
T are placed the regions become more and more restrictive, though
each will always contain a hemisphere. We believe there is some
finite h such that the complete 10-ary tree of height h cannot be
realised because the regions available for building subtrees become
too restrictive after a certain depth.

We also believe that our algorithm can be extended to realise trees
of higher degree in higher dimensional Euclidean space. After all, our
algorithm is essentially an extension of Monma and Suri’s algorithm
[2] from 2-space to 3-space.

Conjecture 2. We conjecture that any tree of maximum degree H(d)+
1 can be realised in d-space, where H(d) is the maximum number of
points that can be placed at distance at least r from each other on
a d-hemisphere of radius r.

It seems extremely likely that such realisation problems could be
solved recursively by extending the notion of independent r-caps to
higher dimensions. The main difference in higher dimensions would
be how children are spaced out during the recursive construction.
18 vertices of the regular polytope known as the 24-cell [4] can be
placed at distance at least r from each other on a 4-hemisphere of
radius r. Conjecture 2 therefore implies that any tree of maximum
degree 19 can be realised in 4-space.

References

1. Eades, P., Whitesides, S.: The realization problem for euclidean minimum spanning
trees is NP-hard. Algorithmica 16 (1996) 60–82

2. Monma, C., Suri, S.: Transitions in geometric minimum spanning trees. Discrete
& Computational Geometry 8 (1992)

3. Liotta, G., Di Battista, G.: Computing proximity drawings of trees in the 3-
dimensional space. In: 4th Int. Work. Algorithms and Data Structures. Volume
955 of Lecture Notes in Computer Science., Springer (1995) 239–250

4. Sloane, N.J.A.: Tables of spherical codes. (www.research.att.com/ njas/packings/)

