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1 Origami-Constructible Numbers

1.1 Definition

We consider origami in the context of complex numbers and algebra. In
an origami construction, we start with a sheet of paper that we can consider
to be infinitely large. The sheet of paper also has two points marked on it:
0 and 1. The sheet represents the complex plane, with the real axis going
through the points 0 and 1 and the imaginary axis perpendicular to the real
axis, intersecting it at the point 0. In this way, we can talk about points and
complex numbers interchangeably.

Origami constructions consist simply of a series of folds in the paper. When
the paper is folded and unfolded, it leaves a crease which, in our construc-
tions, acts as a line. In our origami constructions, a point only exists if it lies
at the intersection of two creases. The types of folds we can do, all of which
are straight lines, are defined by the axioms in Section 1.2. A complex num-
ber x is origami-constructible if, starting with a sheet of paper with 0 and 1
marked, we can make a series of folds such that two of the lines intersect at
a point p that corresponds to x’s position on the complex plane.

1.2 The Axioms of Origami

Huzita’s axioms are a well-known set of folding axioms in origami. Accord-
ing to Hatori [3], Robert Lang has proven that these axioms are complete,
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i.e.there is no origami fold that cannot be done with these axioms. Hatori
also shows that the axioms could be more concise; all six axioms can be
reproduced using the single axiom O6. Huzita’s axioms are as follows:

O1. Given points p1 and p2, we can fold a line that goes through both of
them.

O2. Given points p1 and p2, we can fold p1 onto p2 (i.e. find the perpendic-
ular bisector of segment p1p2).

O3. Given two lines l1 and l2, we can fold l1 onto l2 (i.e. bisect the angle
between them).

O4. Given a point p and a line l, we can fold a line perpendicular to l that
goes through p.

O5. Given two points p1 and p2 and a line l, we can fold p1 onto l with a
line that goes through p2.

O6. Given two points p1 and p2 and two lines l1 and l2, we can fold p1 onto
l1 and p2 onto l2 with a single line.

We can think of each axiom as a function that takes points and lines as
parameters and evaluates to a line, namely the fold made in the application
of the axiom). For simplicity, we can define a seventh function Isect, which
takes two lines as parameters and evaluates to their point of intersection.
One should note that Isect is undefined when applied to parallel lines.
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1.3 Constructing the Axes

When we begin the process of
origami construction, we have only the
complex plane (our sheet of paper), and
two points: 0 and 1. Applying O1 to 0
and 1 gives us the real axis. Applying
O4 to 0 and the real axis gives us the
imaginary axis, but we do not have any
reference points on it. We can obtain
the point i quite easily. First we apply
O4 to 1 and the real axis to obtain l1,
which is parallel to the imaginary axis
and goes through 1. We then evaluate
O5(0, 1, l1), which gives us a line l2 that
passes through 1 and i. l2 intersects the
imaginary axis at the point i.

L1

L2

i

0 1

Figure 1: Marking the axes and
the point i

2 Field Operations

The origami-constructible numbers form a subfield of C. They are con-
tained in C and we will show that, for any origami-constructible numbers α
and β, α−β and αβ are origami-constructible and α−1 is origami-constructible
if α 6= 0.

2.1 Elementary Operations

To assist us in our origami calculations, we will define two more elementary
operations. These are essentially macros that can be created by composing
the functions from Huzita’s axioms.

E1. Given a point p and a line l, fold a line parallel to l that goes through
p.
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E1 consists of two applications of O4. It can be defined as E1(p, l) =
O4(p, O4(p, l)). The first application of O4 gives us a line l1 that is per-
pendicular to l and passes through p. The second application gives us a line
l2 that is perpendicular to l1 (and therefore parallel to l) and passes through
p.

E2. Given a point p and a line l, reflect p across l .

We first apply O4 to p and l to get a line l1 that is perpendicular to l and
passes through p. We then pick some point p1 on l that is not on l1 — such
a point can be made by taking the intersection of l with a line that goes
through p and either 0, 1, or i. Now we apply O5 to p, p1, and l1 to fold
p over l and we keep our plane folded. While folded, we can mark the line
going through p and p1. This marks the point p2, which is the reflection of
p across l. We should note that E2 as a function returns a point, whereas
most of our functions return lines.

2.2 Addition

The addition operation can be performed with two applications of O1 and
two applications of E1. We start out with three points: p1, p2, and 0. We
apply functions to obtain a point p3 that is equal to p1 +p2. Essentially what
we do here is find the fourth corner of the parallelogram with corners 0, p1,
and p2. The method of addition is given in Figure 2:

l1 ← O1(0, p1)

l2 ← O1(0, p2)

l3 ← E1(p2, l1)

l4 ← E1(p1, l2)

p3 ← Isect(l3, l4)

P3

L1

L2

L3

L4

P1

P2
0

Figure 2: Addition of complex numbers in origami
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When our two addends p1 and p2 are scalar multiples of each other, we run
into difficulty with this method because the parallelogram lies on a single line
and is degenerate. When this is the case we use another method for addition.
Assume, without loss of generality, that p2 has greater magnitude than p1.
First, we apply O1 to mark the line l1 passing through 0, p1, and p2. Next,
we fold p2 onto p1 using O2 and keep the paper folded over (in the case where
p1 = p2, we instead make this fold by applying O4 to p1 and l1). Now our
point p3 is lying on top of 0. With the paper still folded, we apply O4 to 0
and l1. This will mark our sum p3.

In origami, negating a number is equivalent to reflecting it across 0. To do
this to a point p, we simply evaluate E2(p, O4(p, O1(0, p))).

2.3 Multiplication

The first thing we need to note about multiplication is that we can im-
plement it with two smaller operations: multiplication by a real number and
multiplication by i. Since (a, b)(c, d) = ac + (ad + bc)i− bd, this (along with
our addition operation) suffices. We use the properties of similar triangles to
multiply a number p1 by a real number r. The method is shown in Figure 3:

l1 ← O1(0, p1)

l2 ← O1(1, p1)

l3 ← E1(r, l2)

p2 ← Isect(l1, l3)

P1

r0 1

P2

Figure 3: Multiplication by a real number in origami

We should note that this method will not work if p1 is a real number. If
this is the case, though, we can simply add i to p1, multiply by r, and project
this product onto the real axis with an application of O4.
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To multiply a number by i we need to rotate it π/2 radians counterclock-
wise around 0. It is not difficult to verify that this can be accomplished with
the following applications.

l1 ← O1(0, p1)

l2 ← O4(0, l1)

l3 ← O2(l1, l3)

p2 ← E2(p1, l3)

Now that we can add, negate, multiply by reals, and multiply by i, we can
combine these operations to multiply any two complex numbers.

2.4 Inversion

We know that the inverse of a complex number (a, b) is equal to (a −
bi)/(a2 + b2). To perform this calculation, we simply need to add division by
real numbers to our bag of tricks. Again, this can be done using similar trian-
gles. The process of dividing p1 by r is nearly identical to real multiplication,
and is shown in Figure 4:

l1 ← O1(0, p1)

l2 ← O1(r, p1)

l3 ← E1(1, l2)

p2 ← Isect(l1, l3)

P1

r0 1

P2

Figure 4: Division by a real number in origami

We run into problems when p1 is a real number, but we can solve this
just as we do when multiplying. With our added ability to divide by real
numbers, we can now take the inverse of any nonzero complex number on
our plane.
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3 Square Roots

To take the square root of a complex number, we consider its polar repre-
sentation. We then take the square root of its magnitude and cut its angle in
half to obtain the complex square root. We must therefore provide two new
operations: taking the square root of a positive real number and bisecting
an angle. Bisecting an angle in origami is trivial — we simply apply O2 to
the two lines that define the angle.

Taking the square root of a real number r using origami requires the use
of circle geometry. The equation

(

x + 1

2

)2

=

(

x− 1

2

)2

+ y2

gives us y =
√

x. With this knowledge, we consider a circle centred at
(0, (r − 1)/2) with radius (r + 1)/2 and note that it will intersect the real
axis at the point p3 = (

√
r, 0). We do not need to draw the entire circle —

only its intersection with the positive real axis. The method for constructing
p3, the square root of r, is shown in Figure 5:

p1 ← ir

p2 ← (p2 − i)/2

l3 ← O5(−i, p2, real axis)

p3 ← E2(−i, l3)

P1

r
0 1

P2

-i

P3

L3

Figure 5: Taking the square root of a real number in origami

To take the square root of a complex number p1, we first bisect the angle
between the positive real axis and p1 to obtain the angle bisector l1, then
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rotate p1 onto the positive real axis using O5 and E2 to get the positive real
magnitude of p1, which we will call r. We now take the square root of this
magnitude, call it p2. Finally, we rotate p2 back to l1 using O5 and E2 to
obtain p3, which is the complex square root of our original point p1.

4 Cube Roots

Hatori Koshiro [3] gives a method for solving cubic equations in R[x] of
the form x3 + ax2 + bx + c using origami. In his construction, we construct
the points p1 = (a, 1) and p2 = (c, b). Considering the real axis as the x-axis
and the imaginary axis to be the y-axis, we also construct the two lines l1
and l2, defined by y = −1 and x = −c, respectively. We then apply O6 to p1,
p2, l1, and l2 to obtain a new line l3. This new line is defined by the equation
y = mx + z (since we know it is not vertical), where m is a solution to the
original cubic equation.

This fact can be seen more easily by considering two parabolas A and B,
where A is the locus of points equidistant from p1 and l1 and B is the locus
of points equidistant from p2 and l2 (see Figure 6). By our definition of l3,
we know that l3 must be tangent to both A and B. A is defined by the
equation (x − a)2 = 4y and B is defined by the equation (y − b)2 = 4cx.
Considering the two points of tangency of l3 to A and B, let us call them
(x1, y1) and (x2, y2) respectively. From our equation for A we know that l3
has the equation (x1 − a)(x− x1) = 2(y − y1). We can now see that, in our
equation y = mx + z for l3, z = −m2 − am. From our equation for B we
know that l3 has the equation (y2−b)(y−y2) = 2c(x−x2). From this we can
obtain m = 2c/(y2 − b) and z = y2 − 2cx2/(y2 − b). From these equations,
we get z = b + c/m, so we can finally see that m3 + am2 + bm + c = 0.

We can find the cube root of a positive real number r by solving x3−r = 0
in this manner. To take the cube root of a complex number p1, we need to
cube root its magnitude then trisect its angle. Like when we find the square
root of a complex number, we can rotate p1 onto the positive real axis, take
its cube root, then rotate it back 1/3 of its original angle. This also requires
angle trisection, which is more complicated than bisection.
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L3

L1

L2

B

Figure 6: Solving a cubic in R[x] in origami

Angle trisection can be solved as a cubic polynomial. We can note the sine
identity sin (3x) = 3 sin x − 4 sin3 x. Given an angle θ we can find θ/3 by
solving x3 − 3x/4 + (sin θ)/4 = 0. The sine function and its inverse can be
easily calculated using rotations and projections in origami.

5 Origami Field Theory

We showed in Section 2 that origami-constructible numbers form a subfield
O of C, so we can say that Q ⊆ O ⊆ C. Sections 3 and 4 tell us that we can
solve quadratic and cubic polynomials. This means that, for any subfield k
of O, if an extension K/k has degree 2 or 3, then K is also a subfield of O.
The consequence of this is as follows. We know that a complex number α is
origami-constructible if there exists a tower of fields

Q ⊂ K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Kn = Q(α),

where every extension Ki+1/Ki has degree 2 or 3 [2]. If α is origami-
constructible, its conjugate ᾱ can be constructed from α by reflecting it
across the imaginary axis by applying the operation E2.

A central question in origami construction is whether or not a regular n-
gon can be constructed. If such an n-gon can be constructed centred at 0
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with a point on 1, then the vertices of the n-gon are exactly the nth roots of
unity. Likewise, if a primitive nth root of unity is origami-constructible, we
can generate all nth roots of unity via multiplication, then connect them to
form a regular n-gon.

The primitive nth root of unity is origami-constructible if and only if n is of
the form n = 2a3bp1 . . . pn, where each pi is a prime of the form pi = 1+2c3d.
We can prove this by induction. If the primitive pth root of unity ζp is origami
constructible, we can construct the primitive (2p)th and (3p)th roots of unity
by solving x2 − ζp = 0 and x3 − ζp = 0 respectively. Consider also the field
extension Q(ζpq)/Q(ζp), where q = 1 + 2c3d is prime. The Galois group of
this cyclotomic extension is I×q = I2c3d . We therefore know that there is a
tower of fields between Q(ζp) and Q(ζpq) in which each extension has degree
2 or 3, so ζpq must be origami constructible. Thus, for any n of the desired
form, the primitive nth root of unity is origami-constructible. If, on the
other hand, n does not have the desired form, then for any tower of fields
Q ⊂ K0 ⊂ K1 ⊂ . . . ⊂ Kn = Q(ζn) at least one of the extensions must have
degree greater than 3, which means that ζn is not origami-constructible.

The smallest n for which a regular n-gon is not origami-constructible is 11.
To construct the 11th root of unity we would need to be able to take roots
of higher order. Obviously we could construct ζ11 if we could take eleventh
roots, but this is not actually necessary. Using Galois theory, we can see
that the field extension Q(ζ11)/Q has Galois group I×11 = I10. There is a
tower of groups {0} < I2 < I10 with [I2 : {0}] = 2 and [I10 : I2] = 5. We
therefore know that there is a corresponding tower of fields Q ⊂ K ⊂ Q(ζ11)
such that |K/Q| = 5 and |Q(ζ11)/K| = 2. Therefore we could construct the
primitive 11th root of unity in origami if we could solve general quadratic
equations (which we can) and general quintic equations (which we cannot,
even with the use of general radicals). However, it is known [4] that the
quintic equations that arise in the construction of ζ11 have solvable cyclic
groups. Therefore the additional ability to determine fifth roots would allow
us to construct the primitive 11th root of unity.
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