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Introduction

Motivating Examples

We introduce the notion of relevance effect which
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» This suggests that relevance effect has the 1
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potential to be practiced for improving the
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Relevance Effect

* Consider a classification task involving input

A B Experiment 3.
YV & ‘\\ e Ay Y, = KEGG Metabolic Relation Network Dataset

variables ey, ..., €, and output variable o. s\::"““-a.;‘: :__/:'_,_,.---f"’"f,;"' * Qutput: predicting whether enzymes/genes are
* Variables are part of a domain modeled by some \‘\\ ? Z /.// interacting with more than 3 other neighbors
(partially known) BN B. Sl LT " Two rules: clustering coefficient and betweenness
> How to use B to improve classification N centrality of enzymes/genes
oerformance on output variable 0? " Rules obtained using LS-regression (trained on
\ Generalized interpretation of rules J about half of the features, 10% of training set)
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* Mapping that acts on variables e4, ..., e,,.

* Probabilistic or deterministic. RDNN DBN

. . 7 ” Student BN Shoc - (36.85%) | 5hng (39.85%)
Sampling in the “wrong” way: 0 -Node BN LB (5 0790) | 2 (2.650)
* Ingeneral, to correctly generate samples of an Metabolic Network 2312 89%) 258 (3793%)

arbitrary variable s belonging to BN B, one must
draw samples from CPD P(s|eq, ..., e,, 0).
* The wrong way: To purposefully ighore some of
the observed variables.
» E.g., sample from P(s|eq, ..., e,) or
P(s|e,).

Performance of RDNN and DBN in terms of number of misclassifications.
number of misclassifications

The notation is as follows: (Percentage).
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" Using BNs to improve learning performance of

Relevance Effect: Deep Neural Nets.

Finding the value of some relevant variable(s), even " A step towards incorporating relational

in the wrong way, and incorporating it into the knowledge into Deep Learning paradigm.
training process could improve the learning Relational Layer] [ = Applicable to all supervised learning models.
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