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Introduction 

 

Relevance Effect 

• Consider a classification task involving input 
variables 𝒆1, … , 𝒆𝑛 and output variable 𝒐.  
 

• Variables are part of a domain modeled by some 
(partially known) BN ℬ. 
 

 How to use ℬ to improve classification 
performance on output variable 𝒐? 
 

Rule:  
• Mapping that acts on variables 𝒆1, … , 𝒆𝑛. 
• Probabilistic or deterministic. 

 

Sampling in the “wrong” way: 
• In general, to correctly generate samples of an 

arbitrary variable 𝒔 belonging to BN ℬ, one must 
draw samples from CPD 𝑃(𝒔|𝒆1, … , 𝒆𝑛, 𝒐). 

• The wrong way: To purposefully ignore  some of 
the observed variables. 

  E.g., sample from 𝑃 𝒔 𝒆1, … , 𝒆𝑛  or 
𝑃(𝒔|𝒆1). 
 

Relevance Effect: 
Finding the value of some relevant variable(s), even 

in the wrong way, and incorporating it into the 
training process could improve the learning 

performance. 

Motivating Examples 

• Classification task:  
 Input: 𝒙, Output: 𝒛 
 𝑃 𝒚 𝒙  known, 𝑃 𝒛 𝒙, 𝒚  unknown 
 𝒙 does not d-separate 𝒚 from 𝒛. 
 𝒛 is observed (training set) 

 Relevance effect → use 𝑃 𝒚 𝒙  as a rule. 

Experiments 

Remarks  

 Using BNs to improve learning performance of 
Deep Neural Nets. 

 A step towards incorporating relational  
knowledge into Deep Learning paradigm.  

 Applicable to all supervised learning models. 

We introduce the  notion of relevance effect which 
bears on exploiting BNs to generate  realizations of 
relevant variables to be used for potentially 
improving the performance of a learning model on a 
supervised task. 
 

• We explore the use of the relevance effect in Deep 
Belief Networks (DBNs) with a focus on relational 
domains. 
 

• Despite being at odds with the non-monotonicity 
of probability, we attain improvements in learning 
performance on tasks involving both synthetic and 
real-world data. 
 

 This suggests that relevance effect has the 
potential to be practiced for improving the 
performance of supervised learning 
methods in general. 

 

Sparsely-known complex network  

Generalized interpretation of rules 

Deep Learning Framework 

Experiment 1. 
 Input: 𝒊, 𝒅 
 Output: 𝒍 
 Rule: 𝑃(𝒔|𝒊) 
 7.53% improvement  

Experiment 2. 
 BN defined over 𝒙𝟏, … , 𝒙𝟏𝟎. 

𝒙𝟏 ~ 𝒩 0,1 ,  
𝒙𝟐 ~ 𝒰(0,1) w.p. 𝑝 & 𝒙𝟐~𝒰(−1,0) o/w 

(𝒙𝒊+𝟏|𝒙𝒊, 𝒙𝒊−𝟏)~  
𝒰 0,1  𝑖𝑓 𝜓 𝒙𝒊+𝟏 > 𝛾

𝒰 −1,0  𝑖𝑓𝜓 𝒙𝒊+𝟏 < 𝛾
 

𝜓 𝒙𝒊+𝟏 ≔ 
1

2
(𝒙𝒊 + 𝒙𝒊−𝟏) 

 Input: 𝒙𝟒, 𝒙𝟓 
 Output: 𝒙𝟏𝟎 ≷ 𝟎 
 Rule: 𝑃(𝒙𝟔|𝒙𝟒, 𝒙𝟓) 
 22% improvement  

Experiment 3. 
 KEGG Metabolic Relation Network Dataset 
 Output: predicting whether enzymes/genes are 

interacting with more than 3 other neighbors 
 Two rules: clustering coefficient and betweenness 

centrality of enzymes/genes 
 Rules obtained using LS-regression (trained on 

about half of the features , 10% of training set) 
 10.47%  improvement  

Performance of RDNN and DBN in terms of number of misclassifications.  

The notation is as follows: 
number of misclassifications

size of test size
 (Percentage). 


