Pattern Recognition Letters 69 (2016) 56-61

Pattern Recognition

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Kernel subspace pursuit for sparse regression™"*

@ CrossMark

Jad Kabbara, loannis N. Psaromiligkos*

Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, QC, H3A OE9, Canada

ARTICLE INFO ABSTRACT

Article history:
Received 15 December 2014
Available online 22 October 2015

Recently, results from sparse approximation theory have been considered as a means to improve the general-
ization performance of kernel-based machine learning algorithms. In this paper, we present Kernel Subspace
Pursuit (KSP), a new method for sparse non-linear regression. KSP is a low-complexity method that iteratively
approximates target functions in the least-squares sense as a linear combination of a limited number of el-
ements selected from a kernel-based dictionary. Unlike other kernel methods, by virtue of KSP’s algorithmic
design, the number of KSP iterations needed to reach the final solution does not depend on the number of
basis functions used nor that of elements in the dictionary. We experimentally show that, in many scenarios
involving learning synthetic and real data, KSP is less complex computationally and outperforms other kernel

Keywords:

Kernel methods

Sparse function approximation
Regression

Subspace pursuit

methods that solve the same problem, namely, Kernel Matching Pursuit and Kernel Basis Pursuit.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

For decades, non-linear regression models have been extensively
studied in the area of statistics, econometrics and machine learning.
Quite often these models involve a non-linear transformation of data
into a high-dimensional space in which linear regression models are
expected to be more accurate compared to the original space. Ex-
amples include Artificial Neural Networks [9], Decision Trees [9] and
Support Vector Machines (SVMs) [3].

An important family of non-linear regression methods is kernel
methods [19] that have received major attention in the past two
decades, as they allowed non-linear versions of conventional linear
supervised and unsupervised learning algorithms, yielding impres-
sive regression performance. Using the kernel trick, interesting “ker-
nelized” extensions of many well-known algorithms were presented,
including kernel SVMs [19], kernel Principle Component Analysis
(PCA) [18] and kernel Fisher discriminant analysis [11].

The generalization, or “out-of-sample,” performance of a learning
method, including kernel methods considered in this work, quantifies
its ability to predict on independent never-seen-before data. From
a learning-theoretic perspective, controlling the “capacity” of learn-
ing algorithms is necessary to guarantee good generalization perfor-
mance [23]. This in turn is related to the issue of overfitting: the

* This paper has been recommended for acceptance by G. Moser.
** This work was supported in part by the Natural Sciences and Engineering Research
Council (NSERC), grant RGPIN 262017.
* Corresponding author. Tel.: +1 514 398 2465; fax: +1 514 398 4470.
E-mail addresses: jad.kabbara@mail.mcgill.ca (J. Kabbara), yannis@ece.mcgill.ca
(I N. Psaromiligkos).

http://dx.doi.org/10.1016/j.patrec.2015.09.018
0167-8655/© 2015 Elsevier B.V. All rights reserved.

more complex a model is, the more likely it is to overfit the data.
Traditional non-parametric kernel regression methods such as the
Nadaraya-Watson method [12,25] affect generalization performance
through tuning parameters (such as the kernel bandwidth), which
could be viewed as a way of controlling model complexity. Recently,
results from sparse approximation theory [7] have been considered
as another means to directly control the model complexity and, con-
sequently, limit overfitting. Sparse approximation refers to estimat-
ing a vector (or function) as a linear combination of a small number
of elements selected from a larger set, called dictionary, of vectors
(or functions). In our regression context, we can control model com-
plexity by restricting the regression function to be sparse, i.e., that
it is a linear combination of a fixed (but small) number of functions
selected from a given dictionary.

1.1. Related work

Previous work has discussed interesting connections between
non-linear kernel-based learning and pursuit algorithms [10]. Pursuit
algorithms, are a family of greedy, iterative approaches to obtain
sparse approximations of a function. Poggio and Girosi relate in their
work [15] the basis pursuit algorithm [2] to kernel SVMs. The work
of Smola and Schélkopf [20] presents ties between the Matching
Pursuit (MP) algorithm [10] and kernel PCA, and shows how such ties
can be used to compress the kernel matrix in SVMs to allow dealing
with large datasets. Also, Smola and Bartlett present in [21] a greedy
MP-like technique that approximates Maximum A Posteriori (MAP)
estimates of Gaussian Processes by expressing the MAP estimate
as an expansion in terms of a small subset of pre-specified kernel
functions.

http://dx.doi.org/10.1016/j.patrec.2015.09.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.09.018&domain=pdf
http://dx.doi.org/10.13039/501100000038
mailto:jad.kabbara@mail.mcgill.ca
mailto:yannis@ece.mcgill.ca
http://dx.doi.org/10.1016/j.patrec.2015.09.018

J. Kabbara, 1. N. Psaromiligkos / Pattern Recognition Letters 69 (2016) 56-61 57

Following this previous work, Kernel Matching Pursuit (KMP) [24]
and Kernel Basis Pursuit (KBP) [8] were presented as kernel meth-
ods that learn target functions by means of sparse approximation.
KMP adopts a greedy suboptimal iterative approach to construct a
sparse linear approximation of the target regression function. It starts
with the approximation being initialized to zero, and then builds it by
adding to it, at each iteration, a new term consisting of an appropri-
ately weighted function from the dictionary. The function is chosen
according to a correlation-based criterion and then, the correspond-
ing weight is computed so that the approximation error at that iter-
ation is minimized. KBP, on the other hand, solves a relaxed version
of the same problem by incorporating ¢;-regularization on the min-
imization of the approximation error. In doing so, KBP controls the
sparsity of the solution. The problem formulation in KBP corresponds
to the well-known Least Absolute Shrinkage and Selection Operator
(LASSO) formulation [22] in the feature space which combines an ¢5-
loss function (squared error) with ¢;-regularization. While previous
work (e.g., [2] that inspired KBP) considered finding the optimal solu-
tion to the minimization problem through costly and complex linear
programming techniques, KBP uses the Least Angle Regression (LARS)
technique [6] which also finds the exact solution of the LASSO but in
an iterative and efficient way.

In summary, KBP and KMP attempt to solve similar problems
while addressing the sparsity of the solution in different ways. In-
deed, KMP guarantees that the solution is K-sparse by imposing a pre-
specified finite number K of basis functions that will be used to con-
struct the approximation function. On the other hand, KBP, in its orig-
inal formulation, uses a regularization term that controls the sparsity
of the solution. In addition, both KMP and KBP suffer, computation-
ally, from the same drawback: the number of iterations that they have
to run directly depends on the intended number of basis functions in
the final solution.

Other work in the literature has addressed similar problems. In
[16], a stochastic version of KMP is presented for large datasets. In
this sub-optimal version of KMP, at a given iteration, the search space
from which basis functions are selected is reduced. More specifically,
a basis function is selected from a randomly chosen subset of the
available basis functions. The work in [13] presents a family of greedy
algorithms for building sparse kernel-based regression and classifi-
cation models. An ¢,-loss function is iteratively minimized until a
specified stopping criterion is satisfied. Different greedy criteria for
basis selection from the literature are discussed and two numerical
schemes are presented for updating the weights and residue (approx-
imation error), the first based on residual minimization and the other
based on QR factorization.

1.2. Main contribution

Our research effort aims at identifying an alternative framework
to KMP and KBP, one that would: (1) address the need to dissociate
(to the extent possible) kernel-based learning algorithms from the
computational constraints from which KMP and KBP suffer (i.e., the
dependency of the number of iterations on the number of basis func-
tions), and (2) still provide us with the control of the sparsity of the
solution. Thus, we apply the Subspace Pursuit (SP) algorithm of Dai
et al. [4] to non-linear regression problems, and introduce the Kernel
SP (KSP) algorithm. SP was first introduced in the context of com-
pressive sensing. It was originally proposed as an iterative method
for the reconstruction of an unknown sparse signal from a set of lin-
ear measurements. In our work, we capitalize on the fact that SP is, in
essence, a low complexity method to obtain least-squares solutions
with a pre-specified sparsity level.

As in KMP and KBP, the proposed algorithm iteratively learns a re-
gression function with a predefined sparsity level. In contrast to both
KMP and KBP that start by initializing the regression function to zero,
and then iteratively expand it until it reaches the desired sparsity

level, KSP always maintains an estimate of the regression function
built using the pre-specified number K of dictionary elements, and
refines the estimate through a usually limited number of iterations.
To build the regression function, KMP and KBP (using the LARS imple-
mentation) need a number of iterations equal to the desired number
of basis functions in the expansion. However, the number of KSP it-
erations needed to reach the final solution does not depend on the
required number of basis functions and is normally smaller than in
KMP and KBP. We experimentally show that in various scenarios that
involve learning synthetic and real data, this required number of KSP
iterations is indeed much smaller than that required for KMP and KBP,
and that in many of these scenarios, KSP is less computationally in-
tensive than KMP and KBP. We further present experimental valida-
tion that shows that, in most of these learning scenarios, KSP outper-
forms both KMP and KBP in the task of learning real and synthetic
data.

The remainder of this paper is organized as follows: In Section 2,
we formulate the problem considered in this work. In Section 3, we
introduce the Kernel Subspace Pursuit algorithm. In Section 4, we
compare the computational overhead for running KSP, KMP and KBP
in various scenarios involving learning synthetic and real data. We
also present the results of simulations showing that our algorithm
outperforms both KMP and KBP in most of these learning scenarios.
Finally, Section 5 concludes the paper.

2. Problem formulation

We are given L noisy observations {yq,...,y;} of an unknown
target function f: RY — R at the inputs {X;.....Xx;} where x; ¢ RY
(for a given d) and y; € R,Vi. Let k:R?xR? > R be a positive
definite kernel and let H be the associated kernel Hilbert space
whose norm is denoted by || - ||${. We are interested in identifying
a function f € H that is a good (in some sense) approximation of
f. According to the Representer Theorem [17], given a strictly in-
creasing function Q2 : [0, 00) R and an arbitrary cost function c :
(R? x R2)L R U {00}, any minimizer fe # of the regularized cost
(X1, y1, fF(x1)), -, (X, v, f(x)) + Q(||f||3{) has the form

L
&) =Y aik(x.x), o €R. (1)

i=1

That is, f can be written as a linear combination of the elements of
the set G containing L functions in #:

G={gi=k(.x)li=1,.... L} cH.)

Borrowing terminology from Sparse Approximation theory [7], we re-
fer to G as the dictionary and to its elements as atoms.

In this paper, the goal is to approximate f using a given number
K < L of dictionary atoms, called basis functions, that is, we want our
solution to admit the form in (1) but we now add the constraint that
only K of the coefficients «; are non-zero. In other words, we are inter-
ested in constructing an approximation fK of fas a linear combination
of Katoms gy,,i=1,...,K:

K K

fe®) =) gy, (%) =) aik(x, xy,) 3)
i=1 i=1

where {y1,...,yx} are the indices of the selected atoms and

o1, ..., ok are the corresponding coefficients. Given that K is smaller
than L, we talk of a sparse approximation of f.

Let § be the vector consisting of the evaluation of fK at the L input
vectors, i.e., § = [fK(x]), ey fK(xL)]T. We also define the residue as
the approximation error between the target vector y = [y1,...,y;]”
andy, ie.,

r=y-jy. (4)

58 J. Kabbara, 1. N. Psaromiligkos / Pattern Recognition Letters 69 (2016) 56-61

One way to choose the K functions {g, , gy} and the coefficients
{aq....,ak} is to minimize the squared norm of the residue

el = lly - 911> (5)

Let G be the n x n Gram matrix of k whose (i, j)th element is given by

[Gl; j = k(x;, X;). (6)
Then, the problem under consideration is equivalent to

min ||y — Gee||* s.t. ais K — sparse, (7)
aeRk

which can be more formally stated as:

min |ly — Ga||? s.t. [lello =K (8)
aeRl

where ||a||o denotes the ¢y norm, i.e., the number of non-zero ele-
ments of .

Solving (8) involves finding the optimal set of functions
{&y,.--.. 8y} touse in forming fi that, in turn, requires an exhaustive
search over all ﬁ possible choices of K basis functions among
the L dictionary atoms. As carrying out such search would be com-
putationally prohibitive, several suboptimal procedures such as KMP
and KBP have been proposed.

3. Proposed method
3.1. Subspace pursuit

Subspace Pursuit (SP) was first introduced in [4] in the context of
compressive sensing (see also [14] for a similar method). It was orig-
inally proposed as an iterative method for the reconstruction of an
unknown signal u = [uy, ..., uy] from (possibly noisy) observations,
v € RM, of u obtained via M < N linear measurements, that is,

v = ®u 9)

where @ ¢ RM*N s referred to as the measurement or sampling ma-
trix and v as the measurement vector. The unknown signal u is as-
sumed to be K-sparse, i.e., it is assumed to have K « N non-zero el-
ements. In compressive sensing, sparsity encapsulates the idea that
the signal contains far less information than what its actual dimen-
sion suggests and thus, it is possible to reconstruct u from its mea-
surements v even though K <« N.

In practice, the measurement vector v contains noise. To handle
the case of noisy linear measurements, the minimization problem is
expressed in the form of a least-squares constrained minimization
problem as follows:

min ||v — ®u||® s.t. [[ullo =K. (10)
uekRN

Conceptually, the main task in SP is to identify which subspace,
generated by K columns of the sampling matrix @, can provide the
best least squares approximation of the measurement vector v. To do
so, SP iteratively tests carefully chosen subsets of columns of ®; at
each iteration, columns are removed or added to the subset aiming at
reducing the least squares approximation error of v.

3.2. Kernel subspace pursuit

In this section, we solve the problem presented in Section 2 by ex-
tending SP to non-linear regression problems and introduce Kernel
SP (KSP). In KSP, we treat the sampling matrix ® as the Gram ma-
trix G. Consider again the setup introduced in Section 2. Denote by
Gr, with T being a set of column indices, the matrix consisting of the
columns of G with indices in T. Thus, our minimization problem can
be rewritten as

lerlT |Grac — y||? s.t. cardinality of T is K. (11)
R

KSP solves (11) by initially selecting the K columns of G that ex-
hibit the highest correlation with the vector y, and then iteratively
refining this set by discarding and adding columns. The refinement
process is carried out by retaining “informative” columns of G, i.e.,
the columns of G that better approximate y, and discarding the less
informative ones.

In the initialization step, we form a column set Tj by selecting the
K columns of G that exhibit the highest correlation with the vector
y, i.e., the columns that correspond to the largest-in-magnitude ele-
ments of GTy. We then obtain an initial estimate §, of y using only
the columns of G in Ty by projecting the vector y onto the span of the
columns of Gy, that s,

Yo = proj(y. Gr,) := Gr,Gly. (12)

where GT denotes the Moore-Penrose pseudo-inverse of G, . The ini-
tial remdue is finally calculated as follows:

ro =y —Yo. (13)

Subsequently, the following procedure is repeated until a stopping
criterion is met. At a given iteration, say ¢, we begin by computing the
correlations between the columns of G and the residue from the pre-
vious iteration, and retaining the K columns of G that correspond to
the largest correlations (in magnitude). This set of K columns is then
merged with the set of columns used to obtain the previous itera-
tion’s approximation of y. As a result, we now have a set containing up
to 2K columns of G, say T;. These columns are the candidates among
which we will select the K columns to be used to obtain the current
iteration’s estimate of y.

The selection process proceeds as follows. We first project y onto
the span of the columns of G in the merged set T, and we obtain a new
set of indices, T,, by identifying the columns corresponding to the K
largest-in-magnitude projection coefficients, i.e., to the K largest ele-
ments of the vector GT V- The LS estimate of y at the ¢th iteration, ¥,

is calculated by prOJectmg the vector y onto the span of the columns
of G'Q :

Y. = proj(y. Gr,). (14)

and a new residue is obtained asy — ¥,. Finally, the residue computed
at the current iteration is compared to the one from the previous it-
eration. If the current residue is larger or the maximum number £max
of iterations is reached, the refinement process is ended and the loop
is exited.

Once the final column set T, has been identified, the K-sparse ker-
nel regressor is obtained by

K
Z oik(X, Xy,) (15)

i=1

fK(X) =

where y; denotes the ith element of T, and «; is the corresponding
coefficient, i.e., ¢; is the ith element of the vector G%y.
Algorithm 1 summarizes KSP.

3.3. KSP versus KMP and KBP

While KSP, KMP and KBP are all methods that learn a regression
function by means of sparse approximation, there exist substantial
differences in the reconstruction methods that they employ. Indeed,
both KMP and KBP start by initializing the regression function to zero,
then iteratively build it by selecting, at each iteration, one new en-
try from the dictionary of functions. To build the regression function,
KMP and KBP (using the LARS implementation) need a number of
iterations equal to the desired number of basis functions in the ex-
pansion. KSP, on the other hand, always maintains an estimate of the

J. Kabbara, 1. N. Psaromiligkos / Pattern Recognition Letters 69 (2016) 56-61

Algorithm 1 Kernel Subspace Pursuit Algorithm.

Input: k, {xq,...,Xx;, ¥}, K.
Initialization:
Compute G using (6).

To = {Indices of the K largest magnitude entries in the vector
GTy}

ro =y — proj(y, Gr,)
Loop: At iteration ¢ (1 < € < ¢max), execute the following:

Compute the vector G'r,_;

Identify the set T of indices of the K largest magnitude entries
in that vector

Find the set of candidate columns T, =T, ; U T

Compute the vector G} y

Identify the set T, of in(dices of the K largest magnitude entries
in that vector

Compute the residue r, =y — proj(y. Gr,)

If||rell2 > |Ire_1]]2, let T, = T,_; and exit the loop.
Output: K-sparse kernel regressor fK(x) (obtained using (15))

regression function built using the pre-specified number K of basis
functions, and refines the estimate through a usually limited number
of iterations. Thus, KSP would normally require a smaller number of
iterations than that required by KMP and KBP.

Furthermore, as we stated in Section 1.1, KMP employs a greedy it-
erative approach in constructing the approximation function. At each
iteration, one atom is selected from the dictionary and appended to
the expansion. When such a selection is made at a specific iteration,
it cannot be reverted in later iterations as KMP lacks the capability
to reassess later whether a selected atom could have been replaced
with one that is more informative. KSP does not suffer from this de-
ficiency as with each iteration, any selected atom can be dynamically
suppressed if it were determined that it is less informative - at that
particular iteration - than K other atoms.

In the following section, we present simulation results that show
that KSP outperforms both KMP and KBP in learning non-linear func-
tions as well as real data. We also provide a comparison of the com-
putational burden of each of these algorithms. This comparison will
show that KSP is indeed less computationally expensive than both
KMP and KBP in many learning scenarios.

4. Simulations

In this section, we experimentally test KSP and compare its per-
formance to that of KMP and KBP'.

4.1. Synthetic data

In this experiment, we test KSP in learning different non-linear
functions. Our aim is to learn a function g(x) by observing L noisy
samples:

g(x,~)+/\/(0,o,%/),i=1,...,L (16)

obtained at known input points x; e R, i =1,..., L. In (16), A'(0, G/%,)
represents Gaussian noise with mean 0 and variance o'%.
In this experiment, we consider the following functions:

1. g(x) = cos (exp (x)),
2. g(x) = sin(exp (x)),
3. g(x) = tanh (x),

4, g(x) = tan (x).

1 KBP was implemented using the vanilla version of the LARS algorithm (Section 2
in [6]) stopped after K iterations.

Table 1

59

MSE performance of KSP, KMP and KBP in learning synthetic data using a Gaussian
kernel. For each entry, the first row presents the error alongside the corresponding
error margin while the second row shows the values (K, o) used in each case.

Algorithms

Functions KSP KMP KBP

cos (exp (x)) 0.00214 £ 0.00096 0.00212 + 0.00070 0.049 + 0.012
(80,0.9) (80,0.5) (20,0.1)

sin (exp (x)) 0.00255 + 0.00105 0.00216 + 0.00088 0.7911 + 0.0197
(60,0.9) (70,0.5) (20,0.01)

tanh (x) 0.00291 + 0.00112 0.00369 + 0.00111 0.2223 + 0.0151
(48,0.6) (36,0.3) (42,0.01)

tan (x) 0.00348 + 0.00133 0.00658 + 0.00153 0.3107 + 0.1050
(60,0.6) (62,0.3) (26,0.06)

Heavisine 0.06323 + 0.0183 0.11921 £ 0.01790 9.5013 £ 0.565
(44,0.1) (92,0.1) (24,0.6)

Doppler 0.0235 + 0.0047 0.04025 + 0.00489 0.0881 + 0.00679
(66,0.1) (70,0.1) (86,0.8)

Blocks 1.4258 + 0.25 1.6615 + 0.235 5.8548 + 0.693
(40,0.1) (94,0.1) (40,0.2)

We also test our method using synthetic data described by Donoho
and Johnstone [5]. These data were generated using the following
functions:

1. Heavisine function: g(x) = 4sin (4wrx) —sgn(x —0.3) —
sgn(0.72 — x),
2. Doppler function: g(x) = [x(1 — x)]% sin (277 1) with € = 0.5,

3. Blocks function: g(x) = 3"}L; a;p(x — b;) where:
e p(®) ={1+sgn((»)}/2,
e a=[4,-53,-4,5-42,2.1,43,-3.1,2.1,-4.2],
e b= 1(}—0[10, 13,15, 23, 25, 40, 44, 65, 76, 78, 81].

The inputs X; € R are drawn i.i.d. from the interval [0, 1] according
to a uniform distribution. Each input is then passed through one of
the non-linear functions mentioned above. The result is finally cor-
rupted with white Gaussian noise with variance af/ =0.15.We use a
training set of size L = 400 and a test set of size 200. For each exper-
iment, we optimize, for each algorithm, the kernel width o and the
sparsity K (number of basis functions in the final solution) using 5-
fold cross-validation. The results, averaged out over 50 Monte-Carlo
simulations, are shown in Table 1 where we also specify the values for
Kand o used in each case. The error figures are shown along with the
corresponding error margin. For all cases, we use £max = 5.2 Results
show that KSP outperforms both KMP and KBP in learning 5 of the 7
functions shown in Table 1 while being outperformed in the first two
experiments by only one algorithm, namely, KMP.

Next, we repeat the first experiment but instead of a Gaussian ker-
nel, we use a polynomial kernel given by: k(u, v) = (uv + 1)2. Again,
for each experiment, we optimize, for each algorithm, the kernel
width o and the sparsity K using 5-fold cross-validation. The results,
averaged out over 50 Monte-Carlo simulations, are shown in Table 2.
The error figures are shown along with the corresponding error mar-
gin. Results show that KSP outperforms KMP and KBP in learning 6 of
the 7 functions, with KSP being outperformed in the first experiment
by one algorithm only, namely, KMP.

4.2. Real data

In this section, we test KSP using real data obtained from three re-
gression datasets available in the UCI machine learning repository [1].
In the first dataset, the task consists in predicting the prices of houses
in suburbs of Boston based on different demographic, economic and
social factors. In this dataset, the first 800 samples are used as a train-
ing set and the next 200 samples are used as a test set. In the second

2 See Section 4.3 for an important observation related to £max .

60

Table 2

MSE performance of KSP, KMP and KBP in learning synthetic data using a polynomial
kernel. For each entry, the error is shown alongside the corresponding error margin

J. Kabbara, 1. N. Psaromiligkos / Pattern Recognition Letters 69 (2016) 56-61

and corresponding value for K in parenthesis.

Algorithms

Functions KSP KMP KBP

cos (exp(x)) 0.00116 + 0.000872 0.00088 + 0.00073 0.24158 + 0.141
(40) (58) (80)

sin(exp(x)) 0.00173 £0.00100 0.011966 + 0.00134 0.81667 + 0.05910
(20) (24) (76)

tanh (x) 0.00112 + 0.00090 0.00267 + 0.00079 0.54034 + 0.08680
(30) (36) (70)

tan (x) 0.00151 + 0.00076 0.00213 & 0.00084 0.46754 + 0.07472
(34) (44) (76)

Heavisine 6.93244 + 0.528 7.72686 + 0.62700 8.57339 £ 0.601
(20) (20) (20)

Doppler 0.07833 +0.00579 0.07937 + 0.00589 0.08588 + 0.00668
(50) (50) (138)

Blocks 3.27133 + 0.295 3.65594 + 0.304 6.07591 + 0.576
(20) (30) (56)

Table 3

MSE performance of KSP, KMP and KBP in learning real data using a Gaus-
sian kernel. For each entry, the first row presents the error while the sec-
ond row shows the values (K, o) used in each case.

Algorithms
Data KSP KMP KBP
Housing 106.0016 119.4577 268.31759
(288,14.5) (250,20) (300,4)
Abalone 0.05389 0.0626 8.8319
(500,0.7) (540,0.6) (450,0.2)
Stocks 0.00002 0.00003 0.00199
(94,0.1) (72,01) (100,4.9)

dataset, the task consists in predicting the age of Abalone species (a
type of sea snails) based on various physical measurements. In this
dataset, the first 400 samples are used as a training set and the next
100 samples are used as a test set. In the last dataset, the task con-
sists in predicting the values of Istanbul’s stock exchange given dif-
ferent attributes. In this dataset, the first 800 samples are used as a
training set and the next 100 samples are used as a test set. For all
three datasets, we use ¢max = 5, and for each dataset, we optimize
the kernel width o and the sparsity K for each algorithm using 5-fold
cross-validation. The results are presented in Table 3 and show that
KSP outperforms both KMP and KBP in all of the 3 learning scenarios.

Next, we repeat the same experiment but instead of a Gaussian
kernel, we use a polynomial kernel given by: k(u, v) = uv + 1. Again,
for each dataset, we optimize the kernel width o and the sparsity K
for each algorithm using 5-fold cross-validation. The results are pre-
sented in Table 4 and show that KSP outperforms both KMP and KBP
in all of the learning scenarios.

4.3. Computational considerations

To understand better the computational burden of the three algo-
rithms, KSP, KMP and KBP, we note that KMP and KBP are of order
O(L2) per iteration. KSP is of order O(L2 + LK?) per iteration. Regard-
ing the number of iterations, recall that the number of iterations in

Table 4

MSE performance of KSP, KMP and KBP in learning real data using a
polynomial kernel. For each entry, the error is shown alongside the
corresponding value for K in parenthesis.

Algorithms
Data KSP KMP KBP
Housing 24.4105 (11) 69.5966.1 (30) 26.4025 (162)
Abalone 9.6848 (50) 15.0165 (80) 71.70987 (50)
Stocks 0.00002 (40) 0.00015 (50) 0.00015 (126)

Table 5
CPU running times for KSP, KMP and KBP in milliseconds.
Algorithms

Functions KSP KMP KBP
cos (exp (x)) 146.64 287.04 124.80
sin (exp (x)) 102.96 254.28 115.44
tanh (x) 85.80 124.80 235.56
tan (x) 96.72 226.20 143.52
Heavisine 38.22 322.61 140.40
Doppler 89.86 242.74 447.41
Blocks 3245 336.03 219.96
Housing 27444 171.93 613.72
Abalone 222991 1726.39 3110.85
Stocks 52.53 40.75 157.09

KSP does not depend on K. The extent to which our algorithm de-
pends on K is the computational cost per iteration. Therefore, KSP
does not suffer from the more detrimental dependency that binds
the number of iterations to K. In fact, our simulations showed that,
for all learning scenarios presented in Section 4, increasing the maxi-
mum number, £max, of KSP iterations beyond 5 iterations (we consid-
ered values of ¢max up to 50) led to a minimal (practically negligible)
improvement in the MSE performance of KSP. Hence, the maximum
number of KSP iterations that were executed in order to build the re-
gression function was fixed at 5.

We further investigate the computational burden ensuing from
running KSP, KMP and KBP in different learning scenarios. We record
the CPU time needed to run one Monte-Carlo iteration (i.e., one com-
plete run) of each of the 3 algorithms in the 10 different learning sce-
narios that use the Gaussian kernel. All parameters are kept the same
as in Section 4.1. The three algorithms were implemented in MATLAB,
and all tests were run on an 8-GB, 2.00-GHz Intel Core i7 workstation
running a 64-bit Windows 7 0S. We report the corresponding CPU
running times (in seconds) for each of the three algorithms in Table 5
for the scenarios involving synthetic data (first 7 rows) and real data
(last 3 rows).

Results show that despite the higher complexity-per-iteration of
KSP, KSP’s CPU running time is the smallest in 6 out of the 10 learning
scenarios. This can be explained by the fact that, despite KSP’s higher
complexity per iteration, a maximum of 5 KSP iterations were needed
(as explained earlier in the section) while the other two algorithms
required a larger number of iterations (equal to the number of basis
functions in the final solution).

4.4. Effect of K on KSP’s performance

In this section, we investigate how KSP’s MSE performance
and CPU time vary with the increase of K. We report in Table 6

Table 6
Effect of K on KSP's MSE Performance and CPU Running Times (in milliseconds).

K

Functions 10 50 100 200
cos (exp (x)) 0.01029 0.01027 0.01014 0.01009
12.00 54.00 124.80 577.20
sin (exp (x)) 0.01048 0.01041 0.01040 0.01039
21.00 78.00 187.20 717.60
tanh (x) 0.01012 0.00993 0.00989 0.00981
13.20 79.00 249.60 639.60
tan (x) 0.01053 0.01035 0.01032 0.01024
17.40 62.40 253.60 811.21
Heavisine 0.6760 0.5870 0.5770 0.556
416 619 241.00 836.00
Doppler 0.0865 0.0858 0.0853 0.0844
9.88 60.3 264 852
Blocks 3.205 3131 2.789 2.769
10.80 54.60 204.36 683.60

J. Kabbara, I. N. Psaromiligkos / Pattern Recognition Letters 69 (2016) 56-61 61

the MSE performance and CPU running times for learning the 7
different synthetic data using a Gaussian kernel of width o = 3 for
K =10, 50, 100, and 200. The value in the first row in each cell rep-
resents the MSE while the value in the second row represents the
CPU running time in milliseconds. It is interesting to note that for
this choice of o the MSE performance is not as sensitive to the choice
of K as the CPU running time.

5. Summary and conclusion

In this paper, we presented a new kernel method that approxi-
mates target functions in the least-squares sense by means of sparse
approximation. To approximate the target functions, KSP uses a lin-
ear combination of a finite number of elements selected from a
kernel-based dictionary. KSP is an iterative approach that starts by
initializing the subset of selected dictionary functions to be used in
the approximation and then refines this subset throughout a lim-
ited number of iterations to minimize the approximation error. By
specifying the number of basis functions, KSP is able to guarantee
the sparsity of the solution, and thus offer improved generalization
performance.

KSP belongs in the same family as KMP and KBP: they all solve the
same regression problem and they share many attractive properties.
For example, they all allow the dictionary of functions to include dif-
ferent types of kernels, and thus enable learning using mixtures of
different kernels or kernels of the same type but having different pa-
rameters. Also, they are all based on pursuit methods but they differ
on the exact pursuit method employed to enforce the sparsity con-
straint (SP, MP and BP). In a sense, our work completes the group of
kernel regression methods that are based on pursuit algorithms, by
introducing its most powerful member (both in terms of learning and
computational performance). Therefore, part of this paper’s contribu-
tion is to demonstrate for the first time that SP is the better pursuit
method to address the problem at hand.

We presented 20 different scenarios involving learning different
synthetic and real data. We experimentally showed that, in these sce-
narios, KSP requires a number of iterations that is much smaller than
that required by KMP and KBP. As a result, KSP is less computationally
intensive than KMP and KBP in many of those learning scenarios. We
further presented experimental validation that shows that KSP out-
performs KMP and KBP in the task of learning real and synthetic data
in 17 out of different 20 learning scenarios.

References

[1] K. Bache, M. Lichman, UCI machine learning repository, 2013,http://archive.ics.
uci.edu/ml.

[2] S. Chen, D. Donoho, M. Saunders, Atomic decomposition by basis pursuit, SIAM].
Sci. Comput. 20 (1) (1998) 33-61.

[3] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273-
297.

[4] W. Dai, O. Milenkovic, Subspace pursuit for compressive sensing signal recon-
struction, IEEE Trans. Inf. Theory 55 (5) (2009) 2230-2249, doi: 10.1109/TIT.2009.
2016006.

[5] D.Donoho,].Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika
81(3)(1994) 425-455.

[6] B.Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression, The Annals of
Stat. 32 (2) (2004) 407-499.

[7] M. Elad, Sparse and Redundant Representations: From Theory to Applications in
Signal and Image Processing, Springer, 2010.

[8] V. Guigue, A. Rakotomamonjy, S. Canu, Kernel basis pursuit, in: Proceedings of
European Conference on Machine Learning, 2005, pp. 146-157.

[9] T. Hastie, R. Tibshirani,]. Friedman, The Elements of Statistical Learning, vol. 1,
Springer New York, 2001.

[10] S.G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE
Trans. on Signal Process. 41 (12) (1993) 3397-3415.

[11] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, K. Muller, Fisher discriminant analysis
with kernels, in: IEEE Signal Processing Society Workshop on Neural Networks
for Signal Processing, 1999, pp. 41-48, doi:10.1109/NNSP.1999.788121.

[12] E.A. Nadaraya, On estimating regression, Theory of Probab. Its Appl. 9 (1) (1964)
141-142.

[13] P.B. Nair, A. Choudhury, AJ. Keane, Some greedy learning algorithms for sparse
regression and classification with mercer kernels, J. Mach. Learn. Res. 3 (2002)
781-801.

[14] D. Needell, J. Tropp, CoSaMP: iterative signal recovery from incomplete and inac-
curate samples, Appl. Comput. Harmonic Anal. 26 (3) (2009) 301-321.

[15] T. Poggio, F. Girosi, A sparse representation for function approximation, Neural
Comput. 10 (6) (1998) 1445-1454.

[16] V. Popovici, S. Bengio,].-P. Thiran, Kernel matching pursuit for large datasets, Pat-
tern Recognit. 38 (12) (2005) 2385-2390.

[17] B. Scholkopf, R. Herbrich, A. Smola, A generalized representer theorem, in: Com-
putational Learning Theory, 2001, pp. 416-426.

[18] B. Scholkopf, A. Smola, K.-R. Miiller, Kernel principal component analysis, in: In-
ternational Conference on Artificial Neural Networks, 1997, pp. 583-588.

[19] A. Smola, B. Scholkopf, Learning with Kernels, 1 edition, MIT Press, Cambridge,
MA, 2002.

[20] A.J. Smola, B. Schokopf, Sparse greedy matrix approximation for machine learn-
ing, in: Proceedings of the Seventeenth International Conference on Machine
Learning, Morgan Kaufmann Publishers Inc., 2000, pp. 911-918.

[21] AJ. Smola, P.L. Bartlett, Sparse greedy Gaussian process regression, in: Advances
in Neural Information Processing Systems, 2001, pp. 619-625.

[22] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. (Se-
ries B) (1996) 267-288.

[23] V. Vapnik, Statistical Learning Theory, vol. 2, Wiley New York, 1998.

[24] P.Vincent, Y. Bengio, Kernel matching pursuit, Mach. Learn. 48 (1-3) (2002) 165-
187.

[25] G.S.Watson, Smooth regression analysis, Sankhya: The Indian J. Stat. Ser. A (1964)
359-372.

http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0001
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0001
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0001
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0001
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0002
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0002
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0002
http://dx.doi.org/10.1109/TIT.2009.2016006
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0004
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0004
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0004
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0005
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0005
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0005
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0005
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0005
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0006
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0006
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0007
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0007
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0007
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0007
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0008
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0008
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0008
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0008
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0009
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0009
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0009
http://dx.doi.org/10.1109/NNSP.1999.788121
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0011
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0011
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0012
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0012
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0012
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0012
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0013
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0013
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0013
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0014
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0014
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0014
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0015
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0015
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0015
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0015
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0016
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0016
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0016
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0016
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0017
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0017
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0017
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0017
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0018
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0018
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0018
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0019
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0019
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0019
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0020
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0020
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0020
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0021
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0021
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0022
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0022
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0023
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0023
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0023
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0024
http://refhub.elsevier.com/S0167-8655(15)00346-3/sbref0024

	Kernel subspace pursuit for sparse regression
	1 Introduction
	1.1 Related work
	1.2 Main contribution

	2 Problem formulation
	3 Proposed method
	3.1 Subspace pursuit
	3.2 Kernel subspace pursuit
	3.3 KSP versus KMP and KBP

	4 Simulations
	4.1 Synthetic data
	4.2 Real data
	4.3 Computational considerations
	4.4 Effect of K on KSP’s performance

	5 Summary and conclusion
	 References

