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Recently, results from sparse approximation theory have been considered as a means to improve the general-

ization performance of kernel-based machine learning algorithms. In this paper, we present Kernel Subspace

Pursuit (KSP), a new method for sparse non-linear regression. KSP is a low-complexity method that iteratively

approximates target functions in the least-squares sense as a linear combination of a limited number of el-

ements selected from a kernel-based dictionary. Unlike other kernel methods, by virtue of KSP’s algorithmic

design, the number of KSP iterations needed to reach the final solution does not depend on the number of

basis functions used nor that of elements in the dictionary. We experimentally show that, in many scenarios

involving learning synthetic and real data, KSP is less complex computationally and outperforms other kernel

methods that solve the same problem, namely, Kernel Matching Pursuit and Kernel Basis Pursuit.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

For decades, non-linear regression models have been extensively

studied in the area of statistics, econometrics and machine learning.

Quite often these models involve a non-linear transformation of data

into a high-dimensional space in which linear regression models are

expected to be more accurate compared to the original space. Ex-

amples include Artificial Neural Networks [9], Decision Trees [9] and

Support Vector Machines (SVMs) [3].

An important family of non-linear regression methods is kernel

methods [19] that have received major attention in the past two

decades, as they allowed non-linear versions of conventional linear

supervised and unsupervised learning algorithms, yielding impres-

sive regression performance. Using the kernel trick, interesting “ker-

nelized” extensions of many well-known algorithms were presented,

including kernel SVMs [19], kernel Principle Component Analysis

(PCA) [18] and kernel Fisher discriminant analysis [11].

The generalization, or “out-of-sample,” performance of a learning

method, including kernel methods considered in this work, quantifies

its ability to predict on independent never-seen-before data. From

a learning-theoretic perspective, controlling the “capacity” of learn-

ing algorithms is necessary to guarantee good generalization perfor-

mance [23]. This in turn is related to the issue of overfitting: the
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ore complex a model is, the more likely it is to overfit the data.

raditional non-parametric kernel regression methods such as the

adaraya-Watson method [12,25] affect generalization performance

hrough tuning parameters (such as the kernel bandwidth), which

ould be viewed as a way of controlling model complexity. Recently,

esults from sparse approximation theory [7] have been considered

s another means to directly control the model complexity and, con-

equently, limit overfitting. Sparse approximation refers to estimat-

ng a vector (or function) as a linear combination of a small number

f elements selected from a larger set, called dictionary, of vectors

or functions). In our regression context, we can control model com-

lexity by restricting the regression function to be sparse, i.e., that

t is a linear combination of a fixed (but small) number of functions

elected from a given dictionary.

.1. Related work

Previous work has discussed interesting connections between

on-linear kernel-based learning and pursuit algorithms [10]. Pursuit

lgorithms, are a family of greedy, iterative approaches to obtain

parse approximations of a function. Poggio and Girosi relate in their

ork [15] the basis pursuit algorithm [2] to kernel SVMs. The work

f Smola and Schölkopf [20] presents ties between the Matching

ursuit (MP) algorithm [10] and kernel PCA, and shows how such ties

an be used to compress the kernel matrix in SVMs to allow dealing

ith large datasets. Also, Smola and Bartlett present in [21] a greedy

MP-like technique that approximates Maximum A Posteriori (MAP)

estimates of Gaussian Processes by expressing the MAP estimate

as an expansion in terms of a small subset of pre-specified kernel

functions.

http://dx.doi.org/10.1016/j.patrec.2015.09.018
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Following this previous work, Kernel Matching Pursuit (KMP) [24]

nd Kernel Basis Pursuit (KBP) [8] were presented as kernel meth-

ds that learn target functions by means of sparse approximation.

MP adopts a greedy suboptimal iterative approach to construct a

parse linear approximation of the target regression function. It starts

ith the approximation being initialized to zero, and then builds it by

dding to it, at each iteration, a new term consisting of an appropri-

tely weighted function from the dictionary. The function is chosen

ccording to a correlation-based criterion and then, the correspond-

ng weight is computed so that the approximation error at that iter-

tion is minimized. KBP, on the other hand, solves a relaxed version

f the same problem by incorporating �1-regularization on the min-

mization of the approximation error. In doing so, KBP controls the

parsity of the solution. The problem formulation in KBP corresponds

o the well-known Least Absolute Shrinkage and Selection Operator

LASSO) formulation [22] in the feature space which combines an �2-

oss function (squared error) with �1-regularization. While previous

ork (e.g., [2] that inspired KBP) considered finding the optimal solu-

ion to the minimization problem through costly and complex linear

rogramming techniques, KBP uses the Least Angle Regression (LARS)

echnique [6] which also finds the exact solution of the LASSO but in

n iterative and efficient way.

In summary, KBP and KMP attempt to solve similar problems

hile addressing the sparsity of the solution in different ways. In-

eed, KMP guarantees that the solution is K-sparse by imposing a pre-

pecified finite number K of basis functions that will be used to con-

truct the approximation function. On the other hand, KBP, in its orig-

nal formulation, uses a regularization term that controls the sparsity

f the solution. In addition, both KMP and KBP suffer, computation-

lly, from the same drawback: the number of iterations that they have

o run directly depends on the intended number of basis functions in

he final solution.

Other work in the literature has addressed similar problems. In

16], a stochastic version of KMP is presented for large datasets. In

his sub-optimal version of KMP, at a given iteration, the search space

rom which basis functions are selected is reduced. More specifically,

basis function is selected from a randomly chosen subset of the

vailable basis functions. The work in [13] presents a family of greedy

lgorithms for building sparse kernel-based regression and classifi-

ation models. An �2-loss function is iteratively minimized until a

pecified stopping criterion is satisfied. Different greedy criteria for

asis selection from the literature are discussed and two numerical

chemes are presented for updating the weights and residue (approx-

mation error), the first based on residual minimization and the other

ased on QR factorization.

.2. Main contribution

Our research effort aims at identifying an alternative framework

o KMP and KBP, one that would: (1) address the need to dissociate

to the extent possible) kernel-based learning algorithms from the

omputational constraints from which KMP and KBP suffer (i.e., the

ependency of the number of iterations on the number of basis func-

ions), and (2) still provide us with the control of the sparsity of the

olution. Thus, we apply the Subspace Pursuit (SP) algorithm of Dai

t al. [4] to non-linear regression problems, and introduce the Kernel

P (KSP) algorithm. SP was first introduced in the context of com-

ressive sensing. It was originally proposed as an iterative method

or the reconstruction of an unknown sparse signal from a set of lin-

ar measurements. In our work, we capitalize on the fact that SP is, in

ssence, a low complexity method to obtain least-squares solutions

ith a pre-specified sparsity level.

As in KMP and KBP, the proposed algorithm iteratively learns a re-

ression function with a predefined sparsity level. In contrast to both

MP and KBP that start by initializing the regression function to zero,

nd then iteratively expand it until it reaches the desired sparsity
evel, KSP always maintains an estimate of the regression function

uilt using the pre-specified number K of dictionary elements, and

efines the estimate through a usually limited number of iterations.

o build the regression function, KMP and KBP (using the LARS imple-

entation) need a number of iterations equal to the desired number

f basis functions in the expansion. However, the number of KSP it-

rations needed to reach the final solution does not depend on the

equired number of basis functions and is normally smaller than in

MP and KBP. We experimentally show that in various scenarios that

nvolve learning synthetic and real data, this required number of KSP

terations is indeed much smaller than that required for KMP and KBP,

nd that in many of these scenarios, KSP is less computationally in-

ensive than KMP and KBP. We further present experimental valida-

ion that shows that, in most of these learning scenarios, KSP outper-

orms both KMP and KBP in the task of learning real and synthetic

ata.

The remainder of this paper is organized as follows: In Section 2,

e formulate the problem considered in this work. In Section 3, we

ntroduce the Kernel Subspace Pursuit algorithm. In Section 4, we

ompare the computational overhead for running KSP, KMP and KBP

n various scenarios involving learning synthetic and real data. We

lso present the results of simulations showing that our algorithm

utperforms both KMP and KBP in most of these learning scenarios.

inally, Section 5 concludes the paper.

. Problem formulation

We are given L noisy observations {y1, . . . , yL} of an unknown

arget function f : R
d �→ R at the inputs {x1, . . . , xL} where xi ∈ R

d

for a given d) and yi ∈ R,∀i. Let k : R
d × R

d �→ R be a positive

efinite kernel and let H be the associated kernel Hilbert space

hose norm is denoted by ‖ · ‖2
H . We are interested in identifying

function f̂ ∈ H that is a good (in some sense) approximation of

. According to the Representer Theorem [17], given a strictly in-

reasing function � : [0,∞) �→ R and an arbitrary cost function c :

R
d × R

2)L �→ R ∪ {∞}, any minimizer f̂ ∈ H of the regularized cost

((x1, y1, f̂ (x1)), . . . , (xL, yL, f̂ (xL))) + �(‖ f̂‖2
H) has the form

f̂ (x) =
L∑

i=1

αik(x, xi), αi ∈ R. (1)

hat is, f̂ can be written as a linear combination of the elements of

he set G containing L functions in H:

= {gi = k(·, xi)|i = 1, . . . , L} ⊂ H. (2)

orrowing terminology from Sparse Approximation theory [7], we re-

er to G as the dictionary and to its elements as atoms.

In this paper, the goal is to approximate f using a given number

< L of dictionary atoms, called basis functions, that is, we want our

olution to admit the form in (1) but we now add the constraint that

nly K of the coefficients αi are non-zero. In other words, we are inter-

sted in constructing an approximation f̂K of f as a linear combination

f K atoms gγi
, i = 1, . . . , K:

f̂K(x) =
K∑

i=1

αigγi
(x) =

K∑

i=1

αik(x, xγi
) (3)

here {γ1, . . . , γK} are the indices of the selected atoms and

1, . . . , αK are the corresponding coefficients. Given that K is smaller

han L, we talk of a sparse approximation of f.

Let ŷ be the vector consisting of the evaluation of f̂K at the L input

ectors, i.e., ŷ = [ f̂K(x1), . . . , f̂K(xL)]T . We also define the residue as

he approximation error between the target vector y = [y1, . . . , yL]T

nd ŷ, i.e.,

= y − ŷ. (4)
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One way to choose the K functions {gγ1
, . . . , gγK

} and the coefficients

{α1, . . . , αK} is to minimize the squared norm of the residue

‖r‖2 = ‖y − ŷ‖2. (5)

Let G be the n × n Gram matrix of k whose (i, j)th element is given by

[G]i, j = k(xi, x j). (6)

Then, the problem under consideration is equivalent to

min
α∈RL

‖y − Gα‖2 s.t. α is K − sparse, (7)

which can be more formally stated as:

min
α∈RL

‖y − Gα‖2 s.t. ‖α‖0 = K (8)

where ‖α‖0 denotes the �0 norm, i.e., the number of non-zero ele-

ments of α.

Solving (8) involves finding the optimal set of functions

{gγ1
, . . . , gγK

} to use in forming f̂K that, in turn, requires an exhaustive

search over all L!
K!(L−K)!

possible choices of K basis functions among

the L dictionary atoms. As carrying out such search would be com-

putationally prohibitive, several suboptimal procedures such as KMP

and KBP have been proposed.

3. Proposed method

3.1. Subspace pursuit

Subspace Pursuit (SP) was first introduced in [4] in the context of

compressive sensing (see also [14] for a similar method). It was orig-

inally proposed as an iterative method for the reconstruction of an

unknown signal u = [u1, . . . , uN] from (possibly noisy) observations,

v ∈ R
M, of u obtained via M < N linear measurements, that is,

v = �u (9)

where � ∈ R
M×N is referred to as the measurement or sampling ma-

trix and v as the measurement vector. The unknown signal u is as-

sumed to be K-sparse, i.e., it is assumed to have K � N non-zero el-

ements. In compressive sensing, sparsity encapsulates the idea that

the signal contains far less information than what its actual dimen-

sion suggests and thus, it is possible to reconstruct u from its mea-

surements v even though K � N.

In practice, the measurement vector v contains noise. To handle

the case of noisy linear measurements, the minimization problem is

expressed in the form of a least-squares constrained minimization

problem as follows:

min
u∈RN

‖v − �u‖2
s.t. ‖u‖0 = K. (10)

Conceptually, the main task in SP is to identify which subspace,

generated by K columns of the sampling matrix �, can provide the

best least squares approximation of the measurement vector v. To do

so, SP iteratively tests carefully chosen subsets of columns of �; at

each iteration, columns are removed or added to the subset aiming at

reducing the least squares approximation error of v.

3.2. Kernel subspace pursuit

In this section, we solve the problem presented in Section 2 by ex-

tending SP to non-linear regression problems and introduce Kernel

SP (KSP). In KSP, we treat the sampling matrix � as the Gram ma-

trix G. Consider again the setup introduced in Section 2. Denote by

GT, with T being a set of column indices, the matrix consisting of the

columns of G with indices in T. Thus, our minimization problem can

be rewritten as

min
a∈RK ,T

‖GTα − y‖2 s.t. cardinality of T is K. (11)
KSP solves (11) by initially selecting the K columns of G that ex-

ibit the highest correlation with the vector y, and then iteratively

efining this set by discarding and adding columns. The refinement

rocess is carried out by retaining “informative” columns of G, i.e.,

he columns of G that better approximate y, and discarding the less

informative ones.

In the initialization step, we form a column set T0 by selecting the

columns of G that exhibit the highest correlation with the vector

, i.e., the columns that correspond to the largest-in-magnitude ele-

ents of GTy. We then obtain an initial estimate ŷ0 of y using only

he columns of G in T0 by projecting the vector y onto the span of the

olumns of GT0
, that is,

ˆ0 = proj(y, GT0
) := GT0

G†
T0

y, (12)

here G
†
T0

denotes the Moore-Penrose pseudo-inverse of GT0
. The ini-

ial residue is finally calculated as follows:

0 = y − ŷ0. (13)

Subsequently, the following procedure is repeated until a stopping

riterion is met. At a given iteration, say �, we begin by computing the

orrelations between the columns of G and the residue from the pre-

ious iteration, and retaining the K columns of G that correspond to

he largest correlations (in magnitude). This set of K columns is then

erged with the set of columns used to obtain the previous itera-

ion’s approximation of y. As a result, we now have a set containing up

o 2K columns of G, say T̃�. These columns are the candidates among

hich we will select the K columns to be used to obtain the current

teration’s estimate of y.

The selection process proceeds as follows. We first project y onto

he span of the columns of G in the merged set T̃� and we obtain a new

et of indices, T�, by identifying the columns corresponding to the K

argest-in-magnitude projection coefficients, i.e., to the K largest ele-

ents of the vector G
†

T̃�

y. The LS estimate of y at the �th iteration, ŷ�,

s calculated by projecting the vector y onto the span of the columns

f GT�
:

ˆ� = proj(y, GT�
). (14)

nd a new residue is obtained as y − ŷ�. Finally, the residue computed

t the current iteration is compared to the one from the previous it-

ration. If the current residue is larger or the maximum number �max

f iterations is reached, the refinement process is ended and the loop

s exited.

Once the final column set T� has been identified, the K-sparse ker-

el regressor is obtained by

f̂K(x) =
K∑

i=1

αik(x, xγi
) (15)

here γ i denotes the ith element of T� and αi is the corresponding

oefficient, i.e., αi is the ith element of the vector G
†
T�

y.

Algorithm 1 summarizes KSP.

.3. KSP versus KMP and KBP

While KSP, KMP and KBP are all methods that learn a regression

unction by means of sparse approximation, there exist substantial

ifferences in the reconstruction methods that they employ. Indeed,

oth KMP and KBP start by initializing the regression function to zero,

hen iteratively build it by selecting, at each iteration, one new en-

ry from the dictionary of functions. To build the regression function,

MP and KBP (using the LARS implementation) need a number of

terations equal to the desired number of basis functions in the ex-

ansion. KSP, on the other hand, always maintains an estimate of the
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Algorithm 1 Kernel Subspace Pursuit Algorithm.

Input: k, {x1, . . . , xL, y}, K.

Initialization:

Compute G using (6).

T0 = {Indices of the K largest magnitude entries in the vector

GT y}

r0 = y − proj(y, GT0
)

Loop: At iteration � (1 ≤ � ≤ �max), execute the following:

Compute the vector GT r�−1

Identify the set T of indices of the K largest magnitude entries

in that vector

Find the set of candidate columns T̃� = T�−1 ∪ T

Compute the vector G
†

T̃�

y

Identify the set T� of indices of the K largest magnitude entries

in that vector

Compute the residue r� = y − proj(y, GT�
)

If ||r�||2 > ||r�−1||2, let T� = T�−1 and exit the loop.

Output: K-sparse kernel regressor f̂K(x) (obtained using (15))
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Table 1

MSE performance of KSP, KMP and KBP in learning synthetic data using a Gaussian

kernel. For each entry, the first row presents the error alongside the corresponding

error margin while the second row shows the values (K, σ ) used in each case.

Algorithms

Functions KSP KMP KBP

cos ( exp (x)) 0.00214 ± 0.00096

(80,0.9)

0.00212 ± 0.00070

(80,0.5)

0.049 ± 0.012

(20,0.1)

sin ( exp (x)) 0.00255 ± 0.00105

(60,0.9)

0.00216 ± 0.00088

(70,0.5)

0.7911 ± 0.0197

(20,0.01)

tanh (x) 0.00291 ± 0.00112

(48,0.6)

0.00369 ± 0.00111

(36,0.3)

0.2223 ± 0.0151

(42,0.01)

tan (x) 0.00348 ± 0.00133

(60,0.6)

0.00658 ± 0.00153

(62,0.3)

0.3107 ± 0.1050

(26,0.06)

Heavisine 0.06323 ± 0.0183

(44,0.1)

0.11921 ± 0.01790

(92,0.1)

9.5013 ± 0.565

(24,0.6)

Doppler 0.0235 ± 0.0047

(66,0.1)

0.04025 ± 0.00489

(70,0.1)

0.0881 ± 0.00679

(86,0.8)

Blocks 1.4258 ± 0.25

(40,0.1)

1.6615 ± 0.235

(94,0.1)

5.8548 ± 0.693

(40,0.2)
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egression function built using the pre-specified number K of basis

unctions, and refines the estimate through a usually limited number

f iterations. Thus, KSP would normally require a smaller number of

terations than that required by KMP and KBP.

Furthermore, as we stated in Section 1.1, KMP employs a greedy it-

rative approach in constructing the approximation function. At each

teration, one atom is selected from the dictionary and appended to

he expansion. When such a selection is made at a specific iteration,

t cannot be reverted in later iterations as KMP lacks the capability

o reassess later whether a selected atom could have been replaced

ith one that is more informative. KSP does not suffer from this de-

ciency as with each iteration, any selected atom can be dynamically

uppressed if it were determined that it is less informative – at that

articular iteration – than K other atoms.

In the following section, we present simulation results that show

hat KSP outperforms both KMP and KBP in learning non-linear func-

ions as well as real data. We also provide a comparison of the com-

utational burden of each of these algorithms. This comparison will

how that KSP is indeed less computationally expensive than both

MP and KBP in many learning scenarios.

. Simulations

In this section, we experimentally test KSP and compare its per-

ormance to that of KMP and KBP1.

.1. Synthetic data

In this experiment, we test KSP in learning different non-linear

unctions. Our aim is to learn a function g(x) by observing L noisy

amples:

(xi) + N (0, σ 2
N ), i = 1, . . . , L (16)

btained at known input points xi ∈ R, i = 1, . . . , L. In (16), N (0, σ 2
N )

epresents Gaussian noise with mean 0 and variance σ 2
N .

In this experiment, we consider the following functions:

1. g(x) = cos ( exp (x)),
2. g(x) = sin ( exp (x)),
3. g(x) = tanh (x),
4. g(x) = tan (x).
1 KBP was implemented using the vanilla version of the LARS algorithm (Section 2

n [6]) stopped after K iterations.

i

e also test our method using synthetic data described by Donoho

nd Johnstone [5]. These data were generated using the following

unctions:

1. Heavisine function: g(x) = 4 sin (4πx) − sgn(x − 0.3) −
sgn(0.72 − x),

2. Doppler function: g(x) = [x(1 − x)]0.5 sin (2π 1+ε
x+ε ) with ε = 0.5,

3. Blocks function: g(x) = ∑11
j=1 a j p(x − b j) where:

• p(x) = {1 + sgn((x)}/2,

• a = [4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 2.1,−4.2],
• b = 1

100 [10, 13, 15, 23, 25, 40, 44, 65, 76, 78, 81].

The inputs xi ∈ R are drawn i.i.d. from the interval [0, 1] according

o a uniform distribution. Each input is then passed through one of

he non-linear functions mentioned above. The result is finally cor-

upted with white Gaussian noise with variance σ 2
N = 0.15. We use a

raining set of size L = 400 and a test set of size 200. For each exper-

ment, we optimize, for each algorithm, the kernel width σ and the

parsity K (number of basis functions in the final solution) using 5-

old cross-validation. The results, averaged out over 50 Monte-Carlo

imulations, are shown in Table 1 where we also specify the values for

and σ used in each case. The error figures are shown along with the

orresponding error margin. For all cases, we use �max = 5.2 Results

how that KSP outperforms both KMP and KBP in learning 5 of the 7

unctions shown in Table 1 while being outperformed in the first two

xperiments by only one algorithm, namely, KMP.

Next, we repeat the first experiment but instead of a Gaussian ker-

el, we use a polynomial kernel given by: k(u, v) = (uv + 1)2. Again,

or each experiment, we optimize, for each algorithm, the kernel

idth σ and the sparsity K using 5-fold cross-validation. The results,

veraged out over 50 Monte-Carlo simulations, are shown in Table 2.

he error figures are shown along with the corresponding error mar-

in. Results show that KSP outperforms KMP and KBP in learning 6 of

he 7 functions, with KSP being outperformed in the first experiment

y one algorithm only, namely, KMP.

.2. Real data

In this section, we test KSP using real data obtained from three re-

ression datasets available in the UCI machine learning repository [1].

n the first dataset, the task consists in predicting the prices of houses

n suburbs of Boston based on different demographic, economic and

ocial factors. In this dataset, the first 800 samples are used as a train-

ng set and the next 200 samples are used as a test set. In the second
2 See Section 4.3 for an important observation related to �max .



60 J. Kabbara, I. N. Psaromiligkos / Pattern Recognition Letters 69 (2016) 56–61

Table 2

MSE performance of KSP, KMP and KBP in learning synthetic data using a polynomial

kernel. For each entry, the error is shown alongside the corresponding error margin

and corresponding value for K in parenthesis.

Algorithms

Functions KSP KMP KBP

cos ( exp (x)) 0.00116 ± 0.000872

(40)

0.00088 ± 0.00073

(58)

0.24158 ± 0.141

(80)

sin ( exp (x)) 0.00173 ± 0.00100

(20)

0.011966 ± 0.00134

(24)

0.81667 ± 0.05910

(76)

tanh (x) 0.00112 ± 0.00090

(30)

0.00267 ± 0.00079

(36)

0.54034 ± 0.08680

(70)

tan (x) 0.00151 ± 0.00076

(34)

0.00213 ± 0.00084

(44)

0.46754 ± 0.07472

(76)

Heavisine 6.93244 ± 0.528

(20)

7.72686 ± 0.62700

(20)

8.57339 ± 0.601

(20)

Doppler 0.07833 ± 0.00579

(50)

0.07937 ± 0.00589

(50)

0.08588 ± 0.00668

(138)

Blocks 3.27133 ± 0.295

(20)

3.65594 ± 0.304

(30)

6.07591 ± 0.576

(56)

Table 3

MSE performance of KSP, KMP and KBP in learning real data using a Gaus-

sian kernel. For each entry, the first row presents the error while the sec-

ond row shows the values (K, σ ) used in each case.

Algorithms

Data KSP KMP KBP

Housing 106.0016

(288,14.5)

119.4577

(250,20)

268.31759

(300,4)

Abalone 0.05389

(500,0.7)

0.0626

(540,0.6)

8.8319

(450,0.2)

Stocks 0.00002

(94,0.1)

0.00003

(72,0.1)

0.00199

(100,4.9)

Table 5

CPU running times for KSP, KMP and KBP in milliseconds.

Algorithms

Functions KSP KMP KBP

cos ( exp (x)) 146.64 287.04 124.80

sin ( exp (x)) 102.96 254.28 115.44

tanh (x) 85.80 124.80 235.56

tan (x) 96.72 226.20 143.52

Heavisine 38.22 322.61 140.40

Doppler 89.86 242.74 447.41

Blocks 32.45 336.03 219.96

Housing 274.44 171.93 613.72

Abalone 2229.91 1726.39 3110.85

Stocks 52.53 40.75 157.09
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Table 6

Effect of K on KSP’s MSE Performance and CPU Running Times (in milliseconds).

K

Functions 10 50 100 200

cos ( exp (x)) 0.01029 0.01027 0.01014 0.01009
dataset, the task consists in predicting the age of Abalone species (a

type of sea snails) based on various physical measurements. In this

dataset, the first 400 samples are used as a training set and the next

100 samples are used as a test set. In the last dataset, the task con-

sists in predicting the values of Istanbul’s stock exchange given dif-

ferent attributes. In this dataset, the first 800 samples are used as a

training set and the next 100 samples are used as a test set. For all

three datasets, we use �max = 5, and for each dataset, we optimize

the kernel width σ and the sparsity K for each algorithm using 5-fold

cross-validation. The results are presented in Table 3 and show that

KSP outperforms both KMP and KBP in all of the 3 learning scenarios.

Next, we repeat the same experiment but instead of a Gaussian

kernel, we use a polynomial kernel given by: k(u, v) = uv + 1. Again,

for each dataset, we optimize the kernel width σ and the sparsity K

for each algorithm using 5-fold cross-validation. The results are pre-

sented in Table 4 and show that KSP outperforms both KMP and KBP

in all of the learning scenarios.

4.3. Computational considerations

To understand better the computational burden of the three algo-

rithms, KSP, KMP and KBP, we note that KMP and KBP are of order

O(L2) per iteration. KSP is of order O(L2 + LK2) per iteration. Regard-

ing the number of iterations, recall that the number of iterations in
Table 4

MSE performance of KSP, KMP and KBP in learning real data using a

polynomial kernel. For each entry, the error is shown alongside the

corresponding value for K in parenthesis.

Algorithms

Data KSP KMP KBP

Housing 24.4105 (11) 69.5966.1 (30) 26.4025 (162)

Abalone 9.6848 (50) 15.0165 (80) 71.70987 (50)

Stocks 0.00002 (40) 0.00015 (50) 0.00015 (126)
SP does not depend on K. The extent to which our algorithm de-

ends on K is the computational cost per iteration. Therefore, KSP

oes not suffer from the more detrimental dependency that binds

he number of iterations to K. In fact, our simulations showed that,

or all learning scenarios presented in Section 4, increasing the maxi-

um number, �max , of KSP iterations beyond 5 iterations (we consid-

red values of �max up to 50) led to a minimal (practically negligible)

mprovement in the MSE performance of KSP. Hence, the maximum

umber of KSP iterations that were executed in order to build the re-

ression function was fixed at 5.

We further investigate the computational burden ensuing from

unning KSP, KMP and KBP in different learning scenarios. We record

he CPU time needed to run one Monte-Carlo iteration (i.e., one com-

lete run) of each of the 3 algorithms in the 10 different learning sce-

arios that use the Gaussian kernel. All parameters are kept the same

s in Section 4.1. The three algorithms were implemented in MATLAB,

nd all tests were run on an 8-GB, 2.00-GHz Intel Core i7 workstation

unning a 64-bit Windows 7 OS. We report the corresponding CPU

unning times (in seconds) for each of the three algorithms in Table 5

or the scenarios involving synthetic data (first 7 rows) and real data

last 3 rows).

Results show that despite the higher complexity-per-iteration of

SP, KSP’s CPU running time is the smallest in 6 out of the 10 learning

cenarios. This can be explained by the fact that, despite KSP’s higher

omplexity per iteration, a maximum of 5 KSP iterations were needed

as explained earlier in the section) while the other two algorithms

equired a larger number of iterations (equal to the number of basis

unctions in the final solution).

.4. Effect of K on KSP’s performance

In this section, we investigate how KSP’s MSE performance

nd CPU time vary with the increase of K. We report in Table 6
12.00 54.00 124.80 577.20

sin ( exp (x)) 0.01048

21.00

0.01041

78.00

0.01040

187.20

0.01039

717.60

tanh (x) 0.01012

13.20

0.00993

79.00

0.00989

249.60

0.00981

639.60

tan (x) 0.01053

17.40

0.01035

62.40

0.01032

253.60

0.01024

811.21

Heavisine 0.6760

4.16

0.5870

61.9

0.5770

241.00

0.556

836.00

Doppler 0.0865

9.88

0.0858

60.3

0.0853

264

0.0844

852

Blocks 3.205

10.80

3.131

54.60

2.789

204.36

2.769

683.60
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he MSE performance and CPU running times for learning the 7

ifferent synthetic data using a Gaussian kernel of width σ = 3 for

= 10, 50, 100, and 200. The value in the first row in each cell rep-

esents the MSE while the value in the second row represents the

PU running time in milliseconds. It is interesting to note that for

his choice of σ the MSE performance is not as sensitive to the choice

f K as the CPU running time.

. Summary and conclusion

In this paper, we presented a new kernel method that approxi-

ates target functions in the least-squares sense by means of sparse

pproximation. To approximate the target functions, KSP uses a lin-

ar combination of a finite number of elements selected from a

ernel-based dictionary. KSP is an iterative approach that starts by

nitializing the subset of selected dictionary functions to be used in

he approximation and then refines this subset throughout a lim-

ted number of iterations to minimize the approximation error. By

pecifying the number of basis functions, KSP is able to guarantee

he sparsity of the solution, and thus offer improved generalization

erformance.

KSP belongs in the same family as KMP and KBP: they all solve the

ame regression problem and they share many attractive properties.

or example, they all allow the dictionary of functions to include dif-

erent types of kernels, and thus enable learning using mixtures of

ifferent kernels or kernels of the same type but having different pa-

ameters. Also, they are all based on pursuit methods but they differ

n the exact pursuit method employed to enforce the sparsity con-

traint (SP, MP and BP). In a sense, our work completes the group of

ernel regression methods that are based on pursuit algorithms, by

ntroducing its most powerful member (both in terms of learning and

omputational performance). Therefore, part of this paper’s contribu-

ion is to demonstrate for the first time that SP is the better pursuit

ethod to address the problem at hand.

We presented 20 different scenarios involving learning different

ynthetic and real data. We experimentally showed that, in these sce-

arios, KSP requires a number of iterations that is much smaller than

hat required by KMP and KBP. As a result, KSP is less computationally

ntensive than KMP and KBP in many of those learning scenarios. We

urther presented experimental validation that shows that KSP out-

erforms KMP and KBP in the task of learning real and synthetic data

n 17 out of different 20 learning scenarios.
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