Recognizers. A study in learning how to model
temporally extended behaviors

Jordan Frank Doina Precup
jordan.frank@cs.mcgill.ca dprecup@cs.mcgill.ca
McGill University McGill University

Montreal, QC, Canada Montreal, QC, Canada

1 Introduction

Using a hierarchy of behaviors often requires learning nsodéthese behaviors in an
efficient way from one stream of experience. In this paper meancerned with comput-
ing the reward model of a behavior, when this model has to pesented using function
approximation. Off-policy learning methods have been peaul for this goal, but their ef-
ficiency when using function approximation has been lim{féekcup, Sutton & Dasgupta,
2001). One of the sources of this problem is the fact thatiegieff-policy methods rely on
importance sampling corrections to estimate models féeidint behaviors from the same
stream of experience. These corrections can have very lkigance if the policy gener-
ating the behavior is very different from the behavior that want to model. Moreover,
the behavior policy has to be known and fixed, otherwise tltesections are not well
defined. In order to address these problems, Precup et &l6)2ttroduced the notion of
recognizers Rather than specifying an explicit policy for a behaviooatwhich we want
to make predictions, a recognizer specifies a condition emthions that are selected. For
example, a recognizer for the temporally extended actiopiaking up a cup would not
specify which hand is to be used, or what the motion shouldtlad! different positions
of the cup. The recognizer would recognize a whole varietgigdctions of motion and
poses as part of picking the cup. The advantage of this aplpredhat the behavior may
be based on a variety of different strategies, all of whighratevant, and we would like
to learn from any of them. In general, a recognizer is a fumcthat recognizes or accepts
a range of different policies. Recognizers have two adwpgaver direct specification of
a target policy: 1) they are a natural and easy way to specdygget policy for which im-
portance sampling will be well conditioned, and 2) they doneguire the behavior policy
to be known. The latter is important because in many casesayehawve little knowledge
of the behavior policy, or a stationary behavior policy ma aven exist. In Precup et
al.(2006), the authors show that if the model is represamdaty state aggregation, even if
the behavior policy is unknown, convergence to a good madsthieved. Here, we gener-
alize this to the case of general linear function approxiomaand show that this approach
works very well empirically. We also discuss how recogrsaeight be learned from data.

2 Recognizers

We use the standard framework in which an agent interactsanétochastic environment.
At each time step, the agent receives a stage chooses an actiosg, obtains a numerical
rewardr; ;1 and transitions stochastically to a new stata. Assume for the moment that
actions are selected according to a fixed behavior pdiicys x 2 — [0,1] whereb(s,a)

is the probability of selecting acticain states. The behavior policy is used to generate a
sequence of experience (observations, actions and réwatusgoal is to learn, from this

data, predictions about different ways of behaving. Werasstinat the state space is large
or continuous, and function approximation must be used nopede any values of interest.
In particular, we assume a space of feature vectoasd a mapping: § — ®. We denote
by @ the feature vector associated with state

An option (Sutton, Precup & Singh, 1999) is defined as a tapie(l, 1,) wherel C Sis
the set of states in which the option can be initiateds the internal policy of the option
andp: S— [0,1] is a stochastic termination condition. In the options w@ktton, Precup
& Singh, 1999), each of these elements has to be explicityifipd and fixed in order
for an option to be well defined. Here, we will instead defingas implicitly, using the
notion of a recognizer.

A recognizer is defined as a functien Sx 4 — [0,1], wherec(s,a) indicates to what
extent the recognizer allows actienin states. An important special case (the only one
we addressed so far) is that of binary recognizers. In thég,cas an indicator function,
specifying a subset of actions that are allowed, or receghigiven a particular state.
Note that recognizers do not specify policies; insteady therely give restrictions on the
policies that are allowed or recognized.

A recognizerc together with a behavior polidygenerates #arget policyr, where:

bsa)c(sa) _ b(sa)c(sa)

= = (1)
¥ xb(s,x)c(s,x) H(s)

The denominator of this fractiop(s) = 3, b(s,x)c(s,), is therecognition probabilityats,
i.e., the probability that an action will be acceptedahen behavior is generated according
to b. The policyTtis only defined at states for whigl{s) > 0. The numerator gives the
probability that actiora is produced by the behavior and recognized.iiNote that if the
recognizer accepts all state-action pairs,¢(s,a) = 1,Vs, a, thenttis the same ab.

(s, a)

Since a recognizer and a behavior policy can specify togetharget policy, we can use
recognizers as a way to specify policies for options, usitlg (An option can only be
initiated at a state for which at least one action is recagphizsou(s) > 0,Vs < |. Similarly,
the termination condition of such an optidh,is defined ag(s) = 1 if u(s) = 0. In other
words, the option must terminate if no actions are recoghéte given state. At all other
statesf3 can be defined between 0 and 1 as desired.

In this paper, we focus on computing the reward model of aioomt, i.e., the expected
sum of rewards obtained while executing the option:

Eo{R(S)} =E{ri+r2+...+r7|so =s 1B}

wheres e |, experience is generated according to the policy of theopii, andT denotes
the random variable representing the time step at whichgtieroterminates according to
B. We assume that linear function approximation is used tceemt these values, i.e.

Eo{R(s)} ~ 67 s
wheref is a vector of parameters.

The algorithm for learning such models, presented in Pretap(2006), is based on using
importance sampling weights at each step of the trajectorgprrect for the difference
between the behavior polidyand the target policyt. Because of the way in whichis
defined, the importance sampling correction can be reemras:
n(s,a) c(s,a)
p(s,a) = =
53 =pisa) ~ uy
Of course u(s) depends om. If b is unknown, instead ofi(s), we will use a maximum
likelihood estimatqu” S— [0,1]. The structure used to compytenill have to be com-
patible with the feature space used to represent the rewad#imMore precisely, in the

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.2 0.4 0.6 0.8 1

Figure 1: Puddleworld environment (left) and learned relvaodel (right)

case of linear function approximation, we can use logistizession, with the same feature
mapping®, in order to estimatg.

On every time step, the learning algorithm performs the following updates:
1
1+e W o
Compute importance sampling correctigrs, &) = c(s,a) /()
Compute TD-errord; = pr(res1+ (1— Brs16{ @s,,) — 6 &
Update reward model parametelg;1 = 6; + ade
Update eligibility trace increment, based on restarthagi = prki (1 — Bt+1) + Gi+1
Update eligibility tracer 1 = Apt(1—Bry1)e + k15,4
Update recognition probability parameteng: 1 = w; +a’(c(s,a) — U(S)) @

Compute recognition probabilityi(s) =

Here, we also use a restart functipim order to prevent the eligibility traces from decaying
to 0 too quickly (see (Precup, Sutton & Dasgupta, 2001) fomits.

3 lllustration

In order to illustrate this approach we use the puddle waridrenment from the RL-Glue
library (University of Alberta). The environment is presethin Figure 1. Stepping in the
puddle generates a negative reward which goes from O at tpesdd -100 at the center
of the puddle. When the agent is in the goal state, it is giveewaard of 100. Otherwise,
if the agent is not in the puddle or the goal region, it recei@eeward of -1. The task is
continuing, and does not have a terminal state, and so thm axggy remain in the goal state
for a number of time steps, generating a reward of 100 at éaph $he dimension of the
world is 1 in each direction and there are 16 possible actioosing the agent a distance of
0.05in one of 16 directions. After an action, the agent ie ai®ved in a random direction
by an amount drawn from a normal distribution with mean 0 aaddard deviation 0.01.

We use standard tile coding to provide state features. Wéous@verlapping tilings, each
of dimension 4x 4. The behaviour policy is uniformly random. We have a detristic,
binary recognizer that recognizes all actions that movagent up and to the right, which
would generally move the agent towards the goal region froostnstates. Since four
actions are recognized, and the actions are generatedmhiftandomly, the recognition
probability should be exactly 0.25. The values of the patamnseareh = 0.6, B = go =
0.05,a = 0.001,0’ = 0.005. We use a decreasing schedule for the learning ratesewhe
we halve the learning rates after time st@p&T,4T,8T,16T,32T,64T, and 128, where

T =100,000. The experiment runs for 2b@ime steps.

The reward model for the recognizer is shown in Figure 1. Edlshows the recogni-

Recognition Probability Estimates at (0.10,0.10) 0 Expected Reward Estimates at (0.10,0.10)

With Estimated Recognition Probability
With Exact Recognition Probability

Estimated Value
True Value -1

Recognition Probability
Expected Reward

“o 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
Number of Steps Number of Steps

Figure 2: Recognition probabilities at a given state in thedteWorld experiment (left).
Reward estimates for the same state (right)

tion probabilities and reward model for a particular givéaites. As seen in the figure, the
recognition probabilities are learned correctly very glyic More importantly, the impre-
cise recognition probabilities have almost no effect omiee the reward estimates: the
reward estimate using the exact recognition probabilitygarly identical to the reward
estimate using the learned recognition probability.

These results are consistent over different states anefeliff behavior policies. We have
also experimented with this method in the Ship steering {afdo included in the RL
repository). The results are almost identical to thoserilesd here, and are omitted for the
moment due to lack of space.

4 Recognizer improvement

So far, we have assumed that both the recognition functidrttaa termination condition

have to be specified in advance. However, these can be lefaomedata as well. In order

to learn the recognition function for good recognizers, &g ase the action elimination
approach proposed by Even-Dar et al (2003). Learning thaitation probabilities is

more complicated. The basic idea we have been experimesnirigr is tuning these in

order to keep the importance sampling ratios well behavedncH, trajectories are cut
when ratios that are too large or too small are encountered.

References

Even-Dar, E., Mannor, S. & Mansour, Y. (2003). “Action Elimation and Stopping Con-
ditions for Reinforcement Learning”. IAroceedings of the 20th International Conference
on Machine Learningpp. 162—169. Morgan Kaufmann.

Precup, D., Sutton, R.S. & Dasgupta, S. (2001) “Off-poliesnporal-difference learning
with function approximation ”. InProceedings of the 18th International Conference on
Machine Learningpp.417-424. Morgan Kaufmann.

Precup, D., Sutton, R.S., Paduraru, C., Koop, A. & Singh2806). “Off-policy Learning
with Options and Recognizers”. dvances in Neural Information Processing Systems
18, pp. 1097-1104. MIT Press.

Sutton, R.S., Precup D.& Singh, S. (1999). “Between MDPssamdi-MDPs: A Frame-
work for Temporal Abstraction in Reinforcement Learningt Artificial Intelligence vol.
112, pp.181-211.

