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Abstract
We consider the task of reinforcement learning in
an environment in which rare significant events
occur independently of the actions selected by
the controlling agent. If these events are sam-
pled according to their natural probability of oc-
curring, convergence of conventional reinforce-
ment learning algorithms is likely to be slow, and
the learning algorithms may exhibit high vari-
ance. In this work, we assume that we have ac-
cess to a simulator, in which the rare event prob-
abilities can be artificially altered. Then, impor-
tance sampling can be used to learn with this sim-
ulation data. We introduce algorithms for pol-
icy evaluation, using both tabular and function
approximation representations of the value func-
tion. We prove that in both cases, the reinforce-
ment learning algorithms converge. In the tabular
case, we also analyze the bias and variance of our
approach compared to TD-learning. We evaluate
empirically the performance of the algorithm on
random Markov Decision Processes, as well as
on a large network planning task.

1. Introduction
We consider a practically important class of control tasks,
in which rare (potentially catastrophic) events might take
place. For example, in a computer network, links and nodes
can fail, causing traffic to be undelivered and large penal-
ties to be incurred. A robot exploring a rugged terrain may
be caught by a sudden gust of wind which rolls it over. An
investment agent may be faced with a market that is in tur-
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moil due to a sudden unforeseen event. In such cases, the
rare events occur independently of the actions of the agent,
with some small probability. However, such rare events can
have a disproportionate effect on the agent’s utility. If such
events are sampled on-line, as is the case in most reinforce-
ment learning (RL) applications, they may not occur often
enough to obtain an accurate estimate of the value function.

In this paper, we formalize this problem and propose solu-
tion algorithms. We assume that learning will be done in a
simulation environment in which the probability of the rare
event can be set to desired levels. In most safety-critical
applications, training in a simulated environment is a com-
mon approach. In this case, we can sample rare events more
often, and use importance sampling corrections similar to
(Precup et al. 2000, 2001) to evaluate a given policy. How-
ever, importance sampling can cause high variance in the
learning updates. We propose to use an adaptive algorithm
in which the sampling rate for the rare event is adjusted in
such a way as to minimize variance. For the case in which
the value function is represented as a table, we show that
the algorithm converges and provide a bias-variance analy-
sis, based on (Mannor et al., 2007) . For the case of linear
function approximation, we prove convergence. We note
that a bias-variance analysis for this case is not even avail-
able for TD-learning without importance sampling. We il-
lustrate the performance of our approach on two domains:
random Markov Decision Processes (MDPs), and a large
network planning task. Our approach proves quite success-
ful when compared to on-line TD-learning.

The literature on simulation of rare events is vast; see
(Bucklew, 2004; Asmussen & Glynn, 2007) for compre-
hensive reviews. There are many Markov (or Markov-like)
models that have been studied in the simulation community
including queues, inventory control problems, call centers,
communication systems, etc. The main objective of these
works is to estimate the probability of a rare event by sim-
ulating the system under an alternative probability mea-
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sure, and then use importance sampling to unbias the re-
sults. The search for the optimal change of measure can be
done in several ways, including the cross-entropy method
(Rubinstein & Kroese, 2004) and stochastic approxima-
tion. Variance reduction has also been studied within the
RL community. In particular, (Baxter & Bartlett, 2001)
considered adaptive control-variates for policy gradient al-
gorithms.

The explicit modeling of rare events in reinforcement
learning-style algorithms was studied in (Bhatnagar et al.,
2006). Their objective is to find an optimal control policy
conditioned on the occurrence of a rare event. A model that
closely resembles our approach is presented in (Ahamed
et al., 2006). However, they assume that the model of
the transition probabilities is known, and can be arbitrar-
ily modified. We make a less restrictive assumption: the
only parameter of the simulator that can be modified is the
rate at which the rare events occur. Also, the bias-variance
analysis and discussion of the function approximation case
are novel.

The rest of the paper is organized as follows. In Section 2
we provide the essential background on RL and MDPs. In
Section 3 we formally describe the rare events model used
in this paper. We review RL algorithms that use importance
sampling in Section 4. The learning algorithm we propose
is described in Section 5. In Section 6 we present bias-
variance results for learning in MDPs with rare events. Sec-
tion 7 presents a learning algorithm with function approx-
imation and a proof of convergence in this case. The em-
pirical results of our approach are presented in Section 8.
Finally, Section 9 presents conclusions and avenues for fu-
ture work.

2. Background
We use the standard RL framework (Sutton & Barto, 1998)
in which an agent interacts with its environment at discrete
time steps t = 0,1,2, . . . . At time t, the agent finds itself
in a state st ∈ S, chooses an available action at ∈ Ast , and
then receives a numerical reward, rt+1 ∈R and observes the
next state st+1. We denote A =

S
s∈S As. If the environment

is modeled as an MDP, its dynamics are characterized by
the stationary transition probability distribution:

p(s′|s,a) = Pr{st+1 = s′|st = s,at = a},

and a bounded, real-valued reward function r(s,a,s′) with
|r(s,a,s′)| ≤ Rmax < ∞,∀s,s′ ∈ S,a ∈ A.

We are concerned with the problem of policy evaluation
in discounted infinite horizon problems with discount fac-
tor γ ∈ (0,1). The agent chooses its actions according to a
stationary policy π(s,a) = Pr{at = a|st = s}. We are inter-
ested in computing the state-value function V π : S→ R for

the given policy π. This value function is the solution to the
well-known Bellman equations

V π(s) = ∑
a∈A

π(s,a) ∑
s′∈S

p(s′|s,a)[r(s,a,s′)+ γV π(s′)]. (1)

In RL, this value function is often estimated on-line using
the well-known TD-learning algorithm (Sutton, 1988). If
the actions are chosen using the desired policy π, after ob-
serving transition (s,a,r,s′), the estimate of the value func-
tion, V , can be updated as:

V (s)←V (s)+α
[
r + γV (s′)−V (s)

]
. (2)

In control tasks, the objective is to find the policy that max-
imizes V π(s) at all states s.

3. Rare Events
We are concerned with problems involving rare, significant
events that occur as a result of environmental factors, and
which are independent of the current action taken by the
agent. We model this using a mixture of two separate tran-
sition probability distributions: f (s′|s,a), which captures
the environment dynamics during “normal” operating con-
ditions, and g(s′|s), which is the “rare event” transition dis-
tribution. We assume that at every state s ∈ S, there is a
small probability, ε(s), that an unusual event might occur
from this state. In this case, the transition to the next state
is determined exclusively by g. If such an event does not
occur, the next state is drawn according to f , and depends
on both the current state and the agent’s action. Hence, the
transition probability in the environment can be re-written
as:

p(s′|s,a) = (1− ε(s)) f (s′|s,a)+ ε(s)g(s′|s). (3)

Without loss of generality, we will assume that the “nor-
mal” states (reachable by f ) and the “rare event” states
(reachable by g) are disjoint. Hence, the transition prob-
ability distribution can be re-written as:

p(s′|s,a) =

{
(1− ε(s)) f (s′|s,a) if s′ 6∈ T ,

ε(s)g(s′|s) if s′ ∈ T ,

where T ⊆ S is the set of “rare event” states.

We are concerned with rare events that have a signifi-
cant impact on the state-value function for a given policy.
Therefore we define the rare events state set as follows.

Definition 3.1. A subset of states T ⊆ S is called a rare
events state set if the following three properties hold:

1. For all s ∈ S, a ∈ A, s′ ∈ T , f (s′|s,a) = 0 (i.e., T is not
reachable from any state s using the agent’s actions).
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2. There exists s ∈ S, s′ ∈ T such that g(s′|s) > 0 (i.e., T
can be forced by the environment)

3. Let V π
f denote the value function obtained by replac-

ing p with f in (1). Then, for the given policy π,

∃s ∈ S s.t. |V π
f (s)−V π(s)| � 0.

The last condition means that the states in the rare event
state set must (collectively) have a large impact on the state-
value function. We define rare events to be transitions into
the rare event state set. For convenience, we will refer to
the states that are not in the rare event state set, S\T , as the
normal states.

We note that we use the term “rare event” loosely from
the point of view of the simulation community (Bucklew,
2004), because our definition is not based solely on the
probability of the event. We deviate from the typical defi-
nition due to the fact that there may be events that occur in-
frequently but do not have a noticeable effect on our value
function estimates, and we are not concerned with these
events.

4. Importance Sampling for Reinforcement
Learning

The TD update (2) is based on the idea that the right-hand
side of the Bellman equations (1) can be approximated us-
ing samples of the next transition, r(s,a,s′)+γV (s′), where
a ∼ π(s, ·) and s′ ∼ p(·|s,a). However, in an environment
with rare events, if ε(s) is very small, a very large number
of samples will be needed in order for the rare events to be
averaged properly in the value function estimates. Instead,
we investigate a sampling distribution which allows these
events to be sampled preferentially, and then we use im-
portance sampling corrections to account for this in the TD
updates.

Importance sampling is a variance-reduction technique
commonly used in statistics, as well as in the simulation
community (Bucklew, 2004). The main idea is that in-
stead of obtaining samples from the true distribution p,
they will be drawn from a different distribution q, called
the proposal distribution, in which events of interest oc-
cur more frequently. If q is devised well, then using these
samples will reduce the variance of the estimator. Pre-
cup, Sutton & Singh (2000) extended this approach to TD-
learning. They studied the case in which a target pol-
icy π is evaluated based on data generated by a differ-
ent behavior policy. In this case, they showed that a TD-
learning algorithm can still be used, in which the TD targets
are adjusted by using the appropriate importance sampling
weights: w(s,a,s′)(r(s,a,s′)+ γV (s′)), where:

w(s,a,s′) =
p(s′|s,a)
q(s′|s,a)

.

In their case, the change of measure is induced by the be-
havior policy, and the importance sampling weights are the
likelihood ratios of the probabilities of action a under the
two policies.

Ahamed, Borkar & Juneja (2004) use the same idea but
with the goal of changing the next-state probabilities in a
discrete-time finite-state Markov chain with positive costs.
They assume that the transition probabilities are known and
can be modified at will, and propose an adaptive impor-
tance sampling algorithm (ASA) which finds an alternative
set of transition probabilities in order to minimize the vari-
ance of the value function estimator. They provide a con-
vergence proof (assuming a tabular representation of the
value function), a discussion of convergence rates, and sim-
ulation results.

5. Learning in the Presence of Rare Events
The ASA algorithm assumes that we have full knowledge
of the transition model, and can completely control the
transition probabilities, so all the transition probabilities
can be tilted towards the zero-variance importance sam-
pling distribution. In this paper, we relax this assumption
because it is difficult to achieve in practical applications.
We assume that the true rare event probability ε is known
(e.g., as the mean of a Poisson process that generates fail-
ures in a network, or the weight of the tail of a distribution
in which rare events occur). We assume that the system
dynamics, f and g are unknown and cannot be modified,
but that the probability with which rare events are gener-
ated can be changed as the simulation proceeds. In general,
with only this parameter at our disposal, we cannot achieve
the zero-variance importance sampling distribution; how-
ever, we can tilt the transition probability distribution p to-
wards the zero-variance distribution, and therefore reduce
the variance of our estimates.

We define ε̂ : S→ [0,1] to be the probability of a rare event
occurring from every state during the simulation. Hence,
the next states will be sampled from a proposal distribution
given by:

q(s′|s,a) = (1− ε̂(s)) f (s′|s,a)+ ε̂(s)g(s′|s), (4)

where f and g remain unchanged. By considering that the
state space S is separated into disjoint normal and rare event
subsets of states, we note that the importance sampling cor-
rections w(s,a,s′) can be computed by:

w(s,a,s′) =
{

ε(s)/ε̂(s) if s ∈ T,
(1− ε(s))/(1− ε̂(s)) if s 6∈ T.

(5)

Following a similar argument as in the development of the
ASA algorithm, we can determine the following optimal
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form for the rare event sampling distribution:

ε
∗(s)=ε(s)∑s′∈T g(s′|s)[(∑a∈Aπ(s,a)r(s,a,s′))+γV π(s′)]

V π(s)
,

(6)
Fortunately, the values ε∗(s) can be estimated on-line using
samples.

Algorithm 1 is our proposed approach for learning in the
presence of rare events. We call this algorithm rare events
adaptive stochastic approximation (REASA). It is based on
the observation that we can rewrite ε∗(s) as follows:

ε
∗(s) =

T ∗(s)
T ∗(s)+U∗(s)

, where

T ∗(s) = ε(s) ∑
s′∈T

g(s′|s)[(∑
a∈A

π(s,a)r(s,a,s′))+ γV π(s′)]

is the contribution to the value of s by the rare event state
set T , and

U∗(s) = (1−ε(s))∑
a∈A

π(s,a)∑
s′ 6∈T

f (s′|s,a)[r(s,a,s′)+γV π(s′)]

is the contribution to V π(s) from the normal states.

In the algorithm, T (s) is an unbiased estimator of T ∗(s) and
U(s) is an unbiased estimator of U∗(s). It follows that as
t→ ∞, from Equation (6),

ε̂(s) =
T (s)

T (s)+U(s)
→ ε

∗(s),

for every state s ∈ S. Since we use importance sampling
to calculate V̂ π(s), we also have that as t → ∞, V̂ π(s)→
V π(s) from standard stochastic approximation arguments
under some mild assumptions on the MDP structure. We
summarize the result in the following proposition.

Proposition 1. Using Algorithm 1 and assuming that the
MDP is unichain for ε = δ 1 we have that:

V̂ π(s)→V π(s) almost surely.

Moreover, ∀s s.t. ε∗(s) ∈ (δ,1− δ) we have that
ε̂(s) → ε∗(s) almost surely.

We note that we guarantee that we have enough persistent
exploration by requiring that ε̂(s) is bounded from below
by δ and from above by 1−δ (step 5h in Algorithm 1).

Although the treatment above is assuming positive rewards
(for ease of notation), our algorithm is actually formulated
for the general case in which rewards can be both positive
and negative, which is an extension of the ASA algorithm.

1The unichain assumption is needed to invoke the stochastic
approximation argument; see (Bertsekas & Tsitsiklis, 1996). Also
note that if the MDP is unichain for one value of ε ∈ (δ,1−δ) it
is unichain for all values.

Algorithm 1 Rare-event Adaptive Importance Sampling
Input: Rare event set T ⊂ S, true rare-event probabilities
ε(s), and parameter δ > 0, used to keep the sampling
distribution non-zero everywhere.

1. Initialize V̂ π arbitrarily.
2. Initialize the rare-event sampling distribution:

ε̂(s)← 1/2,∀s.
3. Initialize the variables T (s), U(s) (which measure

the contribution of T and S\T to V π) to 0.
4. Initialize eligibility traces: e(s) = 0,∀s.
5. Select the initial state s0.
6. Repeat for t = 0,1, . . . :

(a) Update the eligibility trace of the current state

e(st) = e(st)+1.

(b) Select an action at ∼ π(st , ·).
(c) Select whether a rare event happens, according

to ε̂(st), and sample st+1 from f or g accord-
ingly. Observe the reward rt+1.

(d) Compute the importance sampling weight wt
according to Equation (5).

(e) Compute the importance-sampling TD-error:

∆t = wt(rt+1 + γV̂ π(st+1))−V̂ π(st).

(f) Update the value estimates:

V̂ π(s)← V̂ π(s)+αe(s)∆t ,∀s,

where α ∈ [0,1] is a learning rate.
(g) If st+1 ∈ T , then:

T (st)←(1−αT )T (st)

+αT ε(st)(rt+1 + γV̂ π(st+1)),

else

U(st)←(1−αU )U(st)

+αU (1− ε(st))(rt+1 + γV̂ π(st+1)),

where αT ,αU ∈ (0,1) are learning rates. In the
experiments, we use the inverse of the number
of times a transition from st has been observed
to T and S\T respectively.

(h) Update the rare event probabilities:

ε̂(st)←min
(

max
(

δ,
|T (st)|

|T (st)|+ |U(st)|

)
,1−δ

)
.

(i) Update eligibility traces:

e(s)← γλwte(s),∀s.
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6. Bias and Variance of Reinforcement
Learning with Rare Events

For simplicity, let us assume that ε(s) = ε for all states s∈ S
(all the analysis can be done without this assumption, but
becomes more tedious). Let Rπ denote the vector of imme-
diate rewards for every state, with entries:

Rπ
s = ∑

a∈A
∑
s′∈S

π(s,a)p(s′|s,a)r(s,a,s′),

and Pπ be an |S| × |S| transition matrix under π, with en-
tries:

Pπ

ss′ = ∑
a

π(s,a)p(s′|s,a).

From (3), we can re-write Pπ as:

Pπ = (1− ε)Fπ + εG,

where Fπ is the transition matrix corresponding to staying
in the normal states, and G is the matrix corresponding to
transiting into the rare event states. Note that according to
our assumptions, G does not depend on π. Similarly, the
reward vector can be decomposed into two components,
Rπ

F and Rπ
G. We use two sequences, {Xk}∞

k=1 and {Yk}∞

k=1,
of geometrically distributed random variables, with means
(1− ε)−1 and ε−1 respectively, to represent the amount of
time between transitions from the normal states and the rare
event states respectively. We also assume that the initial
state is a normal state. Hence, the simulation starts in some
normal state and stays in the set of normal states for X1 time
steps, at which point it transitions to a state in the rare event
set, where it stays for Y1 time steps, then transitions back to
the normal set for X2 time steps, etc. We make two further
simplifications. First, we assume that after each excursion
into the rare event state set, the system “jumps back” to
the normal state in which it was before entering; that is,
(Fπ)iG j(Fπ)k ≈ (Fπ)i+k. Second, we assume that the re-
wards for transitioning to states in the normal set are similar
regardless of the origin, that is that GRπ

F ≈FπRπ
F . The anal-

ysis can be done without these assumptions, but it becomes
more tedious. These assumptions are reasonable because in
general the rare events model failures in the system, such
as a failed link in a network, and when the failure is no
longer present, the system resumes from the state prior to
the failure. We define τ(k) = ∑

k−1
i=1 Xk and υ(k) = ∑

k−1
i=1 Yk.

The value function estimate, V π, can be re-written as:

V π ≈ E

[
∞

∑
k=1

γ
τ(k)+υ(k)(Fπ)τ(k)−1

·

(
Xk−1

∑
i=0

γ
i(Fπ)iRπ

F + γ
Xk(Fπ)Xk−1

Yi−1

∑
i=0

γ
iGiRπ

G

)]
.

When the value function is estimated from data using TD-
learning, we can analyze the bias and variance of this es-

timate by considering that all the model component esti-
mates are affected by noise components (Mannor et al.,
2007). The estimate of the value function, V̂ π can be bro-
ken up into two components; the first component ignores
rare events, and the second takes rare events into account.
The first component is:

E[V̂ π
F ] =

∞

∑
k=1

E

[
γ

τ(k)+υ(k)(Fπ + F̃π)τ(k)−1

·
∞

∑
i=0

(1− ε)i
εγ

i(Fπ + F̃π)i(Rπ
F + R̃π

F)

]

where R̃π
F , F̃π represent the noise estimates in the normal

part of the model. The bias and variance of this estimate
can be derived directly as in (Mannor et al., 2007), noting
that τ(k) and υ(k) are sums of independent geometrically
distributed variables, and are therefore distributed accord-
ing to a negative binomial distribution.

The second component is:

E[V̂ π
G ] =

∞

∑
k=1

E

[
γ

τ(k+1)+υ(k)(Fπ + F̃π)τ(k+1)−1

·
∞

∑
i=0

(1− ε)εi
γ

i(G+ G̃)i(Rπ
G + R̃π

G)

]

Note that the noise components G̃, F̃π, R̃π
G depend on the

number of transitions observed in the environment. If we
observe N transitions, then the expected number of transi-
tions observed in the normal state set is (1− ε)N and the
expected number of transitions observed in the rare event
state set is εN. Hence, we assume that the noise compo-
nent F̃π is negligible compared to G̃, and R̃π

G. Hence, to
establish bias-variance estimates for V̂ π

G , we need to look at
E
[
(G+ G̃)(Rπ

G + R̃π
G)
]
. Similarly to (Mannor et al., 2007),

we assume that E[G̃] = 0 and E[R̃π
G] = 0. Hence, the re-

maining term which will determine the bias and variance is
E[G̃R̃π

G], which captures the correlations between the tran-
sition and model estimates, due to the fact that they are
estimated from the same samples. This expectation can be
derived directly from the formulas in (Mannor et al., 2007).

We would like to point out that we could also have ap-
plied the analysis of (Mannor et al., 2007) directly to Pπ.
However, this would lead to very loose bounds, because
their results depend on the inverse of the minimum number
of samples obtained for any transition, and we expect that
there will be very few transitions into the rare event set.
In our analysis, only the second term depends on numbers
of transitions into the rare events states, so we can focus
our analysis on the effect of the rare events on the bias and
variance in our estimates.
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Also, note that the purpose of the algorithm is to sample
rare events proportionately to their contribution to the value
function for all states. Hence, intuitively, it will reduce bias
and variance in the second component by oversampling the
rare events, and thus decreasing the noise components G̃
and R̃π

G. Given the same amount of data, the errors in F̃
and R̃π

F , but not by much.

7. Learning with Rare Events and Function
Approximation

If the state space is very large or continuous, function ap-
proximation must be used to estimate the value function.
Here, we are concerned with the case of linear function ap-
proximation, in which the value of a state is estimated as:

V π(s)≈ θφ(s), (7)

where θ is a parameter vector that needs to be estimated
and φ(s) is a set of features corresponding to state s. In this
case, the eligibility traces are also represented as a vector
e of the same size as θ. We now extend the REASA algo-
rithm to deal with this case. First, note that in this case,
we may not be able to have a state-dependent probability
of obtaining a rare event state, because specifying this on
a state-by-state basis would be too expensive. Hence, we
will assume for the moment, without loss of generality, that
the true rare event probability ε is constant over the entire
state space. We discuss possible extension to this in Sec-
tion 9. The algorithm will estimate a parameter ε̂ by taking
the view that, at a high level, the agent switches between
the normal states S \T and the rare-event states T . These
are now treated as two states in a high-level MDP, and ε̂ is
estimated like in REASA, on this 2-state system.

Algorithm 2 presents the approach, which adapts the algo-
rithm of Precup et al. (2001). Unlike in the tabular case,
here importance sampling corrections have to be made to
account for the difference in the distribution of observed
features, as well as for the difference in the TD target. As
explained in Precup et al. (2001), these corrections, which
are collected in the trajectory weight c, can result in high
variance. However, since we assume that the sets of normal
and rare event states are disjoint, we can assume, without
loss of generality, that they are represented by disjoint fea-
tures as well. In this case, step 7i of Algorithm 2 can be
eliminated, and variance will be greatly improved.

Proposition 2. Under standard stochastic approximation
conditions, Algorithm 2 converges in the limit, with proba-
bility 1, to the same estimates as the on-policy TD-learning
algorithm.

Algorithm 2 Rare-event Adaptive Importance Sampling
with Function Approximation

Input: Rare event set T ⊂ S, true rare-event probabil-
ity ε, and parameter δ > 0, used to keep the sampling
distribution non-zero everywhere.

1. Initialize parameter vector θ arbitrarily.
2. Initialize rare-event sampling parameter: ε̂← 1/2.
3. Initialize T̂ ← 0, Û ← 0.
4. Initialize eligibility vector: e← 0.
5. Initialize the total importance sampling trajectory

weight: c← 1.
6. Select the initial state s0.
7. Repeat for t = 0,1, . . . :

(a) Update the eligibility trace of the current state

e = e+ cφ(st).

(b) Select an action at ∼ π(st , ·).
(c) Select whether a rare event happens, according

to ε̂, and sample st+1 from f or g accordingly.
Observe the reward rt+1.

(d) Compute the importance sampling weight wt
according to (5).

(e) Compute the importance-sampling TD-error:

∆t = wt(rt+1 + γV̂ π(st+1))−V̂ π(st),

where V̂ π is computed according to (7).
(f) If st+1 ∈ T , then:

T̂ ← ((1−αT )T̂ +αT ε(rt+1 + γV̂ π(st+1)),

else

Û ← (1−αU)Û +αU(1−ε)(rt+1+γV̂ π(st+1)).

(g) Update the parameter vector: θ← θ + αe∆t ,
where α ∈ [0,1] is a learning rate.

(h) Update the rare event probabilities:

ε̂←min
(

max
(

δ,
|T̂ |

|T̂ |+ |Û |

)
,1−δ

)
.

(i) Update the trajectory weight: c← cwt .
(j) Update eligibility traces:

e← γλwte.

8. Experimental Results
8.1. Random MDPs

We first compare the performance of REASA to on-line
TD(λ) and to ASA on a testbed of randomly generated
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Figure 1. Value function estimate for state 0.

Markov chains. Each environment contains 10 regular
states and one rare event state. Each regular state can tran-
sition to seven other regular states (chosen randomly) with
probabilities drawn from a uniform distribution, and to the
rare event state with probability ε = 0.001. The rewards
for transitioning between the regular states and from the
rare event state to the regular states are drawn from a nor-
mal distribution with mean 1.0 and standard deviation 0.5,
with negative values being discarded (so that we can run
ASA). The rewards for transitioning to the rare event state
are drawn from a normal distribution with mean 10/ε and
standard deviation 1/ε. The initial state is state 0, and the
discount factor is γ = 0.7.

In the following results, a step is considered to be one tran-
sition for both ASA and REASA, but for TD(λ), a “step”
actually consists of 2300 real time steps. We chose this
number of steps so that the probability of observing at least
one rare event transition in each episode is approximately
0.9. Therefore, we put TD(λ) at a significant advantage
in terms of the number of samples that it is provided. In
Figure 1 we plot the estimate for the value function at the
initial state over time, averaged across 70 independent runs.
We use a value of λ = 0.7 and the learning rates are on de-
creasing schedules that have been tuned separately for each
of the algorithms. Figure 2 shows the root mean squared er-
ror for the value function estimate at the initial state, again
averaged across 70 independent runs.

The learning and error curves for REASA and ASA are
nearly indistinguishable, and both outperform TD(λ). We
note that in the case of ASA, the original transition prob-
ability distribution is needed, and the algorithm has full
control over the transition probabilities that are used in
the simulation (an unlikely case in many practical appli-
cations). We observe that despite the fact that REASA can
only know and control the rare event probability, it per-
forms nearly as well as ASA.
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Figure 2. Root MSE for value function estimate for state 0.

8.2. Policy Evaluation for Network Planning

In order to demonstrate REASA in a practical setting with a
large state space, we use a network planning task in which
a reinforcement learning agent has to build and maintain
a telecommunications network linking ten North American
cities. Each pair of cities has a certain traffic demand, rang-
ing from 3GBs2 to 60GBs initially, and this demand grows
stochastically at a rate of approximately 3% per year. The
goal is to place links between the cities in order to deliver
this data. Links consist of bundles of fiber optic cables, and
each fiber can carry a specific unit of bandwidth. Build-
ing links between the cities incurs a large one-time cost of
$500k/mile. Once a link has been built, the capacity of
the link can be increased by activating fibers, in units of
25GBs; this incurs a cost of $30k/mile. The revenue from
traffic is generated daily: traffic delivered generates a re-
ward of $1k/GBs/mile, and undelivered traffic is penalized
at a rate of $200k/GBs/mile every hour.

Link failures occur with a small probability, completely
severing a link for a short period of time. Without consider-
ing link failures, a minimum spanning tree (MST) could be
built, with enough activated fibers to carry the traffic. How-
ever, in such a network, any link failure would disconnect
the network, which would lead to undelivered traffic and a
high penalty. Hence, link failures in a network that lacks
robustness are rare events according to our definition. On
each day, each link goes down with probability 1/1460, or
approximately once every four years. When a link fails, it
remains down for a random amount of time that is normally
distributed with a mean of 12 hours and standard deviation
of 2 hours. In a tree network with 9 links, this is equivalent
to seeing at least one link fail with probability of approx-
imately 0.00896 each day during the 10 year simulation
period; this is our rare event probability.

2We use GBs to represent an average sustained traffic rate of
1 gigabyte per second; because the time interval under considera-
tion is always roughly the same, we also use it as a unit of traffic,
with an abuse of notation.
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Figure 3. Value estimate for tree network.

We implemented a network planning agent with a simple
heuristic policy, which first builds a tree network and then
monitors the links, adding capacity when the utilization of
a link reaches 90%. We use REASA and TD(λ) to estimate
the value of this policy. We represent the network state as
a vector of binary features, and use linear function approx-
imation to represent the value function. In order to cope
with the high dimensionality, we use a fairly coarse state
representation, consisting of: indicator variables regarding
whether each of the possible links have been built; indicator
variables for each link, which are true if the link is currently
failing; and the percentage utilization of each link, parti-
tioned into 4 bins: [0], (0,0.6], (0.6,0.9], and (0.9,1.0].
For our 10 node network, this corresponds to 270 binary
features plus an additional bias feature.

We use a discount factor of 0.95 and we set λ = 1.0. We
use a decaying schedule for the learning rate parameter α,
starting with a value of α0 = 2−15 for T = 100 episodes,
then using α0/2 for 2T episodes, α0/4 for 4T episodes, etc.
We note that α0 is extremely small due to the fact that the
rewards often have large magnitude and can vary between
−107 and 105. In the following results, an episode consists
of a simulated 10-year time span.

In Figure 3, we show the value estimate for the initial tree
network state. We see that REASA converges quickly,
while the TD(λ) estimates have high variance and converge
quite slowly. On longer runs, the TD(λ) estimates do con-
verge to the same value as REASA. REASA estimates the
optimal failure probability to be 0.155, which in a tree net-
work with 9 links corresponds to each link going down ap-
proximately every 54 days; this is quite far from the origi-
nal failure probability of once every 1460 days.

The rate of convergence is crucial for applications such as
the network task. Here, each episode corresponds to a sim-
ulated 10 year period, and these simulations are computa-
tionally expensive to run, because on each day, a routing
algorithm has to be run to determine the reward. Hence,
the gains obtained by REASA are significant.

9. Conclusions and Future Work
We presented an approach for reinforcement learning in en-
vironments with rare events, aimed at reducing the variance
of RL algorithms. Our algorithm modifies the sampling
probability of the rare events, and makes minimal assump-
tions on the simulator available to the agent. The empirical
results demonstrate the viability of our approach for solv-
ing large-scale problems. Future work will include mea-
suring empirically the bias and variance of the algorithm.
We would also like to lift the assumption that the rare event
probability is constant for the function approximation case.
Note that Algorithm 2 can be easily adapted to compute T̂
and Û as a function of the features available. Hence, if a
representation of ε(s) as a function of the available features
φ is given, we could estimate ε̂ as a function of features as
well. It is possible also to learn the true rare event proba-
bilities ε from data, but we anticipate that in practice this
may be difficult.
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