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MOTIVATION

•Many applications consider data from 
sensors measuring complex physiological 
systems (wearable sensors, ECG, EKG, 
etc.).

•This talk: Feature extraction that respects 
the inherent nonlinearities in the systems 
being measured.
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OUTLINE
1. Overview of our approach:

• Feature extraction from sensor data.

2. Evaluation on multiple data sets:

• Classification of activities from wearable accelerometer and 
barometric pressure sensors.

• Classification of individuals based on gait patterns collected 
by accelerometer sensors in mobile phones.

• Clustering traces of accelerometer and ECG recording data.
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PROBLEM FORMULATION
•Input: Noisy univariate observations of some high-dimensional 

nonlinear dynamical system.

•Output: Good features.

•Requirements: Data efficient, computationally efficient, 
memory efficient.
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EXISTING APPROACHES

•Signal Processing: Extract lots of (linear) features from 
sensor data, train powerful machine learning algorithms 
using these features.

•Problems: Computationally expensive, requires lots of data, 
underlying systems certainly aren’t linear or stationary. Lots 
of noise!
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OUR APPROACH
Steps:

1. Build Models: Project segments of time series into a 
suitable and convenient space that preserves 
information about the underlying dynamical system.

2. Extract Features: Given a set of models and a segment 
of time series, produce informative features from the 
time series.

3. Play: Classification, data visualisation and exploratory 
data analysis.
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MODELING
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INTUITION
• Assumption: data represents sequential observations 

from the steady state of a nonlinear dynamical system.

• Time-delay embedding (TDE) is a technique for reconstructing 
state-space and dynamics models from univariate observations 
of a nonlinear dynamical system.

• Solid theoretical foundation (Takens, 1981) for noiseless 
observations.

• Seems like a good fit, provided we can handle noise.
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SETUP
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TIME-DELAY EMBEDDING
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MODELS FOR DIFFERENT 
ACTIVITIES

0

0

0

Cycling

Walking

Running

Tuesday, March 22, 2011



FEATURE 
EXTRACTION
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INTUITION
• Think of models as basis functions in their particular 

reconstruction spaces

• Given a set of models and a new segment, project the 
segment into the reconstruction space for each model and 
calculate a measure of similarity

• Everything is in Euclidean space, and so geometry is 
straightforward
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TEMPLATE MATCHING
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SCORING
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RECAP

• Building models is efficient (memoization).

• Feature extraction is efficient (k-nearest neighbours).

• Features are similarity scores between a segment of data and 
a set of models.
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PLAY
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ACTIVITY RECOGNITION
• For each activity build a few (5) models from randomly 

selected segments of the training data

• Consider the similarity scores to be input features for training 
a classifier (SVM for our experiment)

• With 20 features, we achieve performance comparable to 
state-of-the-art systems that extract 651 features (Lester et 
al. 2006). 

• Example: Our method (87.89%), baseline (87.22%).

• Fair comparisons difficult due to availability of data sets.
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ACTIVITY RECOGNITION
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GAIT RECOGNITION
(TAKE ONE)

• 40 people, 12-20 seconds of data per person (walk to end of 
hall, walk back).

• Split each trace into training and test sets, build a model from 
the training set, compute score for each test set (repeat 5 
times with different training sets, average scores)
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GAIT RECOGNITION
RESULTS

• If we predict the model with the highest score, we achieve 
perfect (100%) classification accuracy

• Confusion Matrix:
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GAIT RECOGNITION
(TAKE TWO)

• Data collected from 20 individuals (10 male, 10 female) 
performing two 15 minute outdoor walks on two different 
days. Carried a Nexus One mobile phone in their pocket.

• Subjects changed clothes between days, paused to cross the 
street, walked up and down hills, on grass and concrete, up 
and down stairs.

• Data much more representative of what a real gait recognition 
system would encounter.
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GAIT RECOGNITION
(TAKE TWO)

• Performance measured on frame-by-frame recognition.

• Train on one day, test on the other.

• Problem: How to choose segments from which to build 
models.

• Solution: Boosting. Use boosting weights to locate hard-to-
classify segments and build models on these.

• One model per person (20 models). Replace one model at 
each round based on boosting weights. Random forest 
classifiers. Call our algorithm TDEBOOST.
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GAIT RECOGNITION RESULTS
• Baseline used 200 features from Lester et al. (2006) and 

random forest classifiers. Used more trees per forest as there 
were 10 times as many features.

• TDEBOOST Accuracy: 42%
Baseline Accuracy: 20%

• For 16 of the 20 individuals, TDEBOOST has higher precision 
and recall than the baseline.

• This data is freely available on my website.
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UNSUPERVISED LEARNING

• We have a method for computing the similarity (difference) 
between two segments of data. 

• Treat this as a distance function, and use clustering techniques 
for data exploration.
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HIERARCHICAL CLUSTERING
(EXERCISE ROUTINE DATA)
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HIERARCHICAL CLUSTERING
(EXERCISE ROUTINE DATA)
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HIERARCHICAL CLUSTERING
(EXERCISE ROUTINE DATA)
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HIERARCHICAL CLUSTERING
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HIERARCHICAL CLUSTERING
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HIERARCHICAL CLUSTERING
(EXERCISE ROUTINE DATA)
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SEMI-SUPERVISED LEARNING

• With only 1 label per subject-activity pair, we can correctly 
label 87% of the unlabeled data. Jumps to 91% with 3 labeled 
examples per subject-activity pair.

• With only 2 labels per activity for only one subject, we can 
correctly label 86% of the unlabeled data for all subjects.
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CLUSTERING ECG DATA
• ECG Data from PhysioNet ECG Database.

• 40 two-minute time series, 18 from people with normal sinus 
rhythm, 22 having malignant ventricular arrhythmia.

• Kalpakis et al. (2001) tried clustering with a number of 
different distance measures. 

• Best results reported: 3 malignant mislabeled, 1 normal 
mislabeled.

• Authors: Mislabeled malignant traces “look more similar to the 
normal time-series than to the malignant arrhythmia time-
series.”
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CLUSTERING ECG DATA
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Figure 5: Clustering dendrogram for ECG data. We clearly see two
distinct clusters, one containing only malignant (M) traces and one
containing only normal (N) traces.

samples (N). Although the raw data for some of the malig-
nant samples appear to more closely resemble normal sam-
ples than other malignant samples, the time-delay embedding
is able to tease out the underlying dynamical systems, and
the GTM algorithm is able to correctly distinguish between
the normal and malignant systems. It is also worth noting
that the previous clustering approaches require a nontrivial
amount of preprocessing of the data: removing trends, nor-
malization, etc. Our approach works with the raw data, and
the clustering required less than 10 seconds of computation
on a desktop computer.

7 Conclusion and Future Work
We presented a methodology for clustering time-series data.
We use a similarity measure that fits a nonlinear dynamical
model to segments of the data, and then computes a geomet-
ric measure of similarity between the models. These models
can be built efficiently and our results show that the similarity
measure induces qualitatively good clusters. In a comparison
on a benchmark dataset of ECG signals, our approach im-
proves on results previously reported in the time-series clus-
tering literature. To further quantify our results, we show that
the similarity measure can be used to assist a semi-supervised
learning algorithm when labels are sparse.

An important direction of future work is being able to
recognize new activities that have not seen before, as they
happen; for example, if an activity recognition system was
trained to recognize walking and running, and the person car-
rying it starts skating, we should be able to recognize that this
is a new activity that has not seen before and should be cata-
logued now. This is a fairly straightforward extension to our
approach: a low similarity from a new model to all previously
available models should signal such an activity.

Another interesting direction for future work would be to
augment the semi-supervised classification algorithm by in-
corporating methods from active learning, where the algo-
rithm is able to interactively request labels for particular data
points when needed. This would be of particular value in a
practical activity recognition system, where obtaining labeled
data is costly and querying the user repetitively is undesirable.
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CLUSTERING ECG DATA
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Figure 5: Clustering dendrogram for ECG data. We clearly see two
distinct clusters, one containing only malignant (M) traces and one
containing only normal (N) traces.

samples (N). Although the raw data for some of the malig-
nant samples appear to more closely resemble normal sam-
ples than other malignant samples, the time-delay embedding
is able to tease out the underlying dynamical systems, and
the GTM algorithm is able to correctly distinguish between
the normal and malignant systems. It is also worth noting
that the previous clustering approaches require a nontrivial
amount of preprocessing of the data: removing trends, nor-
malization, etc. Our approach works with the raw data, and
the clustering required less than 10 seconds of computation
on a desktop computer.

7 Conclusion and Future Work
We presented a methodology for clustering time-series data.
We use a similarity measure that fits a nonlinear dynamical
model to segments of the data, and then computes a geomet-
ric measure of similarity between the models. These models
can be built efficiently and our results show that the similarity
measure induces qualitatively good clusters. In a comparison
on a benchmark dataset of ECG signals, our approach im-
proves on results previously reported in the time-series clus-
tering literature. To further quantify our results, we show that
the similarity measure can be used to assist a semi-supervised
learning algorithm when labels are sparse.

An important direction of future work is being able to
recognize new activities that have not seen before, as they
happen; for example, if an activity recognition system was
trained to recognize walking and running, and the person car-
rying it starts skating, we should be able to recognize that this
is a new activity that has not seen before and should be cata-
logued now. This is a fairly straightforward extension to our
approach: a low similarity from a new model to all previously
available models should signal such an activity.

Another interesting direction for future work would be to
augment the semi-supervised classification algorithm by in-
corporating methods from active learning, where the algo-
rithm is able to interactively request labels for particular data
points when needed. This would be of particular value in a
practical activity recognition system, where obtaining labeled
data is costly and querying the user repetitively is undesirable.
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CONCLUSION
• Efficient way to build light-weight models of time series data.

• Efficient feature extraction algorithm.

• With no noise, we have nice theoretical properties.

• Seems to hold up well on real (noisy) data.

• Currently looking into novel activity detection, more 
applications (possibly in the medical domain), more sensors 
(BodyMedia Armbands...David?).
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TDE Code and Gait Data available on my website:

http://www.cs.mcgill.ca/~jfrank8/
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WHY IS THIS HARD?

• Time series data is difficult to deal with in general.

• Data is non-stationary, so looking at spectrum 
doesn’t really work.

• Periods aren’t very different between activities (e.g., 
running, walking, both approximately 1Hz).

• Real-world data is noisy.

• Resources are limited, or at least we should consider 
them as such.
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THE FINE PRINT
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PERFECT ACCURACY, BUT...
Sometimes the top scoring models did not stand out.

Sometimes the winner was clear.

• In terms of the empirical standard deviation over 5 runs:

- Average difference between top two scores: 0.81

- Average difference between top score and fifth score: 1.37

• Neither is statistically significant. 

• Data collected in a controlled environment.

Tuesday, March 22, 2011



GAIT RECOGNITION RESULTS

• Baseline used 200 features from Lester et al. (2006) and 
Random Forest classifiers.

• This data is freely available on my website.
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Boosting time-delay classifiers

CLASS 0 1 2 3 4 5 6 7 8 9 10
TDEBOOST PRECISION 0.81 0.85 0.15 0.50 0.10 0.29 0.26 0.26 0.30 0.88 0.68
BASELINE PRECISION 0.86 0.68 0.30 0.33 0.02 0.04 0.02 0.01 0.16 0.06 0.03
TDEBOOST RECALL 0.96 0.46 0.21 0.84 0.01 0.36 0.14 0.09 0.48 0.71 0.53
BASELINE RECALL 0.94 0.77 0.84 0.56 0.00 0.00 0.02 0.00 0.34 0.13 0.07
CLASS 11 12 13 14 15 16 17 18 19 20
TDEBOOST PRECISION 0.58 0.04 0.93 0.05 0.26 0.96 0.22 0.25 0.71 0.88
BASELINE PRECISION 0.95 0.35 0.00 0.00 0.05 0.25 0.37 0.00 0.00 0.49
TDEBOOST RECALL 0.60 0.01 0.52 0.01 0.61 0.78 0.64 0.61 0.59 0.57
BASELINE RECALL 0.03 0.14 0.00 0.00 0.00 0.35 0.78 0.00 0.00 0.33

Table 1. Precision and recall for both algorithms when training on day 1 and testing on day 2. Class 0 is lingering, and the other classes
correspond to the subject identifiers.

better model parts of the data that are more difficult to clas-
sify correctly. Second, we present a challenging dataset
for researchers in the field of time-series classification, and
demonstrate how to apply TDEBOOST to this dataset. This
dataset is composed of accelerometer traces for 20 users on
two different days, and is collected under natural condi-
tions. Existing work on gait recognition has frequently re-
ported accuracy rates of over 90%, but on data collected in
carefully controlled lab settings. We hope that this bench-
mark dataset will spur fair comparisons between compet-
ing methods, as well as challenge researchers to scale their
methods up to the kinds of data that a commercial gait
recognition system would have to process.

We demonstrate that TDEBOOST is competitive with a
fairly powerful baseline approach built on features used in
state-of-the-art activity recognition systems on the dataset.
TDEBOOST generalizes much better from one day to the
other, showing greater robustness to variations in the data
distribution. These results suggest that the features that our
algorithm extracts capture intrinsic properties of an individ-
ual’s gait that are more recognizable over longer periods of
time and more robust to changes in clothing and footwear
than the features captured by existing approaches. We also
note that these classifiers can process the data in real-time,
on the phone, with minimal impact on battery life. The re-
sults suggest that the performance of these classifiers brings
them now just a step away from commercial systems. In sit-
uations where the data is from a very different distribution,
re-training the boosting classifier is also feasible to do on
the phone.
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WORKOUT DATA
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Figure 1: Result of applying unsupervised visualization technique

to data generated from two users performing a sequence of activi-

ties. The dotted edges connect nodes representing subsequent time

windows.

cating that these points represent 5-second windows in which

transitions between activities occurred.

Figure 2 shows the visualization of the entire dataset, this

time omitting the dotted lines for clarity. Again, the clusters

stand out, and we see that the distances between clusters for

the same activity, but different subjects, are closer to each

other than the clusters for different activities. We also see

that, as in Figure 1, the rowing and biking activities appear to

be close, and in some cases (namely the biking data for sub-

ject 2) indistinguishable. In the next section, we will see that

this affects our ability to distinguish between the two activi-

ties in some cases.

It is clear from Figures 1 and 2 that the unsupervised ap-

proach presented in this work is very useful for visualising

this kind of data in the absence of labels, and that, together

with a clustering algorithm such as k-means, is useful for

identifying distinct activities in a dataset.

5 Semi-Supervised Setting
5.1 Proposed Approach
In the previous section, we described a technique for look-

ing at time-series data in the absence of labels. Prior to that,

we described a technique for building models from labeled

training sets. In this section, we bridge the two settings, and

consider the case where only some of the data are labeled,

and we seek labels for the entire dataset. In practice, it is of-

ten much easier to collect unlabeled data than labeled data,

as labeling data may be time-consuming or costly due to the

necessity for human experts. Rather than discard the unla-

beled data, semi-supervised learning algorithms [Chapelle et
al., 2006] attempt to augment the labeled training data with

unlabeled data. While the labels are required for learning the

mapping from features to class label, when there is structure

in the feature-space, additional unlabeled data can be useful

for learning the structure.

In the semi-supervised setting, we assume that a small frac-

tion of the data points have labels and the rest are unlabeled.

Our approach is straightforward. First, we treat all of the data
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Figure 2: Result of applying unsupervised visualization technique

to data generated from all four subjects.

as unlabeled and perform hierarchical clustering to produce

a dendrogram. Then we work our way from the root node

down, in a depth-first manner. Each node represents a set of

points, some of which may be labeled. If a node contains

only one labeled point, or all of the labels on points in the

node agree, we assign that label to all of the points in the

node and cut the tree at that point. If there are no labels, then

we also cut the tree at that node, but leave the points unla-

beled. If there are multiple unique labels in the set of nodes,

we move on and consider the children of that node. Once we

are finished, we will have a larger set of labeled nodes, but

some unlabeled nodes may remain.

In the second pass, we assign labels to the remaining unla-

beled nodes. To do this, we compute the distance from each

unlabeled node to its nearest labeled neighbour. The unla-

beled node that is closest to a labeled node is assigned the

label of its nearest labeled neighbor. If there are remaining

unlabeled nodes, we repeat the process until all nodes have

been assigned a labeled neighbor. In our experiments, we

have found that in many cases there are no unlabeled nodes,

so this second pass is unnecessary. In some cases, however,

as many as 30% of the nodes remained unlabeled after the

first pass.

5.2 Results
For the semi-supervised experiment, we used the same

dataset as in the previous section. We started by removing

all but n labels from each of the 15 subject-activity pairs. We

varied n from 1 to 25, and used our semi-supervised tech-

nique with complete linkage and Ward’s minimum variance

method to fill in the remaining class labels. Since we know

the correct labels, we are able to assess the accuracy of the

labeling. We only considered the accuracy in labeling the

activity, not the subject. For each value of n, we ran the ex-

periment 200 times, picking random labels to leave in each
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