
COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Off-Policy Learning with Recognizers and

Function Approximation
COMP652 - Final Project

Jordan Frank

December 13, 2006



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Contents

• Motivation

• Function Approximation

• Recognizers

• Learning Algorithm

• Experiment

• Results

• Conclusion and Future Work



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Motivation

• Why Off-Policy Learning?



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Motivation

• Why Off-Policy Learning?

– Cannot always control the behaviour policy.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Motivation

• Why Off-Policy Learning?

– Cannot always control the behaviour policy.

– Sometimes we don’t even know what it is.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Motivation

• Why Off-Policy Learning?

– Cannot always control the behaviour policy.

– Sometimes we don’t even know what it is.

• Why function approximation?



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Motivation

• Why Off-Policy Learning?

– Cannot always control the behaviour policy.

– Sometimes we don’t even know what it is.

• Why function approximation?

– Continuous state space.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Motivation

• Why Off-Policy Learning?

– Cannot always control the behaviour policy.

– Sometimes we don’t even know what it is.

• Why function approximation?

– Continuous state space.

– Continuous action space.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Motivation

• Why Off-Policy Learning?

– Cannot always control the behaviour policy.

– Sometimes we don’t even know what it is.

• Why function approximation?

– Continuous state space.

– Continuous action space.

– State space may be huge.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Function Approximation (FA)

• 2D Continuous state space, so we use Tile Coding to represent our

state.

• For each state s we get an n dimensional feature vector φs

representing the index of the tile in each layer of the tiling.

• Then we have a weight vector θ, and we compute the state-value

function as

V (s) = θT φs

• Simple gradient for weight updates

∇θV (s) = φs



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Function Approximation (FA)

• Logistic Regression (we’ll need this later):

– Hypothesis:

hw(φs) = σ(wT φs) =
1

1 + e−w
T φs

– Gradient ascent update rule (on-line is what we’ll be using)

θ ← θ + α(y − hw(φs))φs

where y is the true class label, w is the learned weight vector,

and α is the learning rate.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Off-Policy TD Learning with FA

• Q-Learning is the most popular off-policy reinforcement learning

algorithm, but it was shown in 1996 that it is unsound with linear

function approximation.

• First stable algorithm for off-policy temporal-difference learning

with function approximation was introduced in 2001 paper by

Precup, Sutton, and Dasgupta.

• Combines TD(λ) over state-action pairs with importance

sampling. Trained under any ǫ-soft policy, the algorithm converges

with probability 1 to a close approximation to the action-value

function for an arbitrary target policy.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Off-Policy TD Learning with FA

• Q-Learning is the most popular off-policy reinforcement learning

algorithm, but it was shown in 1996 that it is unsound with linear

function approximation.

• First stable algorithm for off-policy temporal-difference learning

with function approximation was introduced in 2001 paper by

Precup, Sutton, and Dasgupta.

• Combines TD(λ) over state-action pairs with importance

sampling. Trained under any ǫ-soft policy, the algorithm converges

with probability 1 to a close approximation to the action-value

function for an arbitrary target policy.

• But, behaviour policy must be stationary and known, and even if

it is, though we do converge, we may still have high variance and

the convergence might be slow.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Recognizers

• Introduced in the paper Off-policy Learning with Recognizers by

Precup, Sutton, Paduraru, Koop, and Singh earlier this year.

• A recognizer is “a filter on actions that distorts the behavior

policy to produce a related target policy with low-variance

important-sampling corrections”.

• A recognizer is a function c : S ×A 7→ [0, 1] where c(s, a) tells us

to what extent the recognizer allows action a in state s.

• For our purposes we will concern ourselves with binary recognizer

functions such that c(s, a) = 1 if the action a is recognized in

state s, and c(s, a) = 0 otherwise.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Recognizers

• It is important to understand that a recognizer does not define a

policy, it is merely a filter.

• A recognizer c together with a behaviour policy b generates a

target policy π, where

π(s, a) =
b(s, a)c(s, a)

µ(s)

where µ(s) is the recognition probability at s, that is the

probability that some action will accepted by our recognizer at s

when our behaviour is generated according to b.

• So µ(s) =
∑

x b(s, x)c(s, x). But this relies on b being known, but

what if it isn’t?



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Recognizers

• “For the case of general linear function approximation, we

conjecture that [. . . ] the recognition probability is learned using

logistic regression. The development of this part is left for future

work.”

• And this is what I have attempted to do with this project.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Learning Algorithm

• Goal is to approximate the reward model.

• Problem: We have a fixed unknown behaviour policy that

generates our actions, and we want to approximate the expected

reward were we to start at some state but act according to a

different policy.

• Idea:

– Use a recognizer to distort the behaviour policy to produce our

desired target policy.

– Use linear function approximation to represent the expected

reward E{R(s)} ≈ θT φs, where φs is generated by tile coding

and θ is our learned weight vector.

– Use logistic regression to estimate our recognition probabilities

µ(s) = σ(wT φs), and update w at each step based on

whether or not it was accepted by the recognizer.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Learning Algorithm

• The paper provides the algorithm, we just need to supplement it

with logistic regression for the recognition probabilities.

• Initialize k0 = g0, e0 = k0φs0
, and θ and w to the zero vectors.

• At every transition st, at → rt+1, st+1, at+1:

ρt = c(st, at)/σ(wT
t φst

)

δt = ρt(rt+1 + (1− βt+1)θ
T
t φst+1

)− θT
t φst

θt+1 = θt + αδtet

kt+1 = ρtkt(1− βt+1) + gt+1

et+1 = λρt(1− βt+1)et + kt+1φt+1

wt+1 = wt + α′(c(st, at)− σ(wT
t φst

))φst



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Experiment

• Use RL-Glue from RLAI.net, “a standard software protocol for

benchmarking and interconnecting reinforcement learning agents

and environments”.

• Create an continuous gridworld environment called PuddleWorld.

• Create an agent that implements the algorithm with a behaviour

policy that generates uniformly random actions, and a recognizer

that accepts a certain subset of the actions.

• Let the agent run around the environment for a while, moving

according the the behaviour policy, but learning according to our

desired target policy, and see what happens.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

PuddleWorld

• Two dimensional unit square. One L shaped puddle with radius

0.1 and one small square goal region. Reward is -1 at each time

step, 100 for being in the goal region at a time step, and a

negative reward between 0 and -400 proportional to how close to

the center the agent is if it is in the puddle.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

PuddleWorld

• Agents can move in one of 16 directions {0, π
8
, 2π

8
, 3π

8
, . . . , 15π

8
}

(where 0 is vertically upwards), and take steps of length 0.05. We

will use a recognizer that recognizes 4 of these actions [0, 3π
8

].

Therefore the recognition probability should be 0.25.

• Initial parameters:

– All weight vectors set to 0, since we are using a sigmoid

function, that will set the initial estimates for the recognition

probabilities to be 0.5.

– λ = 0.6, β = g0 = 0.05, α = 0.001, α′ = 0.005.

– 8 layers of tiling, each layer is an 8x8 grid.

• We will just run one continuous episode, updating our parameters

at every step.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Results

Agent seemed to learn the recognition probabilities fairly well.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Recognition Probability Estimates at (0.10,0.10)

Number of Steps

R
ec

og
ni

tio
n 

P
ro

ba
bi

lit
y

 

 
Estimated Value
True Value

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Recognition Probability Estimates at (0.85,0.85)

Number of Steps

R
ec

og
ni

tio
n 

P
ro

ba
bi

lit
y

 

 
Estimated Value
True Value



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Results

Estimating the recognition probabilities had little effect on the

estimated reward model.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10
Expected Reward Estimates at (0.10,0.10)

Number of Steps

E
xp

ec
te

d 
R

ew
ar

d

 

 
With Estimated Recognition Probability
With Exact Recognition Probability

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

0

5

10

15

20

25

30

35

40

45
Expected Reward Estimates at (0.85,0.85)

Number of Steps
E

xp
ec

te
d 

R
ew

ar
d



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Results

Estimated reward model was what we’d expect.

Estimated Reward − With Recognition Approximation Estimated Reward − Without Recognition Approximation

 

 

−160

−140

−120

−100

−80

−60

−40

−20

0

20

40

60



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Results

And some eye candy.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

Conclusion and Future Work

• Lots of parameters to tune. One definite improvement would be to

decrease the learning rates as we proceed. Tuning the tiling

parameters also seem to make a huge difference, which makes

sense.

• Longer runs. Current runs take around one minute, so we can

easily increase the number of runs by an order of magnitude or

two. Decrease learning rates substantially and just let it run.

• Try out more recognizers, and different behaviour policies.

• Theory. It seems like we can estimate the recognition probability

using logistic regression and it will converge to the same value as

it would if the recognition probability was known, but can we

prove that it converges?

• Clean up the code, and maybe try to get it into the RL-Library.



COMP652 Off-Policy Learning with Function Approximation Jordan Frank'

&

$

%

References

• Precup, D., Sutton, R. S., Paduraru, C., Koop, A., Singh, S.

(2006). Off-policy Learning with Recognizers. Advances in Neural

Information Processing Systems 18 (NIPS*05)

• Precup, D., Sutton, R.S., Dasgupta, S. (2001). Off-policy

temporal-difference learning with function approximation.

Proceedings of the 18th International Conference on Machine

Learning.

• Sutton, R.S., Precup, D., Singh, S. (1999). Between MDPs and

semi-MDPs: A Framework for Temporal Abstraction in

Reinforcement Learning. Artificial Intelligence 112:181-211.

• RL-Glue and RL-Library: http://rlai.cs.ualberta.ca/RLAI/rlai.html


