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Colour Constancy
• Humans automatically remove the effect of 

lighting in visual perception. Our vision 
system is very robust to illumination.

• We can easily tell that the 
bricks in the sunlight are the 
same colour as the bricks in 
the shade.



Colour Constancy
• However, this is an Ill-posed problem. 

• We cannot tell whether differences in the 
colour that we detect are due to differences 
in the colour of the object, or differences in 
illumination.

• What if the bricks on the right really were 
darker? In fact, there are small differences 
in the colours, even within a single brick.



Invariant Image
• Goal is to produce an image that is invariant 

to effects of illumination. 

• Motivation:

• Add our own illumination.

• Remove shadows! Almost every 
presentation prior to this one has talked 
about how shadows are problematic.



Cameras/Sensors
• RGB colour at a pixel results from an 

integral over the visible wavelength

Rk = σ
∫

E(λ)S(λ)Qk(λ)dλ, k = R,G, B (1)

σ – Lambertian shading
E(λ) – illumination spectral power distribution
S(λ) – surface spectral reflectance
Qk(λ) – camera sensitivity



Cameras/Sensors
• For convenience we assume that camera 

sensitivity is exactly a Dirac delta function

•                       is the strength of the sensor. 

• So (1) reduces to

Qk(λ) = qkδ(λ− λk)

qk = Qk(λk)

Rk = σE(λk)S(λk)qk



More Approximations
• Supposing that lighting can be 

approximated by Planck’s law, with Wien’s 
approximation [4] we get

• k1, k2 are constants, temperature T 
characterizes the lighting colour and I gives 
the overall light intensity.

Rk = σIk1λ
−5
k e−

k2
T λ S(λk)qk (2)



Removing I and σ
• We can effectively remove the effect of 

Lambertian shading and illumination from 
(2) by dividing to get the band-ratio 2-vector 
chromaticities c,

where p is one of the channels and k=1,2 
indexes over the remaining responses.

ck = Rk/Rp,



Log Chromaticities
• Log chromaticities are independent of 

illumination intensity, and translate under 
change of illumination colour.

• (ln R/G,ln B/G) under one light becomes (ln 
R/G,ln B/G)+(a,b) under a second light.

• More importantly, the translational term for 
different illuminants can always be written 
as (αa,αb) where a,b are constants and α 
depends on illumination.



Invariance, finally
• Illumination change translates log 

chromaticities in the same direction.

• Therefore, the coordinate axis orthogonal to 
the direction of illumination variation, 
y = -(a/b)x, records only illuminant invariant 
information.



Example (simulated)

540, and 610 nm). The seven surfaces comprised the
Macbeth color checker reflectances39 labeled green, yel-
low, white, blue, purple, orange, and red. The ten
Planckian illuminants were uniformly spaced in tempera-
ture from 2800 to 10,000 K. The LCD’s (11) were calcu-
lated, and the resulting two-dimensional coordinates are
plotted in Fig. 6. As predicted, as the illumination
changes, the coordinates for a given surface span a line
and all the lines are related by a simple translation.

Now, using the usual rules of substitution, it is also a
simple matter to derive a relation that is independent of
temperature:

pR! !
ER ! EG

EB ! EG
pB! " SR ! SR !

ER ! EG

EB ! EG
!SB ! SG"

" f!SR , SG , SB", (12)

where all Sk and Ek are independent of illuminant color
and intensity. Equation (12) informs us that there exists
a weighted combination of LCD’s that is independent of
light intensity and light color. Thus we have shown that
we can solve the one-dimensional color constancy problem
at a pixel.

It is useful to visualize the geometric meaning of Eq.
(12). For a particular surface all LCD’s for different
lights fall on a line y " mx # c or in parameterized coor-
dinate form (x, mx # c). In Eq. (12) a linear combina-
tion of the x and y coordinates is calculated: a!x
# b!(mx # c) [where a! and b! are the constants 1 and
!(ER ! EG)/(EB ! EG)]. Clearly, if we scale a! and b!
by some term v, giving va! and vb!, the illuminant in-
variance of Eq. (12) is unaltered. Without loss of gener-
ality let us choose v, a " va!, and b " vb! such that the
vector (a b)t has unit length.

We can now calculate the illuminant invariant as the
vector dot product (•):

ax # b!mx # c " " !a b " • !x mx # c " (13)

The meaning of Eq. (13) is geometrically well understood:
We are projecting the log-difference coordinate onto the
axis (a b), where this axis is chosen to be orthogonal to
the direction of the variation that is due to illumination.

The following equation rotates the log-difference coor-
dinate axis so that the resulting x axis records illuminant-
independent information (and the y axis captures all the
variation that is due to illumination):

! a b

!b a" # x
mx # c $ " # x!

y! $ (14)

The log-difference data shown in Fig. 6 are rotated ac-
cording to Eq. (14). The result is shown in Fig. 7.

A. Approximate Invariance
If a camera has Dirac delta functions, then the invariant
coordinate transform can be calculated analytically.
When camera sensor sensitivities are not perfect Dirac
delta functions (they never are), then the best illuminant-
invariant quantity must be found statistically. There are
two steps involved in finding an invariant. First, we
must make sure that camera response across illumination

follows the diagonal matrix model of Eq. (4). Second, we
must find an equation of the form (14).

Worthey and Brill21 found that so long as a camera is
equipped with fairly narrow sensitivities, e.g., with a sup-
port of 100 nm, the diagonal model will hold. When sen-
sitivities are significantly broader, e.g. in excess of 300
nm in the case of the human visual system, the simple
model of Eq. (4) does not hold. However, in a series of
works, Finlayson, Drew, and others28,29,40,41 found that
new narrower-band sensitivities could be formed from
broadband sensitivities by calculating an appropriate
sharpening transform. The diagonal model, relative to
the sharpened sensors, once again is quite accurate. Ef-
fective sharp transforms have been shown to exist for the
broadband sensitivities of the human cones28 and the
spectrally broadband Kodak DCS 460 camera42 (and all

Fig. 6. Perfect Dirac delta camera data (sensitivities anchored
at 450, 540, and 610 nm). Log-chromaticity differences (LCD’s)
for seven surfaces (green, yellow, white, blue, purple, orange, and
red) under ten Planckian lights (with increasing temperature
from 2800 to 10,000 K). Variation that is due to illumination is
along a single direction.

Fig. 7. Perfect Dirac delta camera data (sensitivities anchored
at 450, 540, and 610 nm). LCD’s for seven surfaces (green, yel-
low, white, blue, purple, orange, and red) under ten Planckian
lights (with increasing temperature from 2800 to 10,000 K).
LCD’s (from Fig. 6) have been rotated so that the x coordinate
depends only on surface reflectance; the y coordinate depends
strongly on illumination.
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Measured log chromaticities

After rotation

Figures from [3]



Great in theory, but...
• There are a number of problems with this 

approach.

• Cameras do not have Dirac delta 
responses.

• Noise!

• How do we determine how much to rotate.



Narrowband, not Dirac

direction orthogonal to that of our calculated invariant.
Relative to this worst-case coordinate, we expect the cal-
culated invariant to have a much lower SNR. Indeed, we

found the ratio to be 1.9. That is, the signal variation
that is due to reflectance is only twice as large as that
which is due to illumination. Informally, it would be pos-
sible to reliably discriminate only two colors.

We repeated this experiment by using the ten Planck-
ian lights and 180 new illuminants formed by taking ad-
ditive combinations of Planckian illuminants (see Fig. 8).
These new lights simulate common lighting conditions
such as outside daylight mixing with indoor incandescent
illumination. As discussed in Subsection 3.B, most of
these lights necessarily lie off locus, and so the invariant
calculation is in this case only approximate and therefore
we expect a lower SNR. We found that the SNR is re-
duced from 23 to 15. This indicates that our calculated
invariant is quite robust to many typical lights and light-
ing conditions (we can still calculate 4 bits of informa-
tion).

We were interested in evaluating the similarity of in-
variant information calculated across devices. Using the
XYZ color-matching functions, plotted in Fig. 12, we cal-
culated the XYZ response for the red, green, yellow,
purple, white, blue, and orange patches under the ten
Planckian illuminants. We found the best 3 ! 3 matrix

Fig. 9. SONY DXC-930 normalized camera sensitivities.

Fig. 10. SONY DXC-930 camera data. LCD’s for seven sur-
faces (green, yellow, white, blue, purple, orange, and red) under
ten Planckian lights (with increasing temperature from 2800 to
10,000 K). Variation that is due to illumination is along a single
direction.

Fig. 11. SONY DXC-930 camera data. LCD’s for seven sur-
faces (green, yellow, white, blue, purple, orange, and red) under
ten Planckian lights (with increasing temperature from 2800 to
10,000 K). LCD’s (from Fig. 9) have been rotated so that the x
coordinate depends only on surface reflectance; the y coordinate
depends strongly on illumination.

Fig. 12. Normalized XYZ color-matching curves.

Fig. 13. XYZ tristimuli are transformed to corresponding SONY
camera RGB’s by using a linear transform. LCD’s for seven sur-
faces (green, yellow, white, blue, purple, orange, and red) under
ten Planckian lights (with increasing temperature from 2800 to
10,000 K) are calculated and rotated according to the SONY ro-
tation matrix. The x coordinate depends weakly on surface re-
flectance; the y coordinate depends strongly on illumination.
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Actual measurements from a SONY 
DXC-930 camera

Rotated

So we are still doing pretty well.
Figures from [3]



How to calibrate
• We can carefully calibrate our cameras to 

determine the best rotation angle through 
inspection of log chromaticities.

Intrinsic Images by Entropy Minimization 585

Real, non-synthesized, images are noisy and might not provide such a clean picture.
Nevertheless, by examining real images in § 4, we arrive at a set of steps that will correctly
deliver the intrinsic image, without calibration. Finally, we apply the method devised
to unsourced images, from unknown cameras under unknown lighting, with unknown
processing applied. Results are again strikingly good, leading us to conclude, in § 5,
that the method indeed holds great promise for developing a stand-alone approach to
removing shadows from (and therefore conceivably re-lighting) any image, e.g. images
consumers take to the neighbourhood processing lab.

2 Theory of Invariant Image Formation

2.1 Planckian Lighting, Lambertian Surfaces, Narrowband Camera

Suppose we consider a fairly narrow-band camera, with three sensors, Red, Green, and
Blue, as in Fig. 3(a); these are sensor curves for the Sony DXC930 camera. Now if
we image a set of coloured Lambertian surfaces under a particular Planckian light, in
a controlled light box, say, then for each pixel the log of the band-ratios {R/G, B/G}
appears as a dot in a 2D plot. Chromaticity removes shading, for Lambertian reflectances
under orthography, so every pixel in each patch is approximately collapsed into the same
dot (no matter if the surface is curved). Fig. 2(b) shows the log-chromaticities for the 24
surfaces of the Macbeth ColorChecker Chart shown in Fig. 2(a) (the six neutral patches
all belong to the same cluster). These images were captured using an experimental HP912
Digital Still Camera, modified to generate linear output.

For narrow-band sensors (or spectrally-sharpened ones [6]), and for Planckian lights
(or lights such as Daylights which behave as if they were Planckian), as the illuminant
temperature T changes, the log-chromaticity colour 2-vector moves along an approxi-
mately straight line which is independent of the magnitude and direction of the lighting.
Fig. 2(c) illustrates this for 6 of the patches: the plot is for the same 6 patches im-
aged under a range of different illuminants. In fact, the camera sensors are not exactly
narrow-band and the log-chromaticity line is only approximately straight. Assuming
that the change with illumination is indeed linear, projecting colours perpendicular to
this “invariant direction" due to lighting change produces a 1D greyscale image that is
invariant to illumination. Note that the invariant direction is different for each camera; it
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Fig. 2. (a): Macbeth ColorChecker Chart image under a Planckian light. (b): Log-chromaticities
of the 24 patches. (c): Median chromaticities for 6 patches, imaged under 14 different Planckian
illuminants.

Figure and caption from [1]



How to calibrate
• Manual calibration is time-consuming, and 

requires numerous images under various 
lighting conditions.

• We would like to find a way to find the 
desired parameters from just one image, 
without even knowing the camera that was 
used.



Intuition

And so what might be a good way to determine the best invariant direction? 
(Hint: we learned about it in this course)

584 G.D. Finlayson, M.S. Drew, and C. Lu
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Fig. 1. Intuition for finding best direction via minimizing the entropy.

other hand, if we instead project in some other direction, as in Fig. 1(b), then instead of
pixels located in sharp peaks of occurrence we expect the distribution of pixels along
our 1D projection line to be spread out. In terms of histograms, in the first instance, in
which we guess the correct direction and then project, we see a distribution with a set of
sharp peaks, with resulting low entropy. In the second instance we instead see a broader
histogram, with resulting higher entropy.

Hence the idea in this paper is to recover the correct direction in which to project by
examining the entropy of a greyscale image that results from projection and identifying as
the correct “invariant direction" that which minimizes the entropy of the resulting image.
Changing lighting is automatically provided by the shadows in the image themselves.

In §2, we first recapitulate the problem of lighting change in imagery, along with the
accompanying theory of image formation. The method of deriving an invariant image
is given, for known invariant direction, for imagery that was captured using a calibrated
camera. Now, without any calibration or foreknowledge of the invariant direction, in §3.1
we create a synthetic “image" that consists of a great many colour patches. Since the
image is synthetic, we in fact do know the ground truth invariant direction. Examining the
question of how to recover this direction from a single image, with no prior information,
we show that minimizing the entropy provides a very strong indicator for determining
the correct projection. For a synthetic image, results are very good indeed. This result
provides a proof in principle for the entropy-minimizing method.

But how do we fare with a real camera? In §3.2 we consider a set of calibration
images, taken with a known camera. Since we control the camera, and the target, we
can establish the invariant direction. Then comparing to the direction recovered using
entropy minimization, we find that not only is the direction of projection recovered
correct (within 3 degrees), but also the minimum is global and is a very strong signal —
essentially, Nature is telling us that this is indeed the way to go: entropy minimization
is a new and salient indicator for the projection that removes shadows.

Figures from [1]
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Low Entropy High Entropy
Figures from [1]



Entropy Minimization
Algorithm:

1. Form a 2D log-chromaticity representation 
of the image.

2. for θ = 1..180
a) Rotate by θ and take projection onto x-

axis
b) Calculate entropy
c) Keep track of θ that minimizes entropy



Problems/Solutions
• How to calculate entropy?

Solution: Create a histogram, compute bin 
widths using Scott’s Rule:
bin_width = 3.49 std(projected_data) N1/3

• Noise in the data?
Solution: Use only the middle 90% of the 
projected data.

• How to go back from rotated data to a 
usable image?
Solution: See the paper, not easy!
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Fig. 6. (a): Input colour image, captured with HP912 Digital Still Camera (with linear output).
(b): The range of projected data changes with angle. Range: solid lines; 5th and 95th percentiles:
dashed lines.

4 Intrinsic Image Recovery Algorithm

4.1 Algorithm Steps

Consider the colour image in Fig. 6(a): two people are illuminated from behind by
strong sunlight. As well, there is a skylight illumination component that creates non-
zero RGBs in the shadow region. Here, we have a calibrated camera, so we’ll know if
entropy minimization produces the correct answer. To find the minimum entropy, we
again examine projections I over angles 0◦ to 180◦, for log-chromaticities χ formed
according to eqs. (7), (8), and (10). For each angle, we project the log-chromaticity,
and then determine the entropy (12). However, the nature of the data, for real images,
presents an inherent problem. Since we are considering ratios, we can expect noise to
possibly be enhanced (although this is mitigated by the sum in eq. (14)). To begin with,
therefore, we apply Gaussian smoothing to the original image colour channels. But even
so, we expect that some ratios may be large. So the question remains as to what we
should use as the range, and number of bins, in a histogram of a projected greyscale
image I.

To begin with, then, we can determine the range of invariant image greyscale values,
for each candidate projection angle. Fig. 6(b) shows a plot of this range, versus projection
angle. The figure also shows the range, dashed, of the 5-percentile and 95-percentile lines.
We can see that the full range contains many outliers. Therefore it makes sense to exclude
these outliers from consideration.

Hence we use the middle values only, i.e., the middle 90% of the data, to form a
histogram. To form an appropriate bin width, we utilize Scott’s Rule [10]:

bin width = 3.5 std(projected data) N1/3 (13)

where N is the size of the invariant image data, for the current angle. Note that this size
is different for each angle, since we exclude outliers differently for each projection.

The entropy calculated is shown in Fig. 7(a). The minimum entropy occurs at angle
156◦. For the camera which captures the images, in fact we have calibration images using
a Macbeth ColorChecker. From these, we determined that the correct invariant direction
is actually 158.5◦, so we have done quite well, without any calibration, by minimizing
entropy instead. The figure shows that the minimum is a relatively strong dip, although
not as strong as for the theoretical synthetic image.
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Fig. 7. (a): Entropy of projected image, versus projection angle. (b): Greyscale invariant image I,
at minimum entropy direction. (See http://www.cs.sfu.ca/∼mark/ftp/Eccv04/ for a video of images
as the projection angle changes, with shadows dissappearing.) (c): Invariant L1 chromaticity image
r . (d): Re-integrated RGB colour image.

Once we have an estimate c̃ of the geometric-mean chromaticity (7), we can also
go over to the more familiar L1-based chromaticity {r, g, b}, defined as

r = {r, g, b} = {R, G, B}/(R + G + B), r + g + b ≡ 1 . (14)

This is the most familiar representation of colour independent of magnitude. Column
2 of (Fig. 8 shows the L1 chromaticity for colour images.) To obtain L1 chromaticity
r from c , we simply take

r̃ = c̃ /
3∑

k=1

c̃k . (15)

Since r is bounded ∈ [0, 1], invariant images in r are better-behaved than is I. The
greyscale image I for this test is shown in Fig. 7(b), and the L1 chromaticity version r ,
as per eq. (15), is shown in Fig. 7(c).

Using a re-integration method similar to that in [3], we can go on to recover a full-
colour shadow-free image, as in Fig. 7(d). The method [3] uses a shadow-edge map,
derived from comparing the original edges to those in the invariant image. Here we use
edges from the invariant chromaticity image Fig. 7(c), and compare to edges from a
Mean-Shift [11] processed original image. As well, rather than simply zeroing edges
across the shadow edge, here we use a simple form of in-filling to grow edges into
shadow-edge regions. Regaining a full-colour image has two components: finding a
shadow-edge mask, and then re-integrating. The first step is carried out by comparing
edges in the Mean-Shift processed original image with the corresponding recovered
invariant chromaticity image. We look for pixels that have edge values higher than a
threshold for any channel in the original, and lower than another threshold in the invariant,
shadow-free chromaticity. We identify these as shadow edges, and then thicken them
using a morphological operator. For the second stage, for each log colour channel, we first
grow simple gradient-based edges across the shadow-edge mask using iterative dilation
of the mask and replacement of unknown derivative values by the mean of known ones.
Then we form a second derivative, go to Fourier space, divide by the Laplacian operator
transform, and go back to x, y space. Neumann boundary conditions leave an additive
constant unknown in each recovered log colour, so we regress on the top brightness
quartile of pixel values to arrive at the final resulting colour planes.
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Fig. 7. (a): Entropy of projected image, versus projection angle. (b): Greyscale invariant image I,
at minimum entropy direction. (See http://www.cs.sfu.ca/∼mark/ftp/Eccv04/ for a video of images
as the projection angle changes, with shadows dissappearing.) (c): Invariant L1 chromaticity image
r . (d): Re-integrated RGB colour image.

Once we have an estimate c̃ of the geometric-mean chromaticity (7), we can also
go over to the more familiar L1-based chromaticity {r, g, b}, defined as

r = {r, g, b} = {R, G, B}/(R + G + B), r + g + b ≡ 1 . (14)

This is the most familiar representation of colour independent of magnitude. Column
2 of (Fig. 8 shows the L1 chromaticity for colour images.) To obtain L1 chromaticity
r from c , we simply take

r̃ = c̃ /
3∑

k=1

c̃k . (15)

Since r is bounded ∈ [0, 1], invariant images in r are better-behaved than is I. The
greyscale image I for this test is shown in Fig. 7(b), and the L1 chromaticity version r ,
as per eq. (15), is shown in Fig. 7(c).

Using a re-integration method similar to that in [3], we can go on to recover a full-
colour shadow-free image, as in Fig. 7(d). The method [3] uses a shadow-edge map,
derived from comparing the original edges to those in the invariant image. Here we use
edges from the invariant chromaticity image Fig. 7(c), and compare to edges from a
Mean-Shift [11] processed original image. As well, rather than simply zeroing edges
across the shadow edge, here we use a simple form of in-filling to grow edges into
shadow-edge regions. Regaining a full-colour image has two components: finding a
shadow-edge mask, and then re-integrating. The first step is carried out by comparing
edges in the Mean-Shift processed original image with the corresponding recovered
invariant chromaticity image. We look for pixels that have edge values higher than a
threshold for any channel in the original, and lower than another threshold in the invariant,
shadow-free chromaticity. We identify these as shadow edges, and then thicken them
using a morphological operator. For the second stage, for each log colour channel, we first
grow simple gradient-based edges across the shadow-edge mask using iterative dilation
of the mask and replacement of unknown derivative values by the mean of known ones.
Then we form a second derivative, go to Fourier space, divide by the Laplacian operator
transform, and go back to x, y space. Neumann boundary conditions leave an additive
constant unknown in each recovered log colour, so we regress on the top brightness
quartile of pixel values to arrive at the final resulting colour planes.
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Figures from [1]



Removing Shadows
• Now that we have an image without 

shadows, how can we use this to remove 
shadows from the original image?

Image from http://collectibles.about.com/library/priceguides/blpgDSpeterpan903.htm

http://collectibles.about.com/library/priceguides/blpgDSpeterpan903.htm
http://collectibles.about.com/library/priceguides/blpgDSpeterpan903.htm


Removing Shadows
• Need to reintegrate the illumination invariant 

image into the original image.

• Create an edge map for the Mean-Shift 
processed original image as well as the 
invariant image.

• If the magnitude of the gradient in the 
invariant image is close to zero where the 
gradient in log response in the original 
image is high, then this is evidence of a 
shadow edge.



Removing Shadows

Left to right, Edges in the original image, edges in the invariant image, recovered shadow edge.

Figures from [2]



Removing Shadows
• All edges in the image that are not shadow 

edges are indicative of material changes. 
There are no sharp changes due to 
illumination and so shadows have been 
removed. 

• Reintegrating the gradient gives a log 
response image which does not have 
shadows. For details, see the paper.

• To get back to a realistic image, we simply 
have to add artificial illumination.
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Fig. 8. Additional invariant images, for minimum entropy: columns show original image, L1

chromaticity image, entropy plot, invariant L1 chromaticity, and re-integrated colour image. More
images are shown at http://www.cs.sfu.ca/∼mark/ftp/Eccv04/

Other images from the known camera show similar behaviour, usually with strong
entropy minima, and shadow-free results very close to those in [3]. Minimum-entropy
angles have values from 147◦ to 161◦ for the same camera, with 158.5◦ being correct.
Both in terms of recovering the correct invariant direction and in terms of generating a
good, shadow-free, invariant image, our intuition that minimization of entropy would
lead to correct results is indeed justified.

Figures from [3]
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Fig. 8. Additional invariant images, for minimum entropy: columns show original image, L1

chromaticity image, entropy plot, invariant L1 chromaticity, and re-integrated colour image. More
images are shown at http://www.cs.sfu.ca/∼mark/ftp/Eccv04/

Other images from the known camera show similar behaviour, usually with strong
entropy minima, and shadow-free results very close to those in [3]. Minimum-entropy
angles have values from 147◦ to 161◦ for the same camera, with 158.5◦ being correct.
Both in terms of recovering the correct invariant direction and in terms of generating a
good, shadow-free, invariant image, our intuition that minimization of entropy would
lead to correct results is indeed justified.

Figures from [3]



Results (Mine)
• The cameras that were used by the authors 

of the paper are professional quality. They 
claim in the paper that the methods work on 
all of the cameras that they tested, but the 
question is whether they actually tested 
consumer-grade cameras.

• So I went out on a sunny day and snapped 
a few shots with my Pentax Optio WPi 6.0 
megapixel camera.



Results (Mine)
• My results weren’t quite as spectacular.



Results (Mine)



Questions?

“If he thought at all, but I don't believe he ever thought, it was that he and 
his shadow, when brought near each other, would join like drops of 
water, and when they did not he was appalled. He tried to stick it on with 
soap from the bathroom, but that also failed. A shudder passed through 
Peter, and he sat on the floor and cried.”

“Peter Pan : The Story of Peter and Wendy”
J. M. Barrie
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