
COMP251: Disjoint sets

Jérôme Waldispühl & Giulia Alberini
School of Computer Science

McGill University
Based on slides from M. Langer (McGill)

Problem

Let G=(V,E) be undirected graph, and A, B Î V two nodes of G.

Question: Is there a path between A and B?

But we are not interested in knowing the path between A and B.

Is there a faster way to solve this problem than with an explicit
search (i.e., faster than DFS or BFS)?

Connected components

1

3

5

2

10

13

4

11
6

12

15

7
9

14
8

Connected component: Set of nodes connected by a path.

Our question becomes: Are 2 nodes A & B in the same component?

Partition

1

3

5

2

10

13

4

11
6

12

15
7

9

14
8

Generalization: Set of object partitioned into disjoint subsets.

S1
S6 S5

S4

S3S2

S = S1∪S2∪...∪Sn
Si ≠Ø∀i ∈ {1,...,n}
Si∩Sj =Ø iff i ≠ j

&
'
(

)(

We do not need to
store edges if we can
guarantee there is a
path between two
nodes iff they are in
the same component.

Motivations

• Data structure used to manage sets and perform classical
operations (union, find, intersection…)

• Used in many algorithms we will cover in upcoming lectures
(e.g. Kruskal, Floyd-Marshall)

Map vs. Relation

54

1 2

3
6

7

8

9

54

1 2

3
6

7

8

9

S S

Map or
function {(a,f(a))}f:

Relation R Í { (a,b) : a,b Î S }

0 1 1 0 1

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 1 1 0 0

Any Boolean
matrix defines a
relation

1
2
3
4
5

1 2 3 4 5

Equivalence relation

i is equivalent to j if they belong to the same set.

(more constrained that general relation)

1 2 3 4 5 6 7

1 1 0 0 0 0 1 1

2 0 1 1 0 0 0 0

3 0 1 1 0 0 0 0

4 0 0 0 1 0 0 0

5 0 0 0 0 1 0 0

6 1 0 0 0 0 1 1

7 1 0 0 0 0 1 1

5
4

1 2
36 7

Equivalence relation

• Reflexivity

• Symmetry

• Transitivity

∀a ∈ S, (a,a)∈ R

∀a,b∈ S, (a,b)∈ R⇒ (b,a)∈ R

∀a,b,c ∈ S, (a,b)∈ R and (b,c)∈ R⇒ (a,c)∈ R

Example (Java)

equals() defines an equivalence relation on objects.

• Reflexivity:

a.equals(a)returns True

• Symmetry:

a.equals(b)== b.equals(a)

• Transitivity:

a.equals(b)and b.equals(c)implies a.equals(c)

Example (Graph)

For any undirected graph G(V,E), pathconnected(u,v) defines
an equivalence relation on vertices (𝑢, 𝑣 ∈ 𝑉).

• Reflexivity: There is a path of length 0 from u to u
• Symmetry: There is a path from u tov		iff there is a path from
v	 to u

• Transitivity: If there is a path from u tov	 and a path from v
tow, then there a path from u tow	

Our objective is to design a data structure that will store this equivalence
relation on vertices.

Disjoint set ADT

1

3

5 2
10

13

4

11
6

12

1579

14 8

Each set in the partition as a representative member.

• find(i) returns the representative of the set that contains i.

• sameset(i,j) returns the boolean value find(i)==find(j)

• union(i,j) merges the sets containing i and j.

Union of disjoint sets

union(i,j) merges the sets containing i and j.

• Does nothing if i and j are already in the same set.

• Otherwise, we merge the set and need a policy to decide
who will be the representative of the new merged set.

Quick find

1 1

2 3

3 3

4 4

5 7

6 1

7 7

8 7

9 1

7
4

1 2
36 9

8

5

Rep[]

Let Rep[i] Î { 1, 2, … , n } be the
representative of the set containing i.

(Quick find) & union

1 1

2 3

3 3

4 4

5 7

6 1

7 7

8 7

9 1

1 1

2 3

3 3

4 4

5 7

6 1

7 7

8 7

9 1

1 1

2 1

3 1

4 4

5 7

6 1

7 7

8 7

9 1

i

j

• find(i) { return rep[i]; }
• union(i,j) merges the sets containing i and j.

Example: union(2,6)

(Quick find) & union
union(i,j) {

if rep[i] != rep[j] {
prevrepi = rep[i];
for (k=1; k<=n; k++) {

if rep[k] == rep[i] {
rep[k] = rep[j];

}
}

}
}

prevrepi {

• store value of rep[i] because it may change
during the execution of the algorithm.

• O(n) running time… slow… Can we do better?

Tree representation & forests
• Represent the disjoint sets by a forest of rooted trees.
• Roots are the representative (i.e., find(i) == findroot(i)).
• Each node points to its parent.

7

4

2 69

1

5 8

11

3

10

IMPORTANT NOTE: The tree structure does not necessarily
represent the relationship between the stored objects.

Array representation

7

4

2 69

1

5 8

11

3

10

1 1

2 7

3 3

4 9

5 1

6 7

7 7

8 1

9 7

10 3

11 5

p[]

• Non-root nodes hold index of their parent.

• Root nodes store their own value.

Find & Union
find(i) {

if p[i] == i {
return i;

} else {
return find(p[i]);

}
}

union(i,j) {
if find(i) != find(j) {

p[find(i)] = find(j);
}

}

Remark: Arbitrarily merge the set on i into the set of j.

Find becomes a bit more
complex & expensive

But union is much simpler
& faster!

Union example

7

4

2 69

1

5 8

11

union(9,11)

7

4

2 69

1

5 8

11

Root of the tree of 11 becomes the
parent of the root of the tree of 9.

How do you decide how
to merge the trees?

Worst case

union(1,2)

union(1,3)

union(1,4)

…

union(1,n)

Then, find(1) is O(n)…

2

1

3

4

n

n-1

…

This does not seem like a
successful improvement…
Can we do better?

Union by size
We will use a heuristic to control the height of the trees after
merging, and thus guarantee the efficient of find().

Idea: Merge the tree with smaller number of nodes into the tree
with the largest number of nodes (In practice, we can also use
the rank which is an upper bound on the height of nodes).

7

4

2 69

1

5 8

7

4

2 69 1

5 8

Union by size
Claim: The depth of any node is at most log n.

Proof:

• If union causes the depth of a node to increase, then this
node must belong to the smallest tree (by definition of union).

• Thus, when the depth increases, the size of the merged tree
containing this node (i.e., the smallest) will at least double.

• But we can double the size of a tree at most log n times.

7

4

2 69 1

5 8

+1

Union by height
Idea: Merge tree with smaller height into tree with larger height.

Claim: The height of trees obtained by union-by-height is at most
log n.

Corollary: A union-by-height tree of height h has at least nh ³ 2h

nodes.

Proof (Corollary):
• Base case: a tree of height 0 has one node.
• Induction: (hypothesis) nh ³ 2h. Show nh+1 ³ 2h+1.

if the height of the union increases, then both
trees should be of height h. Thus, the new tree
has 2 subtrees with at least 2^h nodes.

Running time

find(i) union(i,j)
Quick find O(1) O(n)

Union by size O(log n) O(log n)
Union by height O(log n) O(log n)

Quick Union

Note: These are worst case complexities.

Quick union makes
2 calls to find.

Path compression

• Find path = nodes visited during the execution of find() on the
trip to the root.

• Make all nodes on the find path direct children of root.

a

b

c

d

a

bd c

Path compression

find(i) {
if p[i] == i {

return i;
} else {

return find(p[i]);
}

}

p[i] = find(p[i]);
return p[i];

}
}

Running time
• Use union by size and path compression.

• Worst case running time is O(log n).

• However, we can show that m union or find operations
take O(m α(n)).

What is α(n) ?

n α(n)
0 - 2 0

3 1
4 - 7 2

8 - 2047 3
2048 – A4(1) 4 Where A4(1) >> 1080 !!

EXTENDED PROOF OF UNION BY
SIZE

Appendix

Union by size
Claim: The depth of any node is at most log n.

Proof:
If union causes the depth of a node to increase, then this node must belong
to the smallest tree.

In the example above, we are grafting the blue tree to the root of the back
tree because the former is smaller (e.g., this could result from the operation
union(5,4) for instance). Indeed, the paths from any node of the blue tree
to the new root (i.e., the depth) increased by 1 because of the red edge.

7

4

2 69 1

5 8

+1

Union by size
Claim: The depth of any node is at most log n.

Proof:
The size of the new tree (after union) will have at least twice the number of
nodes in the smallest tree (in blue).

In other words, after union, the size of the tree that contains a node whose
depth has increased will at least double. It also means that every time the
depth of a node increases, the size of tree at least double.

7

4

2 69 1

5 8

+1

Union by size
Claim: The depth of any node is at most log n.

Proof:
But we can double the size of a tree at most log n times.
Indeed, let k be the number of union operations that increased the depth of
that node. After k unions, the number Nk of nodes in that tree is at least:
𝑁! ≥ 2!, which implies log"𝑁! ≥ 𝑘.
The depth of a node can only increase log 𝑛 times. Thus, the maximum depth
of any node is 𝑂(log 𝑛) and the height of the tree is 𝑂(log 𝑛).

