
COMP251: Hashing

Jérôme Waldispühl & Giulia Alberini
School of Computer Science

McGill University
Based on (Cormen et al., 2002)

Problem Definition
Table S with n records x:

X

We want a data structure to store and retrieve these data.
Operations:
•
•
•

Key[x]

Information
or data

associated
with x

Satellite data

insert(S, x) : S← S∪{x}
delete(S, x) : S← S \ {x}
search(S,k)

Dynamic set

Direct Address Table

• Each slot, or position, corresponds to a key in U .
• If there is an element x with key k, then T[k] contains a pointer to x.
• If T [k] is empty, represented by NIL.
All operations in O(1), but if n (#keys) < m (#slots), lot of wasted space.

Illustration (CLR, 2005)

Hash Tables
• Reduce storage to O(n) keys.
• Resolve conflicts by chaining.
• Search time in O(1) time in average, but not the worst case.

Hash function: h :U→ {0,1,...,m−1}

h(k1)

h(k4)

Analysis of Hashing with Chaining
Insertion: O(1) time (Insert at the beginning of the list).

Deletion: Search time + O(1) if we use a double linked list.

Search:

• Worst case: Worst search time to is O(n).

Search time = time to compute hash function +

time to search the list.

Assuming the time to compute the hash function is O(1).

Worst time happens when all keys go the same slot (list of size n),
and we need to scan the full list => O(n).

• Average case: It depends how keys are distributed among slots.

Average case Analysis

Assume a simple uniform hashing: n keys are distributed
uniformly at random among m slots.

Let n be the number of keys, and m the number of slots.

Average number of element per linked list?

Load factor:

Theorem:
The expected time of a search is Θ(1 + α).

Note: Θ(1) if α is a constant, but Θ(n) if α is Θ(n).

α =
n
m

Note: The average case
analysis is an estimation
of the computer
resources averaged over
a distribution of all
possible inputs.

Expectation & Indicators
Background

Expectation

• Average or mean

• The expected value of a discrete random variable X is
E[X] = åx x Pr{X=x}

• Linearity of Expectation
– E[X+Y] = E[X]+E[Y], for all X, Y
– E[aX+Y] = a E[X] + E[Y], for constant a and all X, Y

• For mutually independent random variables X1,…, Xn
– E[X1X2 … Xn] = E[X1] · E[X2] · … · E[Xn]

Expectation – Example
• Let X be the RV denoting the value obtained when a fair

die is thrown. What will be the mean of X, when the die
is thrown n times.
– Let X1, X2, …, Xn denote the values obtained during the n

throws.
– The mean of the values is (X1+X2+…+Xn)/n.
– Since the probability of getting values 1 to 6 is (1/6) in average,

we can expect each of the 6 values to show up (1/6)n times.
– So, the numerator in the expression for mean can be written as

(1/6)n·1+(1/6)n·2+…+(1/6)n·6
– The mean, hence, reduces to (1/6)·1+(1/6)·2+…(1/6)·6,

which is what we get if we apply the definition of expectation.

Property of Expectation

When X takes values in set of natural numbers:

𝐸 𝑋 =$
!"#

$

𝑖 & 𝑃(𝑋 = 𝑖)

=$
!"#

$

𝑖 & (𝑃 𝑋 ≥ 𝑖 − 𝑃 𝑋 ≥ 𝑖 + 1)

=$
!"#

$

𝑃(𝑋 ≥ 𝑖)

Pr(X≥i) is added in i times and subtracted out i-1 times

Indicator Random Variables

• A simple yet powerful technique for computing the
expected value of a random variable.

• Convenient method for converting between
probabilities and expectations.

• Helpful in situations in which there may be
dependence.

• Takes only 2 values, 1 and 0.
• Indicator Random Variable for an event A of a

sample space is defined as:

I{A} = 1 if A occurs,
0 if A does not occur.

!
"
#

$#

Indicator Random Variable

Lemma 5.1
Given a sample space S and an event A in the sample
space S, let XA= I{A}. Then E[XA] = Pr{A}.

Proof:
Let Ā = S – A (Complement of A)
Then,
E[XA] = E[I{A}]

= 1·Pr{A} + 0·Pr{Ā}
= Pr{A}

Indicator RV – Example

Problem: Determine the expected number of
heads in n coin flips.

Method 1 (without indicator random variables)
Let X be the random variable for the number of
heads in n flips.
Then, E[X] = åk=0..nk·Pr{X=k}
We can solve this with a lot of math.

Indicator RV – Example
Method 2 (with Indicator Random Variables)
• Define n indicator random variables, Xi, 1 £ i £ n.
• Let Xi be the indicator random variable for the event

that the ith flip results in a Head.
⇒ Xi = I{the ith flip results in H}

• Then X = X1 + X2 + …+ Xn = åi=1..nXi.
• By Lemma 5.1, E[Xi] = Pr{H} = ½, 1 £ i £ n.
• Expected number of heads is E[X] = E[åi=1..nXi].
• By linearity of expectation, E[åi=1..nXi] = åi=1..nE[Xi].
• E[X] = åi=1..nE[Xi] = åi=1..n½ = n/2.

Average case Analysis

Theorem:
The expected time of a search is Θ(1 + α).

Proof?

Distinguish two cases:

• search is unsuccessful
• search is successful

Unsuccessful search

• Assume that we can compute the hash function in O(1) time.

• An unsuccessful search requires to scan all the keys in the list.

Average search time = O(1 + average length of lists)

Let ni be the length of the list attached to slot i.

Average value of ni ?

Þ O(1) + O(α) = O(1 + α)

E(ni) =α =
n
m

(Load factor)

Successful search

• Assume the position of the searched key x is equally likely to
be any of the elements stored in the list.

• New keys inserted at the head of the list ⇒ Keys scanned after
finding x have been inserted in the hash table before x.

• We will use an indicator to count the number of collisions:

Xij = I h(ki) = h(kj){ }; E(Xij) = (probability of a collision)
1
m

The analysis of a successful search is more complicated because the search
may stop before scanning the full list.
We are interested in collisions because it represents the number of keys that
are stored in the same list.

Successful search

E 1
n

1+ Xij
j=i+1

n

∑
"

#
$$

%

&
''

i=1

n

∑
(

)
*
*

+

,
-
-
=
1
n

1+ E Xij
() +,

j=i+1

n

∑
"

#
$$

%

&
''

i=1

n

∑

=
1
n

1+ 1
mj=i+1

n

∑
"

#
$$

%

&
''

i=1

n

∑ Search time:

= 1 +
𝛼
2
−
𝛼
2𝑛

Θ 1+1+
𝛼
2
−
𝛼
2𝑛

=Θ(1+𝛼)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑦𝑠 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑙𝑜𝑡 𝑎𝑓𝑡𝑒𝑟 𝑥 = 1 + $
%"!&'

(

𝑋!%

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑘𝑒𝑦𝑠 = 𝐸
1
𝑛
$
!"'

(

1 + $
%"!&'

(

𝑋!%

The keys in front of x
in the list have been
inserted after x.

All keys have the
same probability to
be searched for.

We use the indicator
to count the
number of keys in
front of x

Supplementary
material

Designing a hash function
Properties:
1. Uniform distribution of keys into slots
2. Regularity in key disturb should not affect uniformity.

List of functions:
• Division method
• Multiplication methods
• Open addressing:
• Linear probing
• Quadratic probing
• Double hashing

Each integer x accepts a unique decomposition
where 0 ≤ ai < 2

Example:

The binary number representation of an integer x is its
(reversed) sequence of a’s.

Example:

Binary number operations:

101101 >> 1 = 10110 (right shift) : quotient of division by 2k

101101 << 2 = 10110100 (left shift) : multiplication by 2k

101101 mod 22 = 01 (modulo 2k) : remainder of division by 2k

Binary Numbers (reminder)
x = ai ⋅2

i

i
∑

x =11=1⋅20 +1⋅21 + 0 ⋅22 +1⋅23

x =11→ 1,0,1,1 →101123 22 21 20

1 0 1 1

Division Method
h(k) = kmodd

d must be chosen carefully!

Example 1: d = 2 and all keys are even?
Odd slots are never used…

Example 2: d = 2r

k = 100010110101101011

keeps only r last bits…

Good heuristic: Choose d prime not too close from a power of 2.

Note: Easy to implement, but division is slow…

r = 2 -> 11
r = 3 -> 011
r = 4 -> 1011

Multiplication method
h(k) = A ⋅ kmod2w() >> (w− r)

2w-1 < A < 2w

r

Slower to compute but less sensitive to the choice of variables.

Open addressing
No storage for multiple keys on single slot (i.e., no chaining).

Idea: Probe the table.
• Insert if the slot if empty,
• Try another hash function otherwise.

h: U x { 0, … , m-1 } -> { 1, … , m }

Universe of keys probe number slot

Constraints:
• 𝑛 ≤ 𝑚 (i.e. more slots than keys to store)
• Deletion is difficult

Challenge: How to build the hash function?

Open addressing

index key
1 355
2
3 567
4 233
5
6 799

7

h(282,0)=3

h(282,1)=1

h(282,2)=5

282

Important: Search must use the same probe sequence.

Illustration: Where to store key 282?

Full!

✔
The probe number is used to
determine the order you will
use to try the slots.

Linear & Quadratic probing

h(k, i) = h '(k)+ i()modm

h(k, i) = h '(k)+ c1 ⋅ i+ c2 ⋅ i
2()modm

Note: tendency to create clusters.

Remarks:
• We must ensure that we have a full permutation of ⟨

0, … , m-1 ⟩.
• Secondary clustering: 2 distinct keys have the same

hʹ value, if they have the same probe sequence.

Linear probing:

Quadratic probing:

Double hashing

h(k, i) = h1(k)+ i ⋅h2 (k)()modm

Must have h2(k) be “relatively” prime to m to guarantee that
the probe sequence is a full permutation of ⟨0, 1, . . . , m −1⟩.

Examples:
• m power of 2 and h2 returns odd numbers
• m prime number and 1 < h2(k) < m

Analysis of open-addressing

We assume uniform hashing: Each key equally likely to have
anyone of the m’s permutations as its probe sequence,
independently of other keys.

Theorem 1: The expected number of probes in an unsuccessful

search is at most .

Theorem 2: The expected number of probes in a successful

search is at most

Reminder: is the load factor

1
1−α

1
α
⋅ log 1

1−α
#

$
%

&

'
(

α =
n
m

Proof for unsuccessful searches
Initial state: n keys are already stored in m slots.

Probability 1st slot is occupied: n/m.
Probability 2nd slot is occupied knowing 1st is too: (n-1)/(m-1).
Probability 3rd slot is occupied knowing 1st & 2nd are too : (n-2)/(m-2).

Let X be the number of unsuccessful probes.

Pr 𝑋 ≥ 𝑖 =
𝑛
𝑚
&
𝑛 − 1
𝑚 − 1

&
𝑛 − 2
𝑚 − 2

⋯
𝑛 − 𝑖 + 2
𝑚 − 𝑖 + 2

𝑛 < 𝑚 ⇒ ⁄(𝑛 − 𝑗) 𝑚 − 𝑗 ≤ ⁄𝑛 𝑚, for 0 ≤ 𝑗 ≤ 𝑛

Pr 𝑋 ≥ 𝑖 ≤ ⁄𝑛 𝑚 !)' = 𝛼!)'

𝐸 𝑋 =$
!"'

$

Pr{𝑋 ≥ 𝑖} ≤$
!"'

$

𝛼!)' =$
!"#

$

𝛼! =
1

1 − 𝛼

We use the same
upper bound for
all terms in the
product.

i-1 factors

Consequences

Corollary
The expected number of probes to insert is at most 1/(1 − α).

Interpretation:
• If α is constant, an unsuccessful search takes O(1) time.
Yet…
• If α = 0.5, then an unsuccessful search takes an average of

1/(1 − 0.5) = 2 probes.
• If α = 0.9, takes an average of 1/(1 − 0.9) = 10 probes.

Proof of Theorem on successful searches: See [CLRS, 2009].

Universal Hashing
• Set-up: We solve collision by chaining.

• A malicious adversary who has learned the hash function
chooses keys that all map to the same slot, giving worst-
case behavior.

• Defeat the adversary using Universal Hashing
– Use a different random hash function each time.
– Ensure that the random hash function is independent

of the keys that are going to be stored.
– Ensure that the random hash function is “good” by

carefully designing a class of functions to choose from:
• Design a universal class of functions.

Universal Set of Hash Functions

A finite collection of hash functions H that maps a
universe U of keys into the range {0, 1,…, m–1} is
universal if,

for each pair of distinct keys x, y Î U, the number of
hash functions h Î H for which h(x)=h(y) is ≤ |H|/m.

In other words, for a hash function h chosen randomly
from H, the chance of a collision is ≤ 1/m.

Universal hash functions give good hashing behavior.

Cost of Universal Hashing
Theorem:
Using chaining and universal hashing on key k:
• If k is not in the table T, the expected length of the list that k

hashes to is £ a.
• If k is in the table T, the expected length of the list that k

hashes to is £ 1+a.

Proof:
Xk = # of keys (≠k) that hash to the same slot as k.
Ckl = I{h(k)=h(l)}; E[Ckl] = Pr{h(k)=h(l)} ≤ 1/m.

Xk = Ckl
l∈T \{k}
∑ , and E[Ck]= E Ckl

l∈T \{k}
∑

#

$
%
%

&

'
(
(
= E[Ckl]

l∈T \{k}
∑ ≤

1
ml∈T∧l≠k

∑

If k ∉ T, E[Xk]≤ n /m =α.
If k ∈ T, E[Xk]+1≤ (n−1) /m+1=1+α −1/m <1+α.

Xk

Example of Universal Hashing

• The size of the table m is a prime,

• We write a key x in bytes s.t. x = <x0 ,…, xr>,

• a = <a0 ,…, ar> denotes a sequence of r+1
elements randomly chosen from {0, 1, … , m – 1}.

The class H defined by:

H = !a {ha} with ha(x) = åi=0 to r aixi mod m

is an universal function.

Proof (universal hashing function)
Let and be 2 distinct keys.

They differ at (at least) one position. WLOG let 0 be this position.

For how many h do X and Y collide?

Y = y0, y1,..., yrX = x0, x1,..., xr

aixi
i=0

r

∑ ≡ aiyi
i=0

r

∑ (modm)

ai (xi − yi)
i=0

r

∑ ≡ 0(modm)

a0 (x0 − y0) ≡ − ai (xi − yi)
i=1

r

∑ (modm)

a0 ≡ − ai (xi − yi)
i=1

r

∑
⎛

⎝
⎜

⎞

⎠
⎟⋅ (x0 − y0)

−1 (modm)

Conclusion:
For any choice of < a1, a2, … , ar>
there is only one choice of a0 such
that X and Y collide.
#{h that collide} = m × m × … × m × 1

= mr = |H|/m

