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Recap: Balanced Binary Search Trees
x

≤x ≥x
• T is a rooted binary tree
• Key of a node x ≥  keys in its left subtree.
• Key of a node x ≤  keys in its right subtree.
• Use to store keys
• The running time of search/Insert/Delete operations depends 

on the height of the subtrees
• ⇒ Keep the height of subtrees as minimal as possible



Recap: Rotations
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Right rotation

Left rotation

Rotations change the tree structure & preserve the BST property.
Proof: elements in B are ≥ x and ≤ y…

In both cases, everything in A < x < everything in B < y < everything in C 

A right « rotation » 
moves the root one 
position to the right.



Recap: AVL trees

Definition: BST such that the heights of the two child subtrees of 
any node differ by at most one.

• Invented by G. Adelson-Velsky and E.M. Landis in 1962.
• AVL trees are self-balanced binary search trees.
• Insert, Delete & Search take O(log n) in average and worst cases.
• To satisfy the definition, the height of an empty subtree is -1

x

|hleft-hright|≤1



Red-black trees: Overview

• Red-black trees are a variation of binary search 
trees to ensure that the tree is balanced.

– Height is O(lg n), where n is the number of nodes.

• Operations take O(lg n) time in the worst case.

• Invented by R. Bayer (1972).

• Modern definition by L.J. Guibas & R. Sedgewick
(1978).



Red-black Tree

• Binary search tree + 1 bit per node: the 
attribute color, which is either red or black.

• All other attributes of BSTs are inherited:
– key, left, right, and parent.

• All empty trees (leaves) are colored black.
– Note: We can use a single sentinel, nil, for all the 

leaves of red-black tree T, with color[nil] = black. 
The root’s parent is also nil[T ].



Red-black (RB) Properties
1. Every node is either red or black.

2. The root is black.

3. All leaves (nil) are black.

4. If a node is red, then its children are black 
(i.e., no 2 consecutive red nodes).

5. For each node, all paths from the node to 
descendant leaves contain the same number 
of black nodes (i.e., same black height).



Red-black Tree – Example 
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Note: every internal node 
has two children, even 
though nil leaves are not 
usually shown.
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Height of a Red-black Tree

• Height of a node:
– h(x) = number of edges in the longest path to a leaf.

• Black-height of a node x, bh(x):
– bh(x) = number of black nodes (including nil[T]) 

on a path from x to a leaf, not counting x.

• Black-height of a red-black tree is the black-height 
of its root.
– By RB Property 5, black height is well defined.



Height of a Red-black Tree

• Height h(x):
#edges in a longest path to a leaf.

• Black-height bh(x):
# black nodes on path from x to 
leaf, not counting x.

• Property: bh(x) ≤ h(x) ≤ 2 bh(x)
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Bound on RB Tree Height 
Lemma 1: Any node x with height h(x) has a black-height 
bh(x) ≥ h(x)/2.

Proof: By RB property 4, ≤ h / 2 nodes on the path from 
the node to a leaf are red. Hence ≥ h/2 are black. n
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Bound on RB Tree Height

Lemma 2: The subtree rooted at any node x contains ³ 2bh(x) – 1 
internal nodes.

Proof: By induction on height of x.
• Base Case:  Height h(x) = 0 Þ x is a leaf Þ bh(x) = 0.

Subtree has ³ 20–1 = 0 nodes. 
• Induction Step:
– Height h(x) > 0 Þ Each child of x has black-height of either 

bh(x) (child is red) or bh(x) - 1 (child is black).
– By ind. hyp., each child has ³ 2bh(x)– 1 – 1 internal nodes.
– Subtree rooted at x has  ³ 2 � (2bh(x) – 1 – 1) + 1 

= 2bh(x) – 1 internal nodes. n



Bound on RB Tree Height

Lemma 1: Any node x with height h(x) has a black-height 
bh(x) ≥ h(x)/2.

Lemma 2: The subtree rooted at any node x has 
³ 2bh(x)–1 internal nodes.

Lemma 3: A red-black tree with n internal nodes has 
height at most 2 lg(n+1).
Proof:
• By lemma 2, n ³ 2bh – 1,
• By lemma 1, bh ³ h/2, thus n ³ 2h/2 – 1.
• Þ h £ 2 lg(n + 1).

Thus, a RB tree is 
balanced!



Insertion in RB Trees
• Insertion must preserve all red-black properties.
• Should an inserted node be colored Red? Black?
• Basic steps:

1. Use BST Tree-Insert to insert a node x into T.
• Procedure RB-Insert(x).

2. Color the node x in red.

3. Use (1) node re-coloring, and (2) rotations to 
restore RB tree property.
• Procedure RB-Insert-Fixup.

After step 2, some RB 
properties may be 
violated. Which ones?



Insertion
RB-Insert(T, z)
1. y ¬ nil[T]
2. x ¬ root[T]
3. while x ¹ nil[T]
4. do y ¬ x
5. if key[z] < key[x]
6. then x ¬ left[x]
7. else x ¬ right[x]
8. p[z] ¬ y
9. if y = nil[T]
10. then root[T] ¬ z
11. else if key[z] < key[y]
12. then  left[y] ¬ z
13. else right[y] ¬ z

RB-Insert(T, z) Contd.
14. left[z] ¬ nil[T]
15. right[z] ¬ nil[T]
16. color[z] ¬ RED
17. RB-Insert-Fixup (T, z)

Principles:
• Regular BST insert (line 1-15)
• Color assignment (line 16)
• Fixup (line 17).

What is happening in the fixup is 
obviously the more 
sophisticated procedure. 



Insert RB Tree – Example 
7

3

10 20

11 22

NilNil NilNil

Nil Nil

18

Nil
8

NilNil



Insert RB Tree – Example 
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In fact, the BST 
insertion inserts 
as internal node. 
We must always 
keep all leaves as 
Nil (no key). 



Insert RB Tree – Example 
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Insert RB Tree – Example 
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Right rotate at 18

Rotations will not fix 
the conflict but allow 
to adjust the structure 
of the RB tree to fix 
the conflict after (the 
conflict goes one level 
upper).



Insert RB Tree – Example 
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Parent & child with conflict are now aligned with the root.
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Insert RB Tree – Example 
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Insert RB Tree – Example 
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The conflict moved 
one level up!



Insert RB Tree – Example 
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Recolor 10 & 7 (root must be black!)

18

20

22

NilNil

Nil

11

Nil 15

NilNil

8

NilNil

The conflict is now 
with the root, only 
re-coloring will help. 



General principles
1. Proceed with a BST insertion and color the new node in red.
2. The only possible conflict is with the newly inserted node and 

its parent (i.e., both can be red). Fix the conflict as follow.
3. Let z be newly inserted node and y its uncle (i.e., the sibling 

of the parent of z). Until the conflict is resolved:
• Case 1: y is red Þ recolor the nodes to bring the conflict 

one level upper
• Case 2: y is black, and conflict “aligned” with grand parent 
Þ make one rotation to align the nodes in conflict

• Case 3: y is black, and conflict “aligned” with grand parent 
Þ make a rotation to bring the conflict one level upper

4. If needed, color the root in black



Case 1 – uncle y is red

• p[p[z]] (z’s grandparent) must be black, since z and p[z] are both red 
and there are no other violations of property 4.

• Make p[z] and y black Þ now z and p[z] are not both red. But 
property 5 might now be violated.

• Make p[p[z]] red Þ restores property 5.
• The next iteration has p[p[z]] as the new z (i.e., z moves up 2 levels).

z is a right child here.
Similar steps if z is a 
left child.
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B Note that 
the black 
height is 
conserved



Case 2 – y is black, z is a right child

• Left rotate around p[z], p[z] and z switch roles Þ now z is a left 
child, and both z and p[z] are red.

• Takes us immediately to case 3.
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This is an intermediate step that 
brings us to case 3.



Case 3 – y is black, z is a left child

• Make p[z] black and p[p[z]] red.
• Then right rotate right on p[p[z]] (in order to maintain property 4).
• No longer have 2 reds in a row.

• p[z] is now black Þ no more iterations.
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The rotation enables us to 
restore the black-height 
property lost with re-coloring.



Insertion – Fixup 

RB-Insert-Fixup (T, z)
1. while color[p[z]] = RED
2. do if p[z] = left[p[p[z]]]
3. then y ¬ right[p[p[z]]]
4. if color[y] = RED
5. then color[p[z]] ¬ BLACK  // Case 1
6. color[y] ¬ BLACK       // Case 1
7. color[p[p[z]]] ¬ RED   // Case 1
8. z ¬ p[p[z]]                    // Case 1



Insertion – Fixup 

RB-Insert-Fixup(T, z) (Contd.)
9. else if z = right[p[z]]  // color[y] ¹ RED
10. then z ¬ p[z]                           // Case 2
11. LEFT-ROTATE(T, z) // Case 2
12. color[p[z]] ¬ BLACK            // Case 3
13. color[p[p[z]]] ¬ RED             // Case 3
14. RIGHT-ROTATE(T, p[p[z]]) // Case 3
15. else (if p[z] = right[p[p[z]]])(same as 10-14
16. with “right” and “left” exchanged)
17. color[root[T ]] ¬ BLACK



Algorithm Analysis

• O(lg n) time to get through RB-Insert up to the 
call of RB-Insert-Fixup.

• Within RB-Insert-Fixup:
– Each iteration takes O(1) time.
– Each iteration but the last moves z up 2 levels.
– O(lg n) levels Þ O(lg n) time.
– Thus, insertion in a red-black tree takes O(lg n) time.
– Note: there are at most 2 rotations overall.



Correctness

Loop invariant:
• At the start of each iteration of the while loop,
– z is red.
– There is at most one red-black violation:
• Property 2: z is a red root, or
• Property 4: z and p[z] are both red.



Correctness – Contd.

• Initialization: ✓
• Termination: The loop terminates only if p[z] is black. 

Hence, property 4 is OK. 
The last line ensures property 2 always holds.

• Maintenance: We drop out when z is the root (since 
then p[z] is sentinel nil[T ], which is black). When we 
start the loop body, the only violation is of property 4.
– There are 6 cases, 3 of which are symmetric to the other 3. 

We consider cases in which p[z] is a left child.
– See cases 1, 2, and 3 described above.



AVL vs. Red-Black Trees

• AVL trees are more strictly balanced ⇒ faster search

• Red Black Trees have less constraints and insert/remove 
operations require less rotations ⇒ faster insertion and 
removal

• AVL trees store balance factors or heights with each node

• Red Black Tree requires only 1 bit of information per node



Further Readings

See Chapter 13 for the complete proofs & deletion

[CLRS2009] Cormen, Leiserson, Rivest, & Stein, Introduction 
to Algorithms. (available as E-book)

http://www.books24x7.com/marc.asp?bookid=49924

