
COMP251: Red-black trees

Jérôme Waldispühl & Giulia Alberini
School of Computer Science

McGill University
Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)

Recap: Balanced Binary Search Trees
x

≤x ≥x
• T is a rooted binary tree
• Key of a node x ≥ keys in its left subtree.
• Key of a node x ≤ keys in its right subtree.
• Use to store keys
• The running time of search/Insert/Delete operations depends

on the height of the subtrees
• ⇒ Keep the height of subtrees as minimal as possible

Recap: Rotations

y

x

A B

C

x
y

CB

A

Right rotation

Left rotation

Rotations change the tree structure & preserve the BST property.
Proof: elements in B are ≥ x and ≤ y…

In both cases, everything in A < x < everything in B < y < everything in C

A right « rotation »
moves the root one
position to the right.

Recap: AVL trees

Definition: BST such that the heights of the two child subtrees of
any node differ by at most one.

• Invented by G. Adelson-Velsky and E.M. Landis in 1962.
• AVL trees are self-balanced binary search trees.
• Insert, Delete & Search take O(log n) in average and worst cases.
• To satisfy the definition, the height of an empty subtree is -1

x

|hleft-hright|≤1

Red-black trees: Overview

• Red-black trees are a variation of binary search
trees to ensure that the tree is balanced.

– Height is O(lg n), where n is the number of nodes.

• Operations take O(lg n) time in the worst case.

• Invented by R. Bayer (1972).

• Modern definition by L.J. Guibas & R. Sedgewick
(1978).

Red-black Tree

• Binary search tree + 1 bit per node: the
attribute color, which is either red or black.

• All other attributes of BSTs are inherited:
– key, left, right, and parent.

• All empty trees (leaves) are colored black.
– Note: We can use a single sentinel, nil, for all the

leaves of red-black tree T, with color[nil] = black.
The root’s parent is also nil[T].

Red-black (RB) Properties
1. Every node is either red or black.

2. The root is black.

3. All leaves (nil) are black.

4. If a node is red, then its children are black
(i.e., no 2 consecutive red nodes).

5. For each node, all paths from the node to
descendant leaves contain the same number
of black nodes (i.e., same black height).

Red-black Tree – Example
26

17

30 47

38 50

41

Note: every internal node
has two children, even
though nil leaves are not
usually shown.

NilNil Nil

Nil

Nil

Nil Nil

Nil

Height of a Red-black Tree

• Height of a node:
– h(x) = number of edges in the longest path to a leaf.

• Black-height of a node x, bh(x):
– bh(x) = number of black nodes (including nil[T])

on a path from x to a leaf, not counting x.

• Black-height of a red-black tree is the black-height
of its root.
– By RB Property 5, black height is well defined.

Height of a Red-black Tree

• Height h(x):
#edges in a longest path to a leaf.

• Black-height bh(x):
black nodes on path from x to
leaf, not counting x.

• Property: bh(x) ≤ h(x) ≤ 2 bh(x)

h=4
bh=2

h=3
bh=2

h=2
bh=1

h=2
bh=1

h=1
bh=1

h=1
bh=1

h=1
bh=1

26

17

30 47

38 50

41

NilNil Nil

Nil

Nil

Nil Nil

Nil

Bound on RB Tree Height
Lemma 1: Any node x with height h(x) has a black-height
bh(x) ≥ h(x)/2.

Proof: By RB property 4, ≤ h / 2 nodes on the path from
the node to a leaf are red. Hence ≥ h/2 are black. n

26

17

30 47

38 50

NilNil Nil

Nil

Nil

Nil Nil

41

Bound on RB Tree Height

Lemma 2: The subtree rooted at any node x contains ³ 2bh(x) – 1
internal nodes.

Proof: By induction on height of x.
• Base Case: Height h(x) = 0 Þ x is a leaf Þ bh(x) = 0.

Subtree has ³ 20–1 = 0 nodes.
• Induction Step:
– Height h(x) > 0 Þ Each child of x has black-height of either

bh(x) (child is red) or bh(x) - 1 (child is black).
– By ind. hyp., each child has ³ 2bh(x)– 1 – 1 internal nodes.
– Subtree rooted at x has ³ 2 � (2bh(x) – 1 – 1) + 1

= 2bh(x) – 1 internal nodes. n

Bound on RB Tree Height

Lemma 1: Any node x with height h(x) has a black-height
bh(x) ≥ h(x)/2.

Lemma 2: The subtree rooted at any node x has
³ 2bh(x)–1 internal nodes.

Lemma 3: A red-black tree with n internal nodes has
height at most 2 lg(n+1).
Proof:
• By lemma 2, n ³ 2bh – 1,
• By lemma 1, bh ³ h/2, thus n ³ 2h/2 – 1.
• Þ h £ 2 lg(n + 1).

Thus, a RB tree is
balanced!

Insertion in RB Trees
• Insertion must preserve all red-black properties.
• Should an inserted node be colored Red? Black?
• Basic steps:

1. Use BST Tree-Insert to insert a node x into T.
• Procedure RB-Insert(x).

2. Color the node x in red.

3. Use (1) node re-coloring, and (2) rotations to
restore RB tree property.
• Procedure RB-Insert-Fixup.

After step 2, some RB
properties may be
violated. Which ones?

Insertion
RB-Insert(T, z)
1. y ¬ nil[T]
2. x ¬ root[T]
3. while x ¹ nil[T]
4. do y ¬ x
5. if key[z] < key[x]
6. then x ¬ left[x]
7. else x ¬ right[x]
8. p[z] ¬ y
9. if y = nil[T]
10. then root[T] ¬ z
11. else if key[z] < key[y]
12. then left[y] ¬ z
13. else right[y] ¬ z

RB-Insert(T, z) Contd.
14. left[z] ¬ nil[T]
15. right[z] ¬ nil[T]
16. color[z] ¬ RED
17. RB-Insert-Fixup (T, z)

Principles:
• Regular BST insert (line 1-15)
• Color assignment (line 16)
• Fixup (line 17).

What is happening in the fixup is
obviously the more
sophisticated procedure.

Insert RB Tree – Example
7

3

10 20

11 22

NilNil NilNil

Nil Nil

18

Nil
8

NilNil

Insert RB Tree – Example
7

3

10 20

11 22

NilNilNil

Nil Nil

18

Nil

Insert(T,15)

15

NilNil

8

NilNil

In fact, the BST
insertion inserts
as internal node.
We must always
keep all leaves as
Nil (no key).

Insert RB Tree – Example
7

3

10 20

11 22

NilNilNil

Nil Nil

18

Nil

Recolor 10, 8 &11

15

NilNil

8

NilNil

Insert RB Tree – Example
7

3

10 20

11 22

NilNilNil

Nil Nil

18

Nil

15

NilNil

8

NilNil

Right rotate at 18

Rotations will not fix
the conflict but allow
to adjust the structure
of the RB tree to fix
the conflict after (the
conflict goes one level
upper).

Insert RB Tree – Example
7

3

18Nil Nil

10

20

22

NilNil

Nil

Parent & child with conflict are now aligned with the root.

11

Nil 15

NilNil

8

NilNil

Insert RB Tree – Example
7

3

18Nil Nil

10

20

22

NilNil

Nil

Left rotate at 7

11

Nil 15

NilNil

8

NilNil

Insert RB Tree – Example

7

3

Nil Nil

10

18

20

22

NilNil

Nil

11

Nil 15

NilNil

8

NilNil

The conflict moved
one level up!

Insert RB Tree – Example

7

3

Nil Nil

10

Recolor 10 & 7 (root must be black!)

18

20

22

NilNil

Nil

11

Nil 15

NilNil

8

NilNil

The conflict is now
with the root, only
re-coloring will help.

General principles
1. Proceed with a BST insertion and color the new node in red.
2. The only possible conflict is with the newly inserted node and

its parent (i.e., both can be red). Fix the conflict as follow.
3. Let z be newly inserted node and y its uncle (i.e., the sibling

of the parent of z). Until the conflict is resolved:
• Case 1: y is red Þ recolor the nodes to bring the conflict

one level upper
• Case 2: y is black, and conflict “aligned” with grand parent
Þ make one rotation to align the nodes in conflict

• Case 3: y is black, and conflict “aligned” with grand parent
Þ make a rotation to bring the conflict one level upper

4. If needed, color the root in black

Case 1 – uncle y is red

• p[p[z]] (z’s grandparent) must be black, since z and p[z] are both red
and there are no other violations of property 4.

• Make p[z] and y black Þ now z and p[z] are not both red. But
property 5 might now be violated.

• Make p[p[z]] red Þ restores property 5.
• The next iteration has p[p[z]] as the new z (i.e., z moves up 2 levels).

z is a right child here.
Similar steps if z is a
left child.

C

A D

B
a

b g

d e
z

yp[z]

p[p[z]]

a

b g

d e

new z
C

A D

B Note that
the black
height is
conserved

Case 2 – y is black, z is a right child

• Left rotate around p[z], p[z] and z switch roles Þ now z is a left
child, and both z and p[z] are red.

• Takes us immediately to case 3.

C

A

B
a

b g

z

yp[z]
C

B

A

a b

g(new) z

y(new) p[z]
D D

δ λ δ λ

This is an intermediate step that
brings us to case 3.

Case 3 – y is black, z is a left child

• Make p[z] black and p[p[z]] red.
• Then right rotate right on p[p[z]] (in order to maintain property 4).
• No longer have 2 reds in a row.

• p[z] is now black Þ no more iterations.

C

B

A

a b

g

yp[z]

z

D

B

A

a b g

C

D
δ λ

δ λ

p[p[z]]

z

p[z]

The rotation enables us to
restore the black-height
property lost with re-coloring.

Insertion – Fixup

RB-Insert-Fixup (T, z)
1. while color[p[z]] = RED
2. do if p[z] = left[p[p[z]]]
3. then y ¬ right[p[p[z]]]
4. if color[y] = RED
5. then color[p[z]] ¬ BLACK // Case 1
6. color[y] ¬ BLACK // Case 1
7. color[p[p[z]]] ¬ RED // Case 1
8. z ¬ p[p[z]] // Case 1

Insertion – Fixup

RB-Insert-Fixup(T, z) (Contd.)
9. else if z = right[p[z]] // color[y] ¹ RED
10. then z ¬ p[z] // Case 2
11. LEFT-ROTATE(T, z) // Case 2
12. color[p[z]] ¬ BLACK // Case 3
13. color[p[p[z]]] ¬ RED // Case 3
14. RIGHT-ROTATE(T, p[p[z]]) // Case 3
15. else (if p[z] = right[p[p[z]]])(same as 10-14
16. with “right” and “left” exchanged)
17. color[root[T]] ¬ BLACK

Algorithm Analysis

• O(lg n) time to get through RB-Insert up to the
call of RB-Insert-Fixup.

• Within RB-Insert-Fixup:
– Each iteration takes O(1) time.
– Each iteration but the last moves z up 2 levels.
– O(lg n) levels Þ O(lg n) time.
– Thus, insertion in a red-black tree takes O(lg n) time.
– Note: there are at most 2 rotations overall.

Correctness

Loop invariant:
• At the start of each iteration of the while loop,
– z is red.
– There is at most one red-black violation:
• Property 2: z is a red root, or
• Property 4: z and p[z] are both red.

Correctness – Contd.

• Initialization: ✓
• Termination: The loop terminates only if p[z] is black.

Hence, property 4 is OK.
The last line ensures property 2 always holds.

• Maintenance: We drop out when z is the root (since
then p[z] is sentinel nil[T], which is black). When we
start the loop body, the only violation is of property 4.
– There are 6 cases, 3 of which are symmetric to the other 3.

We consider cases in which p[z] is a left child.
– See cases 1, 2, and 3 described above.

AVL vs. Red-Black Trees

• AVL trees are more strictly balanced ⇒ faster search

• Red Black Trees have less constraints and insert/remove
operations require less rotations ⇒ faster insertion and
removal

• AVL trees store balance factors or heights with each node

• Red Black Tree requires only 1 bit of information per node

Further Readings

See Chapter 13 for the complete proofs & deletion

[CLRS2009] Cormen, Leiserson, Rivest, & Stein, Introduction
to Algorithms. (available as E-book)

http://www.books24x7.com/marc.asp?bookid=49924

