
COMP251: Binary search trees,
AVL trees & AVL sort

Giulia Alberini & Jérôme Waldispühl
School of Computer Science

McGill University
From Lecture notes by E. Demaine (2009)

Announcements

• Assignment 1 will be post tomorrow

Outline

• Review of binary search trees
• AVL-trees

• Rotations
• BST & AVL sort

Binary search trees (BSTs)

• T is a rooted binary tree
• Key of a node x ≥ keys in its left subtree.
• Key of a node x ≤ keys in its right subtree.

x

≤x ≥x

Operations on BSTs

• Search(T,k): Θ(h)
• Insert(T,k): Θ(h)
• Delete(T,k): Θ(h)

Where h is the height of the BST.

Height of a tree
Height(n): length (#edges) of longest downward path

from node n to a leaf.

x

Height(x) = 1 + max(height(left(x)), height(right(x)))

He
ig

ht
(le

ft
(x

)) Height(right(x))

Example

h(a) = ?
= 1+max(h(b) , h(g))
= 1+max(1+max(h(c),h(d)),1+h(h))
= 1+max(1+max(0,h(d)),1+0)
= 1+max(1+max(0,1+h(e)),1)
= 1+max(1+max(0,1+(1+h(f)))),1)
= 1+max(1+max(0,1+(1+0))),1)
= 1+max(3,1)
= 4

a

b g

c d h

e

f

Height vs. Depth

https://stackoverflow.com/questions/29326512/what-is-the-difference-between-the-height-of-a-tree-and-depth-of-a-tree

Good vs. Bad BSTs

56

26 200

18 28 190 213

h

Balanced
h=Θ(log n)

18

213

26

200

190

56

28

h

Unbalanced
h=Θ(n)

This is technically a valid BST
but in practice, it’s a sorted
linked list L

AVL trees (Adelson-Velsky, Landis)

Definition: BST such that the heights of the two child subtrees of
any node differ by at most one.

• Invented by G. Adelson-Velsky and E.M. Landis in 1962.
• AVL trees are self-balanced binary search trees.
• Insert, Delete & Search take O(log n) in average and worst cases.
• To satisfy the definition, the height of an empty subtree is -1

x

|hleft-hright|≤1

One node: height=0. Zero nodes: height=-1

Height of a AVL tree
Nh = minimum #nodes in an AVL tree of height h.

(Note: a tighter bound can found using Fibonacci numbers)

Nh = 1 + Nh-1 + Nh-2

> 2 ⋅ Nh-2

⇒ Nh > Θ(2h/2)

⇒ h < 2 ⋅ log Nh

⇒ h = O(log n)

x

Nh-2
Nh-1

Larger height when
tree is unbalanced.

𝑁! > 2" $ 𝑁 !#$"
𝐿𝑒𝑡 𝑘 = ⁄ℎ 2 − 1:
𝑁! > 2 ⁄! $#& $ 𝑁&
𝑁! > 𝑐 ∗ 2 ⁄! $#&

The number of nodes is
greater than double the nodes
of the smaller subtree

We can generalize this
expression by multiplying
shorter subtrees by
higher exponents of 2. We confirmed the height

grows with log N in the
worst case, unlike BSTs

Balance factor

ß: Left tree is higher (left-heavy)
= : Balanced
à : Right tree is higher (right-heavy)

x

Nh-2
Nh-1

ß

x

Nh-2
Nh-1

à

x

Nh-1

=

Nh-1

x

Nh-3

Nh-1

è

>1

Violates
AVL

property

Insert in AVL trees
1.Insert as in standard BST
2.Restore AVL tree properties

x

à
x

à

y

x

è

insert(y) restoreAVL()

Insert in AVL trees

36

12 57

8 27 43

20
ß

=

=

ß

ßà

=

Insert(T, 15)

Just like BSTs, the AVL
definition is recursive.
All children of the root
of an AVL tree are the
root of an AVL tree.

Insert in AVL trees

36

12 57

8 27 43

20
=

ß

=

15

=

ß

ç

Insert(T, 15)

How to restore AVL property?

ç

ç

Bottom-up!

Rotations

y
x

A B

C

x
y

CB

A

Right rotation

Left rotation

Rotations change the tree structure & preserve the BST property.
Proof: elements in B are ≥ x and ≤ y…

In both cases, everything in A < x < everything in B < y < everything in C

A right « rotation »
moves the root one
position to the right.

Example (right rotation)
y

x

A B

C

x
y

CB

A

y
x

A B

C

x
y

CB

A

Example: Insert in AVL trees

36

12 57

8 27 43

20

15

=

ß

=

=

ß

ç

36

12 57

8 20 43

15 27

Right rotation at 27

=

=

=

ß

ßà

=

=

We call it a rotation AT node 27 because 27 is the root that gets “kicked”
We intervene at the deepest node that breaks AVL rules.

ç

ç

Example: Insert in AVL trees

Insert(T, 50)
RotateRight(T,57)

How to restore AVL property?

36

12 57

8 20 43

15 27 50

36

12 43

8 20 57

15 27 50
=

=

à

=

çà

=

= =

Right rotation at 57

è

ß

Rotating right didn’t
fix the problem?! Let’s
try something else.

Example: Insert in AVL trees

RotateLeft(T,43)

36

12 57

8 20 50

15 27 43

Left rotation at 43

ç ç

36

12 57

8 20 43

15 27 50

ßà

We remove the zig-zag pattern

Example: Insert in AVL trees

RotateRight(T,57)

Right rotation at 57

ç

36

12 50

8 20 57

15 27

43

=

36

12 57

8 20 50

15 27 43

ß

AVL property restored!We needed to get rid of
the « zig-zag » before
doing the right rotation!

Algorithm: Maintaining AVL

1. Suppose x is lowest node violating AVL
2. If x is right-heavy:
• If x’s right child is right-heavy or balanced (no zig-zag):

Left rotation (case A)
• Else: Right followed by left rotation (case B)

3. If x is left-heavy:
• If x’s left child is left-heavy or balanced (no zig-zag):

Right rotation (symmetric of case A)
• Else: Left followed by right rotation (sym. of case B)

4. then continue up to x’s ancestors. (bottom-up approach)

Proving cases A and B is sufficient because all AVL operations are symmetric

Proof: Case A
Left rotation

x

y

CB

A

è

à

h-1

h-1 h

=

= y

x

A B

C

h-1 h-1

h

Left rotation
x

y

CB

A

è

=
h-1

h h

ß

à
y

x

A B

C

h-1 h

h

h+1

h+1 h+1

h

Two cases:
The right child is
a) right-heavy or
b) balanced

a)

b)

Right rotation at y &
Left rotation at x

x

y

D

A

è

ß

h-1

h h-1

h+1 h

B C

z

=

à
z

x

A Bh-1 h-1

h

DC

y
ß

Proof: Case B
The right child is
left-heavy (zig zag)

Intuition: here, notice that node z looks like it
« belongs » in the center, and does end up as the root!

Right rotation at y

x

y

D

A

è

ß

h-1

h h-1

h+1

h

B C

z

=

= or àz

x

A Bh-1 h-1

h

DC

y
ß or =

Proof: Case B

x

y

D

A

è

à
h-1

h-1 h

h+1

B

C

z

Left rotation at x

The first right
rotation brings us
back to case A

AVL insertion

• Insert key k as in standard BST

• Starting from k, find the first ancestor of k that is
unbalanced

• Rebalance the tree performing the appropriate rotations

Running time AVL insertion

• Insertion in O(h)

• At most 2 rotations in O(1)

• Running time is O(h) + O(1) = O(h) = O(log n) in AVL trees.

Remember we already proved h asymptically
grows with log n in the worst case.

Once we fix the unbalanced subtree its
height will decrease by one. This means
that it will be restored to its previous height
before insertion. Hence all its ancestors will
go back having their original heights.

Sorting with BSTs

1. BST sort
• Simple method using BSTs

• Problem: Worst case Ο 𝑛!

2. AVL sort

• Use AVL trees to get Ο 𝑛 # log 𝑛

This happens
because the BST
worst case is
basically a diagonal
linked list

AVL tree operations are garanteed to be O(log n)

In-order traversal & BST
inorderTraversal(treeNode x)

inorderTraversal(x.leftChild);
print x.value;
inorderTraversal(x.rightChild);

x

A B
• Print the nodes in the left subtree (A), then node x, and

then the nodes in the right subtree (B)
• In a BST, keys in A ≤ x, and keys in B ≥ x.
• In a BST, it prints first keys ≤ x, then x, and then keys ≥ x.

In-order traversal & BST
36

12 57

8 27 43

20

15

8, 12, 15, 20, 27, 36, 43, 57
All keys come out sorted!

BST sort
1. Build a BST from the list of keys (unsorted)

2. Use in-order traversal on the BST to print the keys.

36

5712

8 27 43

36 12 8 57 43 27

à 8, 12, 27, 36, 43, 57

Running time of BST sort: insertion of n keys + tree traversal.

Running time of BST sort

• In-order traversal is Θ(n)
• Running time of insertion is O(h)

Best case: The BST is always balanced for every insertion.

Worst case: The BST is always un-balanced. All insertions on
same side.

i
i=1

n

∑ =
n ⋅ (n−1)
2

=O(n2)

Ω(n log(n))

The BST worst case is basically a
diagonal linked list

In the best case, a BST always
respects AVL properties without
being « forced » to do so

AVL sort

Same as BST sort but use AVL trees and AVL insertion instead.

• Worst case running time can be brought to O(n log n) if the
tree is always balanced.

• Use AVL trees (trees are balanced).

• Insertion in AVL trees are O(h) = O(log n) for balanced trees.

