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Announcements

• Assignment 1 will be post tomorrow



Outline

• Review of binary search trees
• AVL-trees

• Rotations
• BST & AVL sort



Binary search trees (BSTs)

• T is a rooted binary tree
• Key of a node x ≥  keys in its left subtree.
• Key of a node x ≤  keys in its right subtree.
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Operations on BSTs

• Search(T,k): Θ(h)
• Insert(T,k): Θ(h)
• Delete(T,k): Θ(h)

Where h is the height of the BST. 



Height of a tree
Height(n): length (#edges) of longest downward path 

from node n to a leaf.
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Height(x) = 1 + max( height(left(x)), height(right(x)) )
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Example

h(a) = ?
= 1+max( h(b) , h(g) )
= 1+max(1+max(h(c),h(d)),1+h(h))
= 1+max(1+max(0,h(d)),1+0)
= 1+max(1+max(0,1+h(e)),1)
= 1+max(1+max(0,1+(1+h(f)))),1)
= 1+max(1+max(0,1+(1+0))),1)
= 1+max(3,1)
= 4
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Height vs. Depth

https://stackoverflow.com/questions/29326512/what-is-the-difference-between-the-height-of-a-tree-and-depth-of-a-tree



Good vs. Bad BSTs
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This is technically a valid BST 
but in practice, it’s a sorted 
linked list L



AVL trees (Adelson-Velsky, Landis)

Definition: BST such that the heights of the two child subtrees of 
any node differ by at most one.

• Invented by G. Adelson-Velsky and E.M. Landis in 1962.
• AVL trees are self-balanced binary search trees.
• Insert, Delete & Search take O(log n) in average and worst cases.
• To satisfy the definition, the height of an empty subtree is -1
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|hleft-hright|≤1

One node: height=0. Zero nodes: height=-1



Height of a AVL tree
Nh = minimum #nodes in an AVL tree of height h.

(Note: a tighter bound can found using Fibonacci numbers)

Nh = 1 + Nh-1 + Nh-2

> 2 ⋅ Nh-2

⇒ Nh > Θ( 2h/2 )

⇒ h < 2 ⋅ log Nh

⇒ h = O( log n )

x

Nh-2
Nh-1

Larger height when 
tree is unbalanced. 
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The number of nodes is
greater than double the nodes
of the smaller subtree

We can generalize this
expression by multiplying
shorter subtrees by 
higher exponents of 2. We confirmed the height

grows with log N in the 
worst case, unlike BSTs



Balance factor

ß: Left tree is higher (left-heavy)
=  : Balanced
à : Right tree is higher (right-heavy)
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Insert in AVL trees
1.Insert as in standard BST
2.Restore AVL tree properties
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Insert in AVL trees
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Insert(T, 15)

Just like BSTs, the AVL 
definition is recursive. 
All children of the root 
of an AVL tree are the 
root of an AVL tree.



Insert in AVL trees
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How to restore AVL property?
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Bottom-up!



Rotations
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Right rotation

Left rotation

Rotations change the tree structure & preserve the BST property.
Proof: elements in B are ≥ x and ≤ y…

In both cases, everything in A < x < everything in B < y < everything in C 

A right « rotation » 
moves the root one 
position to the right.



Example (right rotation)
y

x

A B

C

x
y

CB

A

y
x

A B

C

x
y

CB

A



Example: Insert in AVL trees
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Right rotation at 27 
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We call it a rotation AT node 27 because 27 is the root that gets “kicked”
We intervene at the deepest node that breaks AVL rules.

ç

ç



Example: Insert in AVL trees

Insert(T, 50)
RotateRight(T,57)

How to restore AVL property?
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Right rotation at 57
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Rotating right didn’t
fix the problem?! Let’s
try something else.



Example: Insert in AVL trees

RotateLeft(T,43)
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Left rotation at 43
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We remove the zig-zag pattern



Example: Insert in AVL trees

RotateRight(T,57)

Right rotation at 57

ç
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AVL property restored!We needed to get rid of 
the « zig-zag » before
doing the right rotation!



Algorithm: Maintaining AVL

1. Suppose x is lowest node violating AVL
2. If x is right-heavy:
• If x’s right child is right-heavy or balanced (no zig-zag): 

Left rotation (case A)
• Else: Right followed by left rotation (case B)

3. If x is left-heavy:
• If x’s left child is left-heavy or balanced (no zig-zag): 

Right rotation (symmetric of case A)
• Else: Left followed by right rotation (sym. of case B)

4. then continue up to x’s ancestors. (bottom-up approach)

Proving cases A and B is sufficient because all AVL operations are symmetric



Proof: Case A
Left rotation
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Two cases:
The right child is
a) right-heavy or
b) balanced
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Right rotation at y & 
Left rotation at x
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Proof: Case B
The right child is
left-heavy (zig zag)

Intuition: here, notice that node z  looks like it
« belongs » in the center, and does end up as the root!



Right rotation at y
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The first right 
rotation brings us 
back to case A



AVL insertion 

• Insert key k as in standard BST

• Starting from k, find the first ancestor of k that is 
unbalanced

• Rebalance the tree performing the appropriate rotations



Running time AVL insertion 

• Insertion in O(h)

• At most 2 rotations in O(1)

• Running time is O(h) + O(1) = O(h) = O(log n) in AVL trees.

Remember we already proved h asymptically
grows with log n in the worst case.

Once we fix the unbalanced subtree its 
height will decrease by one. This means 
that it will be restored to its previous height 
before insertion. Hence all its ancestors will 
go back having their original heights.  



Sorting with BSTs

1. BST sort
• Simple method using BSTs

• Problem: Worst case Ο 𝑛!

2. AVL sort

• Use AVL trees to get Ο 𝑛 # log 𝑛

This happens
because the BST 
worst case is
basically a diagonal 
linked list

AVL tree operations are garanteed to be O(log n)



In-order traversal & BST
inorderTraversal(treeNode x) 

inorderTraversal(x.leftChild);
print x.value;
inorderTraversal(x.rightChild);

x

A B
• Print the nodes in the left subtree (A), then node x, and 

then the nodes in the right subtree (B)
• In a BST, keys in A ≤ x, and keys in B ≥ x.
• In a BST, it prints first keys ≤ x, then x, and then keys ≥ x.



In-order traversal & BST 
36

12 57

8 27 43
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8, 12, 15, 20, 27, 36, 43, 57
All keys come out sorted!



BST sort
1. Build a BST from the list of keys (unsorted)

2. Use in-order traversal on the BST to print the keys.
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36 12 8 57 43 27

à 8, 12, 27, 36, 43, 57

Running time of BST sort: insertion of n keys + tree traversal.  



Running time of BST sort

• In-order traversal is Θ(n)
• Running time of insertion is O(h)

Best case: The BST is always balanced for every insertion.

Worst case: The BST is always un-balanced. All insertions on 
same side.
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Ω(n log(n))

The BST worst case is basically a 
diagonal linked list

In the best case, a BST always
respects AVL properties without
being « forced » to do so



AVL sort

Same as BST sort but use AVL trees and AVL insertion instead.

• Worst case running time can be brought to O(n log n) if the 
tree is always balanced.

• Use AVL trees (trees are balanced).

• Insertion in AVL trees are O(h) = O(log n) for balanced trees. 


