
COMP251: Heaps & Heapsort

Giulia Alberini & Jérôme Waldispühl
School of Computer Science

McGill University
From (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)

Assume a set of comparable elements or “keys”.

Like a queue, but now we have a more general definition
of which element to remove next, namely the one with
highest priority.

e.g. hospital emergency room

Priority Queue

• add(key)

• removeMin()
“highest” priority = “number 1” priority

• peek()
• contains(element)
• remove(element)

Priority Queue ADT

ea

c

f

dd

Binary tree of height ℎ such that every level less than ℎ is
full, and all nodes at level ℎ are as far to the left as possible

Complete Binary Tree
(definition)

Heap data structure

• Tree-based data structure (here, binary tree, but we can
also use k-ary trees)

• Max-Heap
– Largest element is stored at the root.
– for all nodes i, excluding the root, A[PARENT(i)] ≥ A[i].

• Min-Heap
– Smallest element is stored at the root.
– for all nodes i, excluding the root, excluding the root,

A[PARENT(i)] ≤ A[i].

• Tree is filled top-down from left to right
à Complete tree

Heaps – Example

26

24 20

18 17 19 13

12 14 11

Max-heap as a binary tree.

Last row filled from left to right.

0 1 2 3 4 5 6 7 8 9 10

Not used

Heap (array implementation)

8 9 10

1

2 3

4 5 6 7

Heap (array implementation)

0 1 2 3 4 5 6 7 8 9 10

Not used

8 9 10

26

24 20

18 17 19 13

12 14 11

1

2 3

4 5 6 7

26 24 20 18 17 19 13 12 14 11

parent = child / 2
left = 2*parent
right = 2*parent + 1

Heap index relations

0 1 2 3 4 5 6 7 8 9 10

Not used

8 9 10

1

2 3

4 5 6 7

Heap index relations
parent = child / 2
left = 2*parent
right = 2*parent + 1

0 1 2 3 4 5 6 7 8 9 10

Not used

8 9 10

1

2 3

4 5 6 7

Heap index relations
parent = child / 2
left = 2*parent
right = 2*parent + 1

0 1 2 3 4 5 6 7 8 9 10

Not used

8 9 10

1

2 3

4 5 6 7

Heap index relations
parent = child / 2
left = 2*parent
right = 2*parent + 1

0 1 2 3 4 5 6 7 8 9 10

Not used

8 9 10

1

2 3

4 5 6 7

Height

• Height of a node in a tree: the number of edges on the
longest simple path down from the node to a leaf.

• Height of a heap = height of the root = Q(lg n).

• Most Basic operations on a heap run in O(lg n) time

• Shape of a heap

Sorting with Heaps
• Use max-heaps for sorting.
• The array representation of max-heap is not sorted.
• Steps in sorting

1. Convert the given array of size n to a max-heap (BuildMaxHeap)
2. Swap the first and last elements of the array.

• Now, the largest element is in the last position – where it belongs.
• That leaves n – 1 elements to be placed in their appropriate

locations.
• However, the array of first n – 1 elements is no longer a max-

heap.
• Float the element at the root down one of its subtrees so that the

array remains a max-heap (MaxHeapify)
• Repeat step 2 until the array is sorted.

Heapsort

• Combines the better attributes of merge sort and
insertion sort.
– Like merge sort, worst-case running time is O(n lg n).
– Like insertion sort, sorts in place.

• Introduces an algorithm design technique
– Create data structure (heap) to manage information during

the execution of an algorithm.

• The heap has other applications beside sorting.
– Priority Queues

Maintaining the heap property
• Suppose two sub-trees are max-heaps,

but the root violates the max-heap
property.

• Fix the offending node by exchanging the value at the node
with the larger of the values at its children.
– The resulting tree may have a sub-tree that is not a heap.

• Recursively fix the children until all of them satisfy the max-
heap property.

MaxHeapify – Example
26

14 20

24 17 19 13

12 18 11
MaxHeapify(A, 2)

Node n=2

1

2 3

4 5 6 7

8 9 10

MaxHeapify – Example
26

24 20

14 17 19 13

12 18 11
MaxHeapify(A, 2)

1

2 3

4 5 6 7

8 9 10

MaxHeapify – Example
26

24 20

14 17 19 13

12 18 11
MaxHeapify(A, 2)
MaxHeapify(A, 4)

1

2 3

4 5 6 7

8 9 10

MaxHeapify – Example
26

24 20

18 17 19 13

12 14 11
MaxHeapify(A, 2)
MaxHeapify(A, 4)

1

2 3

4 5 6 7

8 9 10

MaxHeapify – Example
26

24 20

18 17 19 13

12 14 11
MaxHeapify(A, 2)
MaxHeapify(A, 4)
MaxHeapify(A, 9)

1

2 3

4 5 6 7

8 9 10

MaxHeapify – Example
26

24 20

18 17 19 13

12 14 11

MaxHeapify(A, 2)
MaxHeapify(A, 4)
MaxHeapify(A, 9)

1

2 3

4 5 6 7

8 9 10

• Root : A[1]
• Left[i] : A[2i]
• Right[i] : A[2i+1]
• Parent[i] : A[ëi/2û]

Procedure MaxHeapify

MaxHeapify(A, i)

1. l ¬ leftNode(i)
2. r ¬ rightNode(i)
3. n ¬ HeapSize(i)

Assumption: Left(i) and Right(i) are max-heaps.
n is the size of the heap.

#use heap properties to
find the children of the root
in the array

Procedure MaxHeapify

MaxHeapify(A, i)

1. l ¬ leftNode(i)
2. r ¬ rightNode(i)
3. n ¬ HeapSize(i)
4. if l £ n and A[l]>A[i]
5. then largest ¬ l
6. else largest ¬ i
7. if r £ n and A[r]>A[largest]
8. then largest ¬ r

Assumption: Left(i) and Right(i) are max-heaps.
n is the size of the heap.

#use heap properties to
find the children of the root
in the array

Compare the
value of the
root and its
left and right
children

Procedure MaxHeapify

MaxHeapify(A, i)

1. l ¬ leftNode(i)
2. r ¬ rightNode(i)
3. n ¬ HeapSize(i)
4. if l £ n and A[l]>A[i]
5. then largest ¬ l
6. else largest ¬ i
7. if r £ n and A[r]>A[largest]
8. then largest ¬ r
9. if largest ≠ i
10. then exchange A[i] « A[largest]
11. MaxHeapify(A, largest)

Assumption: Left(i) and Right(i) are max-heaps.
n is the size of the heap.

#use heap properties to
find the children of the root
in the array

Compare the
value of the
root and its
left and right
children

If the root is not the largest, then we swap and maxHeapify child

Procedure MaxHeapify

MaxHeapify(A, i)

1. l ¬ leftNode(i)
2. r ¬ rightNode(i)
3. n ¬ HeapSize(i)
4. if l £ n and A[l]>A[i]
5. then largest ¬ l
6. else largest ¬ i
7. if r £ n and A[r]>A[largest]
8. then largest ¬ r
9. if largest ≠ i
10. then exchange A[i] « A[largest]
11. MaxHeapify(A, largest)

Assumption: Left(i) and Right(i) are max-heaps.
n is the size of the heap.

Time to determine
if there is a conflict
and find the largest
children is Q(1)

#use heap properties to
find the children of the root
in the array

Compare the
value of the
root and its
left and right
children

If the root is not the largest, then we swap and maxHeapify child

Procedure MaxHeapify

MaxHeapify(A, i)

1. l ¬ leftNode(i)
2. r ¬ rightNode(i)
3. n ¬ HeapSize(i)
4. if l £ n and A[l]>A[i]
5. then largest ¬ l
6. else largest ¬ i
7. if r £ n and A[r]>A[largest]
8. then largest ¬ r
9. if largest ≠ i
10. then exchange A[i] « A[largest]
11. MaxHeapify(A, largest)

Assumption: Left(i) and Right(i) are max-heaps.
n is the size of the heap.

Time to determine
if there is a conflict
and find the largest
children is Q(1)

Time to fix the
subtree rooted at
one of i’s children is
O(size of subtree)

#use heap properties to
find the children of the root
in the array

Compare the
value of the
root and its
left and right
children

If the root is not the largest, then we swap and maxHeapify child

Worst case running time of
MaxHeapify(A, 0)

• Size of a tree = number of nodes in this tree

• T(n): time used for an input of size n (a tree with n nodes)

• T(n) = T(size of the largest subtree) + Q(1)

• Size of the largest subtree £ 2n/3 (worst case occurs when
the last row of tree is exactly half full)

Þ T(n) £ T(2n/3) + Q(1) Þ T(n) = O(lg n)

Alternately, MaxHeapify takes O(h) where h is the height of the
node where MaxHeapify is applied

Height vs. Depth

https://stackoverflow.com/questions/29326512/what-is-the-difference-between-the-height-of-a-tree-and-depth-of-a-tree

Maximum capacity of a heap

26

24 20

18 17 19 13

12 14 11 3 42 23 129

20

21

22

23

Max # nodes / level

Maximum capacity of a binary tree of height h = 2h+1 – 1
Heap of height h+1 has at least (2h+1-1) + 1 nodes

⟹ 𝑛! ≥ 2! ⟹ log"𝑛! ≥ ℎ ⟹ ℎ = Ο(log 𝑛)
1 node in last row

Worst case running time of MaxHeapify

1

h-1
2h-1

Note: Valid iff ℎ ≥ 1

2h-1

Worst case running time of MaxHeapify

1

h-1
2h-1

2 * 2h-1 = 2h1

Note: Valid iff ℎ ≥ 1

The last row is
double the size of
the previous row

2h-1

Worst case running time of MaxHeapify

1

h-1
2h-1

2 * 2h-1 = 2h1

Total in heap (n): 𝑛 = 3 & 2! − 1
Total left subtree 𝑛"#$% ≤ 2!&' − 1 = (

(
& 2 & (2!− '

)
) =)

(
& (3 & 2! − (

)
) ≤)

(
& 𝑛

Note: Valid iff ℎ ≥ 1

The last row is
double the size of
the previous row

2h-1

≤
2 ⋅n
3

Ο(log(n))

Worst case running time of MaxHeapify

≥
𝑛
3

Building a heap

• Use BuildMaxHeap to convert an array A into a max-heap.
• Call MaxHeapify on each element in a bottom-up manner.

BuildMaxHeap(A)
1. n ¬ length[A]

2. for i ¬ ëlength[A]/2û downto 1
3. do MaxHeapify(A, i, n)

Length(a)/2 is the midpoint. At the right, everything is a child.

BuildMaxHeap – Example

24 21 23 22 36 29 30 34 28 27

Input Array:

24

21 23

22 36 29 30

34 28 27

Starting tree
(not max-heap)

BuildMaxHeap – Example

24

21 23

22 36 29 30

34 28 27
MaxHeapify(ë10/2û = 5)

22

23

BuildMaxHeap – Example

24

21 23

22 36 29 30

34 28 27
MaxHeapify(ë10/2û = 5)
MaxHeapify(4)22

23

BuildMaxHeap – Example

24

21 23

28 36 29 30

34 22 27
MaxHeapify(ë10/2û = 5)
MaxHeapify(4)22

23

BuildMaxHeap – Example

24

21 23

28 36 29 30

34 22 27
MaxHeapify(ë10/2û = 5)
MaxHeapify(4)22

MaxHeapify(3)

23

BuildMaxHeap – Example

24

21 29

28 36 23 30

34 22 27
MaxHeapify(ë10/2û = 5)
MaxHeapify(4)22

MaxHeapify(3)

23

BuildMaxHeap – Example

24

21 29

28 36 23 30

34 22 27
MaxHeapify(ë10/2û = 5)
MaxHeapify(4)22

MaxHeapify(3)

23

MaxHeapify(2)

BuildMaxHeap – Example

24

36 29

28 21 23 30

34 22 27
MaxHeapify(ë10/2û = 5)
MaxHeapify(4)22

MaxHeapify(3)

23

MaxHeapify(2)

BuildMaxHeap – Example

24

36 29

28 27 23 30

34 22 21
MaxHeapify(ë10/2û = 5)
MaxHeapify(4)22

MaxHeapify(3)

23

MaxHeapify(2)

BuildMaxHeap – Example

24

36 29

28 27 23 30

34 22 21
MaxHeapify(ë10/2û = 5)
MaxHeapify(4)22

MaxHeapify(3)

23

MaxHeapify(2)
MaxHeapify(1)

BuildMaxHeap – Example

36

24 29

28 27 23 30

34 22 21
MaxHeapify(ë10/2û = 5)
MaxHeapify(4)22

MaxHeapify(3)

23

MaxHeapify(2)
MaxHeapify(1)

BuildMaxHeap – Example

36

28 29

24 27 23 30

34 22 21
MaxHeapify(ë10/2û = 5)
MaxHeapify(4)22

MaxHeapify(3)

23

MaxHeapify(2)
MaxHeapify(1)

BuildMaxHeap – Example

36

28 29

24 27 23 30

34 22 21
MaxHeapify(ë10/2û = 5)
MaxHeapify(4)22

MaxHeapify(3)

23

MaxHeapify(2)
MaxHeapify(1)

We did a O(log n)
operation O(n)
times.

Correctness of BuildMaxHeap
• Loop Invariant property (LI): At the start of each iteration of the

for loop, each node i+1, i+2, …, n is the root of a max-heap.

• Initialization:
– Before first iteration i = ën/2û
– Nodes ën/2û+1, ën/2û+2, …, n are leaves, thus max-heaps.

• Maintenance:
– By LI, subtrees at children of node i are max heaps.
– Hence, MaxHeapify(i) renders node i a max heap root (while

preserving the max heap root property of higher-numbered nodes).
– Decrementing i reestablishes the loop invariant for the next iteration.

• Stop: bounded number of calls to MaxHeapify

Running Time of BuildMaxHeap
• Loose upper bound:

– Cost of a MaxHeapify call ´ # calls to MaxHeapify
– O(lg n) ´ O(n) = O(n lg n)

• Tighter bound:
– Cost of MaxHeapify is O(h).
– Height of heap is lg 𝑛
– ≤ én/2h+1ù nodes with height h.

But we’re not really doing O(n) work at
each step since the heaps get smaller

én/2h+1ù ??

26

24 20

18 17 19 13

12 14 11

≤ én/2h+1ù nodes with height h.
n= 15

13 15 16 3 7

h= 3

h= 2

h= 1

h= 0

1 ≤ é15/23+1ù = 1 nodes w. h=3

2 ≤ é15/22+1ù=2 nodes w. h=2

4 ≤ é15/21+1ù=4 nodes w. h=1

8 ≤ é15/2ù=8 nodes w. h=1

h+1 is the nth row, so we know the max number of nodes per row

Running Time of BuildMaxHeap
• Loose upper bound:

– Cost of a MaxHeapify call ´ # calls to MaxHeapify
– O(lg n) ´ O(n) = O(n lg n)

• Tighter bound:
– Cost of MaxHeapify is O(h).
– Height of heap is lg 𝑛
– ≤ én/2h+1ù nodes with height h.

n
2h+1

!

""
#

$$h=0

lgn"% $&

∑ O(h) =O n h
2h

h=0

lgn"% $&

∑
(

)
**

+

,
--=O(n)

Running time of BuildMaxHeap is O(n)

(
!"#

$
ℎ
2!

=
⁄1 2

1 − ⁄1 2 % = 2

There are log n rows. Total
work of a row is a fraction of
n. When we combine all the
rows, the total work done
grows linearly with n

Heapsort

1. Builds a max-heap from the array.

2. Put the maximum element (i.e. the root) at the correct place
in the array by swapping it with the element in the last
position in the array.

3. “Discard” this last node (knowing that it is in its correct place)
by decreasing the heap size, and call MAX-HEAPIFY on the
new root.

4. Repeat this process (goto 2) until only one node remains.

Heapsort(A)

HeapSort(A)
1. Build-Max-Heap(A)
2. for i ¬ length[A] downto 2
3. do exchange A[1] « A[i]
4. MaxHeapify(A, 1, i-1)

Remember insertion sort! We are progressively sorting a sub-array, this time at the
end. We make a heap, take the first element (the max), swap it to the end of the list,
repeat with a shorter list

Heapsort – Example

7

4 3

1 2

7 4 3 1 2

Heapsort – Example

2

4 3

1

2 4 3 1 7

7

4

2 3

1

4 2 3 1 7

Heapify

Heapsort – Example

1

2 3

1 2 3 4 7

7

3

2 1

3 2 1 4 7

Heapify

4

Heapsort – Example

1

2

1 2 3 4 7

7

2

1

2 1 3 4 7

Heapify

4 3

Heapsort – Example

1

2

1 2 3 4 7

7

1 2 3 4 7

4 3

Heap Procedures for Sorting

• BuildMaxHeap O(n)
• for loop n-1 times (i.e. O(n))
– exchange elements O(1)
– MaxHeapify O(lg n)

=> HeapSort O(n lg n)

Happens only once!

Because we built the max heap, at
each step, the array is only one set of
swaps away from being a max heap

