COMP251: Heaps & Heapsort

Giulia Alberini & Jérôme Waldispühl School of Computer Science McGill University

From (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)

Priority Queue

Assume a set of comparable elements or "keys".

Like a queue, but now we have a more general definition of which element to remove next, namely the one with highest priority.

e.g. hospital emergency room

Priority Queue ADT

- add(key)
- removeMin()

"highest" priority = "number 1" priority

- peek()
- contains(element)
- remove(element)

Complete Binary Tree (definition)

Binary tree of height h such that every level less than h is full, and all nodes at level h are as far to the left as possible

Heap data structure

- Tree-based data structure (here, binary tree, but we can also use k-ary trees)
- Max-Heap
 - Largest element is stored at the root.
 - for all nodes *i*, excluding the root, $A[PARENT(i)] \ge A[i]$.
- Min-Heap
 - Smallest element is stored at the root.
 - for all nodes *i*, excluding the root, excluding the root,
 A[PARENT(*i*)] ≤ A[*i*].
- Tree is filled top-down from left to right
 → Complete tree

Heaps – Example

Max-heap as a binary tree.

Last row filled from left to right.

Heap (array implementation)

Heap (array implementation)

Height

- *Height of a node in a tree*: the number of edges on the longest simple path down from the node to a leaf.
- Height of a heap = height of the root = $\Theta(\lg n)$.
- Most Basic operations on a heap run in O(lg n) time
- Shape of a heap

Sorting with Heaps

- Use max-heaps for sorting.
- The array representation of max-heap is not sorted.
- Steps in sorting
 - 1. Convert the given array of size *n* to a max-heap (*BuildMaxHeap*)
 - 2. Swap the first and last elements of the array.
 - Now, the largest element is in the last position where it belongs.
 - That leaves n 1 elements to be placed in their appropriate locations.
 - However, the array of first n 1 elements is no longer a maxheap.
 - Float the element at the root down one of its subtrees so that the array remains a max-heap (*MaxHeapify*)
 - Repeat step 2 until the array is sorted.

Heapsort

- Combines the better attributes of merge sort and insertion sort.
 - Like merge sort, worst-case running time is $O(n \lg n)$.
 - Like insertion sort, sorts in place.
- Introduces an algorithm design technique
 - Create data structure (*heap*) to manage information during the execution of an algorithm.
- The *heap* has other applications beside sorting.
 - Priority Queues

Maintaining the heap property

 Suppose two sub-trees are max-heaps, but the root violates the max-heap property.

- Fix the offending node by exchanging the value at the node with the larger of the values at its children.
 - The resulting tree may have a sub-tree that is not a heap.
- Recursively fix the children until all of them satisfy the maxheap property.

- Root : *A*[1]
- Left[*i*] : *A*[2*i*]
- Right[*i*] : *A*[2*i*+1]
- Parent[*i*] : $A[\lfloor i/2 \rfloor]$

MaxHeapify(A, 2) MaxHeapify(A, 4) MaxHeapify(A, 9)

Assumption: Left(*i*) and Right(*i*) are max-heaps. n is the size of the heap.

MaxHeapify(A, i)

- 1. $l \leftarrow \text{leftNode}(i)$
- 2. $r \leftarrow rightNode(i)$ in the array
- 3. $n \leftarrow \text{HeapSize}(i)$

#use heap properties to find the children of the root in the array

Assumption: Left(*i*) and Right(*i*) are max-heaps. n is the size of the heap.

Maxl	Heapify(A, i)	#use hean properties to
1.	$l \leftarrow leftNode(i)$	find the children of the root
2.	$r \leftarrow rightNode(i)$	in the array
3.	$n \leftarrow \text{HeapSize}(i)$	
4.	if $l \leq n$ and $A[l] > A$	[i] Compare the
5.	then largest \leftarrow	<i>1</i> value of the
6.	else largest \leftarrow	i root and its
7.	if $r \leq n$ and $A[r] > A$	[largest] left and right
8.	then largest \leftarrow	r children

Assumption: Left(*i*) and Right(*i*) are max-heaps. n is the size of the heap.

<u>MaxHeapify(A, i)</u> #use heap properties to							
1. $l \leftarrow leftNode(i)$	$1 \leftarrow \text{leftNode}(i)$ find the children of the root						
2. $r \leftarrow rightNode(i)$	in the array						
3. $n \leftarrow \text{HeapSize}(i)$							
4. if $l \le n$ and $A[l] > 2$	A[<i>i</i>]						
5. then largest \leftarrow	1value of the						
6. else largest \leftarrow	<i>i</i> root and its						
7. if $r \leq n$ and $A[r] > r$	A[largest] left and right						
8. then largest \leftarrow	r children						
9. if largest ≠ i							
10. then exchange A	$A[i] \leftrightarrow A[largest]$						
11. MaxHeapify(A, largest)						

If the root is not the largest, then we swap and maxHeapify child

Assumption: Left(*i*) and Right(*i*) are max-heaps. n is the size of the heap.

<u>MaxHeapify(A, i)</u> #use heap properties to						
1.	$1 \leftarrow \text{leftNode}(i)$ find the children of the root					
2.	$r \leftarrow rightNode(i)$	in the array				
3.	$n \leftarrow \text{HeapSize}(i)$					
4.	if $l \leq n$ and $A[l] > A$	[i] Compare the				
5.	then largest \leftarrow	1 value of the				
6.	else largest \leftarrow	i root and its				
7.	. if $r \leq n$ and $A[r] > A[largest]$ left and right					
8.	then largest \leftarrow	r children				
9.	if largest ≠ i					
10.	then exchange A	$[i] \leftrightarrow A[largest]$				
11.	. MaxHeapify(A, largest)					
1						

Time to determine if there is a conflict and find the largest children is $\Theta(1)$

If the root is not the largest, then we swap and maxHeapify child

Assumption: Left(*i*) and Right(*i*) are max-heaps. n is the size of the heap.

<u>Max</u>	Heapify(A, i)	#use heap properties to		
1.	$l \leftarrow leftNode(i)$	find the children of the root		
2.	$r \leftarrow rightNode(i)$	in the array		— ••••••
3.	$n \leftarrow \text{HeapSize}(i)$			lime to
4.	if $l \leq n$ and $A[l] > A$	[i]		and fin
5.	then $largest \leftarrow 1$	value of the		childre
6.	else largest \leftarrow i	<i>i</i> root and its		
7.	if $r \leq n$ and $A[r] > A$	[largest] left and right		
8.	then largest \leftarrow i	r children		
9.	if largest ≠ i			Time to
10.	then exchange A[$[i] \leftrightarrow A[largest]$		subtree
11.	MaxHeapify(A	A, largest)	J	Olsize o
1				

Time to determine if there is a conflict and find the largest children is $\Theta(1)$

Time to fix the subtree rooted at one of *i*'s children is O(size of subtree)

If the root is not the largest, then we swap and maxHeapify child

- Size of a tree = number of nodes in this tree
- *T*(*n*): time used for an input of size *n* (a tree with *n* nodes)
- $T(n) = T(size \ of \ the \ largest \ subtree) + \Theta(1)$
- Size of the largest subtree ≤ 2n/3 (worst case occurs when the last row of tree is exactly half full)

 $\Rightarrow T(n) \leq T(2n/3) + \Theta(1) \Rightarrow T(n) = O(\lg n)$

Alternately, MaxHeapify takes O(h) where h is the height of the node where MaxHeapify is applied

Height vs. Depth

Maximum capacity of a heap

Max # nodes / level

Maximum capacity of a binary tree of height $h = 2^{h+1} - 1$ Heap of height h+1 has at least $(2^{h+1}-1) + 1$ nodes $1^{node in last row}$ $\implies n_h \ge 2^h \implies \log_2 n_h \ge h \implies h = 0(\log n)$

Total in heap (n): $n = 3 \cdot 2^{h} - 1$ Total left subtree $n_{left} \le 2^{h+1} - 1 = \frac{3}{3} \cdot 2 \cdot (2^{h} - \frac{1}{2}) = \frac{2}{3} \cdot (3 \cdot 2^{h} - \frac{3}{2}) \le \frac{2}{3} \cdot n$

Building a heap

- Use BuildMaxHeap to convert an array A into a max-heap.
- Call MaxHeapify on each element in a bottom-up manner.

BuildMaxHeap(A)1.
$$n \leftarrow length[A]$$
2. for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 13. do MaxHeapify(A, i, n)

Length(a)/2 is the midpoint. At the right, everything is a child.

Input Array:

	24	21	23	22	36	29	30	34	28	27
--	----	----	----	----	----	----	----	----	----	----

Correctness of BuildMaxHeap

- Loop Invariant property (LI): At the start of each iteration of the for loop, each node *i*+1, *i*+2, ..., *n* is the root of a max-heap.
- Initialization:
 - Before first iteration $i = \lfloor n/2 \rfloor$
 - Nodes $\lfloor n/2 \rfloor + 1$, $\lfloor n/2 \rfloor + 2$, ..., *n* are leaves, thus max-heaps.

• Maintenance:

- By LI, subtrees at children of node *i* are max heaps.
- Hence, MaxHeapify(i) renders node i a max heap root (while preserving the max heap root property of higher-numbered nodes).
- Decrementing *i* reestablishes the loop invariant for the next iteration.
- **Stop:** bounded number of calls to MaxHeapify

Running Time of BuildMaxHeap

- Loose upper bound:
 - Cost of a MaxHeapify call × # calls to MaxHeapify
 - $O(\lg n) \times O(n) = O(n \lg n)$

But we're not really doing O(n) work at each step since the heaps get smaller

- Tighter bound:
 - Cost of MaxHeapify is O(h).
 - Height of heap is $\lfloor \lg n \rfloor$
 - $\leq \lceil n/2^{h+1} \rceil$ nodes with height *h*.

 $[n/2^{h+1}]??$

n= 15

 $\leq \lceil n/2^{h+1} \rceil$ nodes with height *h*.

h+1 is the nth row, so we know the max number of nodes per row

Running Time of BuildMaxHeap

- Loose upper bound:
 - Cost of a MaxHeapify call × # calls to MaxHeapify
 - $O(\lg n) \times O(n) = O(n \lg n)$
- Tighter bound:
 - Cost of MaxHeapify is O(h).
 - Height of heap is $\lfloor \lg n \rfloor$
 - $\leq \lceil n/2^{h+1} \rceil$ nodes with height *h*.

$$\left(\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2\right)$$

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left[\frac{n}{2^{h+1}} \right] O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right) = O(n)$$

There are log n rows. Total work of a row is a fraction of n. When we combine all the rows, the total work done grows linearly with n

Running time of BuildMaxHeap is O(n)

Heapsort

- 1. Builds a max-heap from the array.
- 2. Put the maximum element (i.e. the root) at the correct place in the array by swapping it with the element in the last position in the array.
- "Discard" this last node (knowing that it is in its correct place) by decreasing the heap size, and call MAX-HEAPIFY on the new root.
- 4. Repeat this process (goto 2) until only one node remains.

Heapsort(A)

```
HeapSort(A)
1. Build-Max-Heap(A)
2. for i \leftarrow length[A] downto 2
3. do exchange A[1] \leftrightarrow A[i]
4. MaxHeapify(A, 1, i-1)
```

Remember insertion sort! We are progressively sorting a sub-array, this time at the end. We make a heap, take the first element (the max), swap it to the end of the list, repeat with a shorter list

Heapsort – Example

7	4	3	1	2
---	---	---	---	---

Heapsort – Example

Heap Procedures for Sorting

- BuildMaxHeap O(n)
- for loop n-1 times (i.e. O(n))
 - exchange elements O(1)
 - MaxHeapify O(lg n)

Happens only once!

Because we built the max heap, at each step, the array is only one set of swaps away from being a max heap

=> HeapSort $O(n \lg n)$