
COMP251: Graphs, Probability
and Binary numbers

Giulia Alberini & Jérôme Waldispühl
School of Computer Science

McGill University

Announcements

• Office hours started this week (see
course website)

• Tutorials started this week:
Mon + Tue in MC103

Outline

• Graphs
o Terminology, definitions and properties
o Graph traversal: Depth-First Search and Breadth-

first search

• Binary numbers
• Probability

Graphs
Background

Graph

• A graph is a pair (V, E), where
– V is a set of nodes, called vertices
– E is a collection of pairs of vertices, called edges

• Example:
– A vertex represents an airport and stores the airport code
– An edge represents a flight route between two airports

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

Edge Types
• Directed edge

– ordered pair of vertices (u,v)
– first vertex u is the origin
– second vertex v is the destination
– e.g., a flight

• Undirected edge
– unordered pair of vertices (u,v)
– e.g., a street

• Directed graph: all edges are directed
• Weighted edge: has a real number

associated to it
– e.g. distance between cities
– e.g. bandwidth between internet

routers
• Weighted graph: all edges have

weights

ORD PVD

ORD PVD

ORD PVD849
miles

Labeled graphs
• Labeled graphs: vertices have identifiers

– Note: Geometric layout doesn't matter - only
connections matter

• Unlabeled graph: vertices have no identifiers

ORD PVD

MIADFW

SFO

LAX

LGA
HNL

=

ORD
PVD

MIA

DFW

SFO
LAX LGA

HNL
=

Applications

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Electronic circuits
n Printed circuit board
n Integrated circuit

Transportation networks
n Highway network
n Flight network

Computer networks
n Local area network
n Internet
n Web

Databases
n Entity-relationship diagram

Terminology

• Endpoints of an edge
– U and V are the endpoints of a

• Edges incident on a vertex
– a, b, and d are incident on V

• Adjacent vertices
– Connected by an edge
– U and V are adjacent

• Degree of a vertex
– Number of incident edges
– X has degree 5

• Parallel edges
– h and i are parallel edges

• Self-loop
– j is a self-loop

XU

V

W

Z

Y

a

c

b

e
d

f

g

h

i

j

P1

Terminology (cont.)

• Path
– sequence of adjacent vertices

• Simple path
– path such that all its vertices

are distinct
• Examples

– P1=(V, X, Z) is a simple path
– P2=(U, W, X, Y, W, V) is a path

that is not simple
• Graph is connected iff

– For all pair of vertices u and v,
there is a path between u and v

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

Terminology (cont.)
• Cycle

– path that starts and ends at the
same vertex

• Simple cycle
– cycle where each vertex is

distinct
• Examples

– C1=(V, X, Y, W, U, ¿) is a simple
cycle

– C2=(U, W, X, Y, W, V, ¿) is a
cycle that is not simple

• A tree is a connected acyclic
graph

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

Properties

Notation
|V| number of vertices
|E| number of edges
deg(v) degree of vertex v

Property 1

Sv Î V deg(v) = 2|E|
Why?

Property 2
In an undirected graph

with no self-loops and
no parallel edges
|E| £ |V| (|V| - 1)/2

Why?

Example
n |V| = 4
n |E| = 6
n deg(v) = 3

The sum of the degrees of all
vertices is 2*number of edges

Each edge links exactly two
vertices. Eventually you run
out of vertices to draw edges

Data structure for graphs - Adjacency
lists

• Graph can be stored as
– A dictionary of pairs (key, info) where
– key = vertex identifier
– info contains a list (called adj) of adjacent vertices

• Example: if the dictionary is implemented as a linked-list

ORD

DFW

SFO

LAX

LGA

SFO | LAX | ORD | DFW | LGA |

ORD

LAX

SFO

ORD

DFW

SFO

LAX

DWF

LAX

ORD

LGA

DFW

vertices

Adjacency lists - Operations

• addVertex(key k): vertices.insert(k, emptyList)
• addEdge(key k, key l):

vertices.find(k).adj.insert(l)
vertices.find(l).adj.insert(k)

• areAdjacent(key k, key l):
return vertices.find(k).adj.find(l)

Data structure for graphs - Adjacency
matrix

Define some order on the vertices, for example:
DFW, LAX, LGA, ORD, SFO

Graph with n vertices is stored as
n n x n array M of boolean, where
n M[i][j] = 1 if there is an edge between i-th and j-th vertices

0 otherwise

ORD

DFW

SFO

LAX

LGA

DFW LAX LGA ORD SFO
DFW 0 1 1 1 0
LAX 1 0 0 1 1
LGA 1 0 0 0 0
ORD 1 1 0 0 1
SFO 0 1 0 1 0

Adjacency matrix - Operations

• addEdge(i,j): matrix[i][j] = 1
• removeEdge(i,j): matrix[i][j] = 0
• Not great for inserting/removing vertices

because it requires shifting elements of
matrix.

• Requires space O(n2)

Lists vs Matrices

• Adjacency lists are better if:
– You frequently need to add/remove vertices
– The graph has few edges
– Need to traverse the graph

• Adjacency matrices are better if
– you frequently need to

• add/remove edges, but NOT vertices
• Check for the presence/absence of an edge between i,j

– matrix is small enough to fit in memory

In computer science we often compare different solutions to the same problem

Graph traversal - Idea

• Problem:
– you visit each node in a graph, but all you have

to start with is:
• One vertex A
• A method getNeighbors(vertex v) that returns the

set of vertices adjacent to v

DB

A

C

E

Graph traversal - Motivations

• Applications
– Exploration of graph not known in advance, or too big

to be stored:
• Web crawling
• Exploration of a maze

– Graph may be computed as you go. Example: game
strategy:
• Vertices = set of all configurations of a Rubik's cube
• Edges connect pairs of configuration that are one rotation

away.

Depth-First Search

• Idea: Go Deep!
– Intuition: Adventurous web browsing: always click

the first unvisited link available. Click "back" when
you hit a dead end.

– Start at some vertex v

– Let w be the first neighbor of v that is not yet visited.
Move to w.

– If no such unvisited neighbor exists, move back to
the vertex that lead to v

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

A visited vertex
A unexplored vertex

unexplored edge

Example (cont.)

DB

A

C

E DB

A

C

E

DB

A

C

E DB

A

C

EDB

A

C

E DB

A

C

E

DFS Algorithm
Algorithm DFS(G, v)
Input: graph G with no parallel edges and a start

vertex v of G
Output: Visits each vertex once (as long as G is

connected)
print v // or do some kind of processing on v
v.setLabel(VISITED)

for all u Î v.getNeighbors()
if (u.getLabel() != VISITED) then DFS(G, u)

DFS and Maze Traversal

• The DFS algorithm is
similar to a classic
strategy for exploring a
maze
– We mark each

intersection, corner and
dead end (vertex) visited

– We mark each corridor
(edge) traversed

– We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

DFS and Rubik’s cube
• Rubik’s cube game can be represented as a graph:

– Vertices: Set of all possible configurations of the cube
– Edges: Connect configurations that are just one rotation away from

each other

• Given a starting configuration S, find a path to the “perfect”
configuration P

• Depth-first search could in principle be used:
– start at S and making rotations until P is reached, avoiding

configurations already visited

• Problem: The graph is huge: 43,252,003,274,489,856,000
vertices

Running time of DFS

• DFS(G, v) is called once for every vertex v (if G is
connected)

• When visiting node v, the number of iterations of
the for loop is deg(v).

• Conclusion: The total number of iterations of all
for loops is: Sv deg(v) = ?

• Thus, the total running time is O(|E|)

Remember the sum of the
degrees of all vertices is 2|E|

Applications of variants of DFS

• DFS can be used to:
– Determine if a graph is connected
– Determine if a graph contains cycles
– Solve games single-player games like Rubik’s cube

Breadth-First Search
Idea:
n Explore graph layers by layers
n Start at some vertex v
n Then explore all the neighbors of v
n Then explore all the unvisited neighbors of the

neighbors of v
n Then explore all the unvisited neighbors of the

neighbors of the neighbors of v
n until no more unvisited vertices remain

Example

discovery edge

A visited vertex
A unexplored vertex

unexplored edge

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Depth-First Search 31

Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Algorithm iterativeBFS(G, v)
Input graph G with no parallel edges and a start vertex v of G
Output Visits each vertex once (as long as G is connected)
q ¬ new Queue()
v.setLabel(VISITED)
q.enqueue(v)
while (! q.empty()) do

w ¬ s.deque()
print w // or do some kind of processing on w
for all u Î w.getNeighbors() do

if (u.getLabel() != VISITED) then
u.setLabel(VISITED)
s.enqueue(u)

Iterative BFS
Idea: use a queue to remember the set
of vertices on the frontier

Get the first vertex of the queue, visit it, then
add all its unvisited neighbours to the queue

Running time and applications
Running time of BFS: Same as DFS, O(|E|)
BFS can be used to:
n Find a shortest path between two vertices

n Rubik’s cube’s fastest solution
n Determine if a graph is connected
n Determine if a graph contains cycles
n Get out of an infinite maze...

Algorithm iterativeDFS(G, v)
Input graph G with no parallel edges and a start vertex v of G
Output Visits each vertex once (as long as G is connected)
s ¬ new Stack()
v.setLabel(VISITED)
s.push(v)
while (! s.empty()) do

w ¬ s.pop()
print w
for all u Î w.getNeighbors() do

if (u.getLabel() != VISITED) then
u.setLabel(VISITED)
s.push(u)

Iterative DFS
• Use a stack to remember your path so far

Note: Code is identical to BFS, but
with a stack instead of a queue!

Instead of visiting all of a vertex’s neighbours
first, we visit the first neighbour’s neighbours,
etc.

Binary numbers
Background

• The base we use every day

• It contains ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

• Counting in base 10:
– Start counting: 0… 1… 2… 3… 4… 5… 6… 7… 8… 9…
– We’re out of digits
– Add a second column worth 10 times the value of the first
– Continue counting: 10… 11… 12… and so on.

Decimal - Base 10

When we refer to a decimal (base 10) number, like 5764,
we are referring to the value obtained by carrying out the
following addition:

5000 + 700 + 60 + 4

That is, we add together:
• Ones: 4
• Tens: 6
• Hundreds: 7
• Thousands: 5

Decimal - Base 10

𝟓𝟕𝟔𝟒 = 𝟓 ⋅ 𝟏𝟎𝟑 + 𝟕 ⋅ 𝟏𝟎𝟐 + 𝟔 ⋅ 𝟏𝟎𝟏 + 𝟒 ⋅ 𝟏𝟎𝟎

NOTE:
• The digits of the number correspond to the coefficients of the

powers of ten
• The position of the digit in the number determines to which

power it is associated.

In a similar way, we can write numbers in other bases (beside 10):
• We use the digits that correspond to the coefficients on the

corresponding powers (of the given base)

Decimal - Base 10

NOTATION: We write

(𝑛)%
to denote that the number 𝑛 is written in base 𝑏.

Given a base 𝑏

digit in position 𝑖 of 𝑚's
representation in base 𝑏

𝑚 $% = #
&'%

𝑑& ∗ 𝑏&

What decimal number does (132)& represent ?

• First compute the corresponding powers of 5:

5' = 1
5(= 5
5) = 25

• Then multiply them by the corresponding digit and sum the
results together:

1 ⋅ 5) + 3 ⋅ 5(+ 2 ⋅ 5' = 25 + 15 + 2 = 42

Example

Exactly the same as base 10, except

• It contains only two digits: 0 and 1

• Counting in binary
– Start counting: 0… 1…
– We’re out of digits.
– Add a second column this time worth 2

times the value of the first
– Continue counting: 10… 11…

Binary – base 2

• Given the following binary representation 𝑎*𝑎*+(…𝑎(𝑎')
for a number, then its decimal value 𝑚 is equal to

𝑎*2* + 𝑎*+(2*+(+⋯+ 𝑎(2(+ 𝑎'2' =:
,-'

*

𝑎, 2,

• NOTE: 𝑎, = 0 or 1.

Thus only the terms with the 𝑎, = 1 will be left to sum!

Binary to Decimal

Binary to Decimal - Algorithm

Given a binary number, do:
• Compute the powers of 2

needed
(as many as the binary digits
in the number)

• Identify the powers
associated to the digits equal
to 1

• Sum them all together.

𝒙 𝟐𝒙

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048

Given any integer 𝑚 and a positive integer 𝑑, there exist unique
integers 𝑞 and 𝑟 such that

𝑚 = 𝑞 ⋅ 𝑑 + 𝑟
where 0 ≤ 𝑟 < 𝑑.

To compute the quotient (𝑞) and the remainder (𝑟) we can simply
use integer division and modulo operator, respectively.

Quotient-Remainder Theorem

Operations on decimals

So, for any positive integer 𝑚 the following holds

𝑚 = ⁄𝑚 10 ∗ 10 + 𝑚% 10

Ex: 238 = 23 * 10 + 8

• (integer) division by 10 = dropping rightmost digit

Ex: 238/10 = 23

• Multiplication by 10 = shifting left by one digit

Ex: 23*10 = 230

• Remainder of integer division by 10 = rightmost digit

Ex: 238%10 = 8

Operations on binary

The same properties can be observed when using 2 as the
dividend and looking at the binary representation of the
number.

Recall that for any positive integer 𝑚:

𝑚 = ⁄𝑚 2 ∗ 2 +𝑚% 2
Example:

𝑚 = 1011 (
⁄𝑚 2 = 0101 (

⁄𝑚 2 ∗ 2 = 1010 (
𝑚% 2 = 0001 (

What is (5764)(' in decimal notation (base 10)?

5764/10 = 576 𝑅 𝟒

576/10 = 57 𝑅 𝟔

57/10 = 5 𝑅 𝟕

5/10 = 0 𝑅 𝟓

Note that taking the remainders from bottom to top gives us
the answer.

Decimal to Decimal

What is (13)(' in binary?

13/2 = 6 𝑅 𝟏

6/2 = 3 𝑅 𝟎

3/2 = 1 𝑅 𝟏

1/2 = 0 𝑅 𝟏

Now, the base 2 representation comes from reading off the
remainders from bottom to top!

13(' = 𝟏𝟏𝟎𝟏𝟐

Decimal to Binary

The technique just shown works in every
base.

In general, given a base 𝑏 and a decimal
number 𝑚, repeat the following until the
number is 0:
• Divide 𝑚 by 𝑏 and prepend the

remainder of the division.
• Let the new number be 𝑚 divided by 𝑏,

rounded down.

ALGORITHM
Constructing Base 𝑏

Expansions

procedure
BaseExpansion(𝑛, 𝑏)
𝑞 ≔ 𝑛
𝑘 ≔ 0
While 𝑞 ≠ 0

𝑎" ≔ 𝑞mod 𝑏
𝑞 ≔ 𝑞/𝑏
𝑘 ≔ 𝑘 + 1

return (𝑎"#$, … , 𝑎$, 𝑎%)

Algorithm – base conversion

Why is the algorithm working?

𝑚 = ⁄𝑚 2 ∗ 2 +𝑚% 2

…𝑏 3 𝑏 2 𝑏 1 +

…𝑏 3 𝑏 2 𝑏 1 0 + 𝑏 0 +

…𝑏 3 𝑏 2 𝑏 1 𝑏[0] +

Remember what we did
with the decimal number

Divide by 10, shift left,
add the remainder.

This is the EXACT same
thing, but because we
are not used to it, it feels
like magic.

Relationship

Decimal Binary
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000

Fixed size representation

Decimal Binary
0 00000000
1 00000001
2 00000010
3 00000011
4 00000100
5 00000101
6 00000110
7 00000111
8 00001000

Fixed number
of bits (typically
8, 16, 32, 64…).

8 bits is called
“byte”.

It makes sense to
assign a fixed space
in memory to each
number

Aside: bit shift

• Sometimes we need to move bits
from left to right/right to left

• We can do it arithmetically by multiplying or integer
dividing by the base (10 in decimal, 2 in binary, etc)

• We may want to shift the bits of the binary representation
of a number (in memory, all numbers are in binary).

• A left-shift is represented by the operator <<, and a right
shift is represented by the operator >>. The operator is
typically followed by the number of bits to shift by.

Aside: bit shift

• Example: 00001110 << 3 = 01110000

• Bit shifts can lead to loss of information if you reach the
“end” of the number’s allocated memory.

• Example: 00001110 >> 3 = 00000001

• In practice, things are a bit more complicated because we
have to deal with sign bits, so there is a difference between
logical shift and arithmetic shift.

• For the purpose of this class, let’s only consider bit shifting
in the context of positive integers. In this context, the two
types of shifting are equivalent.

Additions

Decimal Binary
0+1=1 0+1=1

1+1=2 1+1=10
1+2=3 1+10=11

Additions

26
+ 15
= 41

11010
+ 01111
= ? ? ? ? ?

Decimal Binary

Addition in binary

1 1 0 1 0
+ 0 1 1 1 1
= ? ? ? ?! 1

Addition in binary

1 1 0 1 0
+ 0 1 1 1 1
= ? ? ?" 0! 1

Addition in binary

1 1 0 1 0
+ 0 1 1 1 1
= ? ?" 0" 0! 1

Addition in binary

1 1 0 1 0
+ 0 1 1 1 1
= ?" 1" 0" 0! 1

Addition in binary

1 1 0 1 0
+ 0 0 1 1 1 1
= 1 0" 1" 0" 0! 1

Addition in binary

1 1 0 1 0 = 26
+ 0 0 1 1 1 1 = 15
= 1 0 1 0 0 1 = 41

2) 2* 2+ 2(2$ 2%
1 0 1 0 0 1

= 2) + 2+ + 2% = 32 + 8 + 1 = 41

Operation in binary

Recall grade-school algorithm for addition, subtraction,
multiplication, and division.

There is nothing special about base 10.

These algorithms work for binary (base 2), and work for other
bases too!

Representation size

𝑚 = +
!"#

$%&

𝑏! ∗ 2!

What is the relationship between 𝑚 and N ?

(How many bits N do we need to represent a positive
integer m?)

Recall that,

:
,-'

.+(

𝑥, = 1 + 𝑥 + 𝑥) + 𝑥/ +⋯+ 𝑥.+(=
𝑥. − 1
𝑥 − 1

That is, if 𝑥 = 2,

:
,-'

.+(

2, = 2. − 1

Geometric Series

Lower Bound

Thus,
𝑚 < 2,

To solve for 𝑁, we take the log (base 2)
of both sides and obtain the following
equation:

𝑁 > log+𝑚
Lower bound

Now, let's assume that 𝑁 − 1 is the index 𝑖 of the leftmost bit 𝑏- such that
𝑏- = 1.

e.g. We ignore leftmost 0's of the binary representation of 𝑚, (…00000010011)&

Then,

Taking the log (base 2) of both sides,

Upper Bound

Upper Bound

We proved that,

log+𝑚 < 𝑁 ≤ (log+𝑚) + 1

Thus, 𝑁 must be equal to the largest integer less than or equal to (log+𝑚) + 1.
We write,

𝑁 = 𝑓𝑙𝑜𝑜𝑟 log+𝑚 + 1 = log+𝑚 + 1

where 𝑓𝑙𝑜𝑜𝑟 means "round down to the nearest integer".

How many bits do we need?

Examples
m (decimal) m (binary) 𝑁 = log(𝑚 + 1

0 0 -
1 1 1
2 10 2
3 11 2
4 100 3
5 101 3
6 110 3
7 111 3
8 1000 4
9 1001 4

To think about…

• How are negative integers represented?

• How many bits are used to represent int, short, long in a
computer?

• How are non-integers (fractional numbers) represented?

• How are characters represented?

Expectation & Indicators
Background

Expectation

• Average or mean

• The expected value of a discrete random variable X is
E[X] = åx x Pr{X=x}

• Linearity of Expectation
– E[X+Y] = E[X]+E[Y], for all X, Y
– E[aX+Y] = a E[X] + E[Y], for constant a and all X, Y

• For mutually independent random variables X1,…, Xn
– E[X1X2 … Xn] = E[X1] · E[X2] · … · E[Xn]

Expectation – Example
• Let X be the RV denoting the value obtained when a fair

die is thrown. What will be the mean of X, when the die
is thrown n times.
– Let X1, X2, …, Xn denote the values obtained during the n

throws.
– The mean of the values is (X1+X2+…+Xn)/n.
– Since the probability of getting values 1 to 6 is (1/6) in average,

we can expect each of the 6 values to show up (1/6)n times.
– So, the numerator in the expression for mean can be written as

(1/6)n·1+(1/6)n·2+…+(1/6)n·6
– The mean, hence, reduces to (1/6)·1+(1/6)·2+…(1/6)·6,

which is what we get if we apply the definition of expectation.

Indicator Random Variables

• A simple yet powerful technique for computing the
expected value of a random variable.

• Convenient method for converting between
probabilities and expectations.

• Helpful in situations in which there may be
dependence.

• Takes only 2 values, 1 and 0.
• Indicator Random Variable for an event A of a

sample space is defined as:

I{A} = 1 if A occurs,
0 if A does not occur.

!
"
#

$#

Indicator Random Variable

Lemma 5.1
Given a sample space S and an event A in the sample
space S, let XA= I{A}. Then E[XA] = Pr{A}.

Proof:
Let Ā = S – A (Complement of A)
Then,
E[XA] = E[I{A}]

= 1·Pr{A} + 0·Pr{Ā}
= Pr{A}

