COMP251: Graphs, Probability and Binary numbers

Giulia Alberini & Jérôme Waldispühl School of Computer Science McGill University

Announcements

- Office hours started this week (see course website)
- Tutorials started this week: Mon + Tue in MC103

Outline

- Graphs
 - Terminology, definitions and properties
 - Graph traversal: Depth-First Search and Breadthfirst search
- Binary numbers
- Probability

Background

Graph

- A graph is a pair (*V*, *E*), where
 - V is a set of nodes, called vertices
 - *E* is a collection of pairs of vertices, called edges
- Example:
 - A vertex represents an airport and stores the airport code
 - An edge represents a flight route between two airports

Edge Types

- Directed edge
 - ordered pair of vertices (*u*,*v*)
 - first vertex **u** is the origin
 - second vertex v is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices (u,v)
 - e.g., a street
- Directed graph: all edges are directed
- Weighted edge: has a real number associated to it
 - e.g. distance between cities
 - e.g. bandwidth between internet routers
- Weighted graph: all edges have weights

Labeled graphs

• Labeled graphs: vertices have identifiers

 Note: Geometric layout doesn't matter - only connections matter

• Unlabeled graph: vertices have no identifiers

Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web

Entity-relationship diagram

Terminology

- Endpoints of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, b, and d are incident on V
- Adjacent vertices
 - Connected by an edge
 - U and V are adjacent
- Degree of a vertex
 - Number of incident edges
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a self-loop

Terminology (cont.)

- Path
 - sequence of adjacent vertices
- Simple path
 - path such that all its vertices are distinct
- Examples
 - $P_1 = (V, X, Z)$ is a simple path
 - P₂=(U, W, X, Y, W, V) is a path that is not simple
- Graph is connected iff
 - For all pair of vertices u and v, there is a path between u and v

Terminology (cont.)

- Cycle
 - path that starts and ends at the same vertex
- Simple cycle
 - cycle where each vertex is distinct
- Examples
 - $C_1 = (V, X, Y, W, U,)$ is a simple cycle
 - C₂=(U, W, X, Y, W, V, ↓) is a cycle that is not simple
- A tree is a connected acyclic graph

Properties

Data structure for graphs - Adjacency lists

- Graph can be stored as
 - A dictionary of pairs (key, info) where
 - key = vertex identifier
 - info contains a list (called adj) of adjacent vertices
- Example: if the dictionary is implemented as a linked-list

Adjacency lists - Operations

- addVertex(key k): vertices.insert(k, emptyList)
- addEdge(key k, key l): vertices.find(k).adj.insert(l) vertices.find(l).adj.insert(k)
- areAdjacent(key k, key l): return vertices.find(k).adj.find(l)

Data structure for graphs - Adjacency matrix

- Define some order on the vertices, for example: DFW, LAX, LGA, ORD, SFO
- Graph with n vertices is stored as
 - n x n array M of boolean, where
 - M[i][j] = 1 if there is an edge between i-th and j-th vertices
 0 otherwise

	DFW	LAX	LGA	ORD	SFO
DFW	0	1	1	1	0
_AX	1	0	0	1	1
_GA	1	0	0	0	0
ORD	1	1	0	0	1
SFO	0	1	0	1	0

Adjacency matrix - Operations

- addEdge(i,j): matrix[i][j] = 1
- removeEdge(i,j): matrix[i][j] = 0
- Not great for inserting/removing vertices because it requires shifting elements of matrix.
- Requires space O(n²)

Lists vs Matrices

- Adjacency lists are better if:
 - You frequently need to add/remove vertices
 - The graph has few edges
 - Need to traverse the graph
- Adjacency matrices are better if
 - you frequently need to
 - add/remove edges, but NOT vertices
 - Check for the presence/absence of an edge between i,j
 - matrix is small enough to fit in memory

In computer science we often compare different solutions to the same problem

Graph traversal - Idea

- Problem:
 - you visit each node in a graph, but all you have to start with is:
 - One vertex A
 - A method getNeighbors(vertex v) that returns the set of vertices adjacent to v

Graph traversal - Motivations

- Applications
 - Exploration of graph not known in advance, or too big to be stored:
 - Web crawling
 - Exploration of a maze
 - Graph may be computed as you go. Example: game strategy:
 - Vertices = set of all configurations of a Rubik's cube
 - Edges connect pairs of configuration that are one rotation away.

Depth-First Search

- Idea: Go Deep!
 - Intuition: Adventurous web browsing: always click the first unvisited link available. Click "back" when you hit a dead end.
 - Start at some vertex v
 - Let w be the first neighbor of v that is not yet visited.
 Move to w.
 - If no such **unvisited** neighbor exists, move back to the vertex that lead to v

Example

Example (cont.)

DFS Algorithm

- Algorithm *DFS*(*G*, *v*)
- **Input:** graph *G* with no parallel edges and a start vertex *v* of *G*
- **Output:** Visits each vertex once (as long as G is connected)
- print v // or do some kind of processing on v
 v.setLabel(VISITED)
 - for all u ∈ v.getNeighbors()
 if (u.getLabel() != VISITED) then DFS(G, u)

DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

DFS and Rubik's cube

- Rubik's cube game can be represented as a graph:
 - Vertices: Set of all possible configurations of the cube
 - Edges: Connect configurations that are just one rotation away from each other
- Given a starting configuration S, find a path to the "perfect" configuration P
- Depth-first search could in principle be used:
 - start at S and making rotations until P is reached, avoiding configurations already visited
- Problem: The graph is huge: 43,252,003,274,489,856,000 vertices

Running time of DFS

- DFS(G, v) is called once for every vertex v (if G is connected)
- When visiting node v, the number of iterations of the for loop is deg(v).
- Conclusion: The total number of iterations of all for loops is: $\sum_{v} deg(v) = ?$ Remember the sum of the degrees of all vertices is 2 [E]
- Thus, the total running time is O(|E|)

Applications of variants of DFS

- DFS can be used to:
 - Determine if a graph is connected
 - Determine if a graph contains cycles
 - Solve games single-player games like Rubik's cube

Breadth-First Search

- Explore graph layers by layers
- Start at some vertex v
- Then explore all the neighbors of v
- Then explore all the unvisited neighbors of the neighbors of v
- Then explore all the unvisited neighbors of the neighbors of the neighbors of v
- until no more unvisited vertices remain

Example

Example (cont.)

Example (cont.)

Iterative BFS

Idea: use a queue to remember the set of vertices on the frontier

```
Algorithm iterativeBFS(G, v)
  Input graph G with no parallel edges and a start vertex v of G
  Output Visits each vertex once (as long as G is connected)
  q \leftarrow new Queue()
                                   Get the first vertex of the queue, visit it, then
  v.setLabel(VISITED)
                                   add all its unvisited neighbours to the queue
  q.enqueue(v)
  while (! q.empty()) do
    w \leftarrow s.deque()
                   // or do some kind of processing on w
    print w
    for all u \in w.getNeighbors() do
      if (u.getLabel() != VISITED) then
         u.setLabel(VISITED)
         s.enqueue(u)
```

Running time and applications

- Running time of BFS: Same as DFS, O(|E|)
 BFS can be used to:
 - Find a shortest path between two vertices
 - Rubik's cube's fastest solution
 - Determine if a graph is connected
 - Determine if a graph contains cycles
 - Get out of an infinite maze...

Iterative DFS

 Use a stack to remember your path so far Algorithm *iterativeDFS*(*G*, *v*) **Input** graph **G** with no parallel edges and a start vertex **v** of **G Output** Visits each vertex once (as long as G is connected) s ← new Stack() Note: Code is identical to BFS, but v.setLabel(VISITED) with a stack instead of a queue! s.push(v) Instead of visiting all of a vertex's neighbours while (! s.empty()) do first, we visit the first neighbour's neighbours, etc. $w \leftarrow s.pop()$ print w for all $u \in w.getNeighbors()$ do if (u.getLabel() != VISITED) then u.setLabel(VISITED) s.push(u)

Background

Binary numbers

Decimal - Base 10

- The base we use every day
- It contains ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9
- Counting in base 10:
 - Start counting: 0... 1... 2... 3... 4... 5... 6... 7... 8... 9...
 - We're out of digits
 - Add a second column worth 10 times the value of the first
 - Continue counting: 10... 11... 12... and so on.
Decimal - Base 10

When we refer to a decimal (base 10) number, like 5764, we are referring to the value obtained by carrying out the following addition:

5000 + 700 + 60 + 4

That is, we add together:

- Ones: 4
- Tens: 6
- Hundreds: 7
- Thousands: 5

Decimal - Base 10

 $\mathbf{5764} = \mathbf{5} \cdot \mathbf{10^3} + \mathbf{7} \cdot \mathbf{10^2} + \mathbf{6} \cdot \mathbf{10^1} + \mathbf{4} \cdot \mathbf{10^0}$

NOTE:

- The digits of the number correspond to the coefficients of the powers of ten
- The position of the digit in the number determines to which power it is associated.

In a similar way, we can write numbers in other bases (beside 10):

• We use the digits that correspond to the coefficients on the corresponding powers (of the given base)

Given a base *b*

$$(m)_{10} = \sum_{i=0}^{\infty} d_i * b^i$$

digit in position i of m's representation in base b

NOTATION: We write

 $(n)_b$

to denote that the number n is written in base b.

Example

What decimal number does $(132)_5$ represent ?

• First compute the corresponding powers of 5:

$$5^{0} = 1$$

 $5^{1} = 5$
 $5^{2} = 25$

• Then multiply them by the corresponding digit and sum the results together:

$$1 \cdot 5^2 + 3 \cdot 5^1 + 2 \cdot 5^0 = 25 + 15 + 2 = 42$$

Binary – base 2

Exactly the same as base 10, except

- It contains only two digits: 0 and 1
- Counting in binary
 - Start counting: 0... 1...
 - We're out of digits.
 - Add a second column this time worth 2 times the value of the first
 - Continue counting: 10... 11...

Binary to Decimal

• Given the following binary representation $(a_k a_{k-1} \dots a_1 a_0)_2$ for a number, then its decimal value *m* is equal to

$$a_k 2^k + a_{k-1} 2^{k-1} + \dots + a_1 2^1 + a_0 2^0 = \sum_{i=0}^k a_i 2^i$$

• NOTE: $a_i = 0 \text{ or } 1.$

Thus only the terms with the $a_i = 1$ will be left to sum!

Binary to Decimal - Algorithm

 Exercise
 Exercise
 Exercise

 Joint the numbers and get to the 2048 tild
 1
 2
 2

 128
 6.4
 1.6
 2
 2

 256
 1.28
 3.2
 4
 2

 2048
 6.4
 1.6
 2
 2

 128
 6.4
 1.6
 2
 2

Given a binary number, do:

- Compute the powers of 2 needed

 (as many as the binary digits in the number)
- Identify the powers associated to the digits equal to 1
- Sum them all together.

x	2 ^{<i>x</i>}
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048

Quotient-Remainder Theorem

Given any integer m and a positive integer d, there exist unique integers q and r such that

$$m = q \cdot d + r$$

where $0 \le r < d$.

To compute the quotient (q) and the remainder (r) we can simply use integer division and modulo operator, respectively.

Operations on decimals

So, for any positive integer m the following holds

m = (m/10) * 10 + m % 10

Ex: 238 = 23 * 10 + 8

- (integer) division by 10 = dropping rightmost digit
 Ex: 238/10 = 23
- Multiplication by 10 = shifting left by one digit
 Ex: 23*10 = 230
- Remainder of integer division by 10 = rightmost digit
 Ex: 238%10 = 8

Operations on binary

The same properties can be observed when using 2 as the dividend and looking at the binary representation of the number.

Recall that for any positive integer *m*:

$$m = (m/2) * 2 + m \% 2$$

Example:

$$m = (1011)_2$$

$$m/2 = (0101)_2$$

$$(m/2) * 2 = (1010)_2$$

$$m \% 2 = (0001)_2$$

Decimal to Decimal

What is $(5764)_{10}$ in decimal notation (base 10)?

$$5764/10 = 576 R$$

 $576/10 = 57 R$
 $57/10 = 5 R$
 $5/10 = 0 R$
 $5/10 = 0 R$

Note that taking the <u>remainders</u> from bottom to top gives us the answer.

Decimal to Binary

What is $(13)_{10}$ in binary?

$$13/2 = 6 R 1$$

 $6/2 = 3 R 0$
 $3/2 = 1 R 1$
 $1/2 = 0 R 1$

Now, the base 2 representation comes from reading off the <u>remainders</u> from bottom to top!

 $13_{10} = 1101_2$

Algorithm – base conversion

The technique just shown works in every base.

In general, given a base b and a decimal number m, repeat the following until the number is 0:

- Divide *m* by *b* and prepend the remainder of the division.
- Let the new number be *m* divided by *b*, rounded down.

ALGORITHM Constructing Base b Expansions

```
procedure

BaseExpansion(n, b)

q \coloneqq n

k \coloneqq 0

While q \neq 0

a_k \coloneqq q \mod b

q \coloneqq q/b

k \coloneqq k+1

return (a_{k-1}, ..., a_1, a_0)
```

Why is the algorithm working?

Relationship

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000

Fixed size representation

	Decimal	Binary
	0	0000000
	1	0000001
Fixed number of bits (typically 8, 16, 32, 64). 8 bits is called "byte". It makes sense to assign a fixed space in memory to each number	2	0000010
	3	0000011
	4	00000100
	5	00000101
	6	00000110
	7	00000111
	8	00001000

Aside: bit shift

 Sometimes we need to move bits from left to right/right to left

$$23*10 = 230$$

$$m/2 = (0101)_2$$

$$(m/2) * 2 = (1010)_2$$

- We can do it arithmetically by multiplying or integer dividing by the base (10 in decimal, 2 in binary, etc)
- We may want to shift the bits of the *binary representation* of a number (in memory, all numbers are in binary).
- A left-shift is represented by the operator <<, and a right shift is represented by the operator >>. The operator is typically followed by the number of bits to shift by.

Aside: bit shift

- Example: **00001110 << 3 = 01110000**
- Bit shifts can lead to loss of information if you reach the "end" of the number's allocated memory.
- Example: 00001110 >> 3 = 00000001
- In practice, things are a bit more complicated because we have to deal with sign bits, so there is a difference between *logical shift* and *arithmetic shift*.
- For the purpose of this class, let's only consider bit shifting in the context of positive integers. In this context, the two types of shifting are equivalent.

Additions

Decimal	Binary
0+1=1	0+1=1
1+1=2	1+1=10
1+2=3	1+10=11

Additions

 $\frac{2^5 \quad 2^4 \quad 2^3 \quad 2^2 \quad 2^1 \quad 2^0}{1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1} = 2^5 + 2^3 + 2^0 = 32 + 8 + 1 = 41$

Operation in binary

Recall grade-school algorithm for addition, subtraction, multiplication, and division.

There is nothing special about base 10.

These algorithms work for binary (base 2), and work for other bases too!

Representation size

$$m = \sum_{i=0}^{N-1} b_i * 2^i$$

What is the relationship between m and N?

(How many bits *N* do we need to represent a positive integer *m*?)

Geometric Series

Recall that,

$$\sum_{i=0}^{N-1} x^{i} = 1 + x + x^{2} + x^{3} + \dots + x^{N-1} = \frac{x^{N} - 1}{x - 1}$$

That is, if x = 2,

$$\sum_{i=0}^{N-1} 2^i = 2^N - 1$$

Lower Bound

Thus,

$$m = \sum_{i=0}^{N-1} b_i \cdot 2^i$$
$$\leq \sum_{i=0}^{N-1} 1 \cdot 2^i$$
$$= 2^N - 1$$
$$< 2^N$$

n

$$m < 2^{N}$$

To solve for *N*, we take the log (base 2) of both sides and obtain the following equation:

$$N > \log_2 m$$

Lower bound

Upper Bound

Now, let's assume that N - 1 is the index *i* of the leftmost bit b_i such that $b_i = 1$.

e.g. We ignore leftmost 0's of the binary representation of m, $(...00000010011)_2$

Then,

$$m = \sum_{i=0}^{N-1} b_i 2^i = 1 \cdot 2^{N-1} + \sum_{i=0}^{N-2} b_i 2^i \ge 2^{N-1}$$

Taking the log (base 2) of both sides,

$$\log_2 m \ge N - 1 \qquad \Rightarrow \qquad N \le (\log_2 m) + 1$$

Upper Bound

How many bits do we need?

We proved that,

 $\log_2 m < N \le (\log_2 m) + 1$

Thus, N must be equal to the largest integer less than or equal to $(\log_2 m) + 1$. We write,

$$N = floor((\log_2 m) + 1) = \lfloor (\log_2 m) + 1 \rfloor$$

where *floor* means "round down to the nearest integer".

Examples				
<i>m</i> (decimal)	<i>m</i> (binary)	$N = \lfloor (\log_2 m) + 1 \rfloor$		
0	0	_		
1	1	1		
2	10	2		
3	11	2		
4	100	3		
5	101	3		
6	110	3		
7	111	3		
8	1000	4		
9	1001	4		

To think about...

- How are negative integers represented?
- How many bits are used to represent int, short, long in a computer?
- How are non-integers (fractional numbers) represented?
- How are characters represented?

Background

Expectation & Indicators

Expectation

- Average or mean
- The expected value of a discrete random variable X is $E[X] = \sum_{x} x \Pr{X=x}$
- Linearity of Expectation
 - E[X+Y] = E[X] + E[Y], for all X, Y
 - E[aX+Y] = a E[X] + E[Y], for constant a and all X, Y
- For mutually independent random variables X₁,..., X_n

 $- E[X_1X_2 \dots X_n] = E[X_1] \cdot E[X_2] \cdot \dots \cdot E[X_n]$
Expectation – Example

- Let X be the RV denoting the value obtained when a fair die is thrown. What will be the mean of X, when the die is thrown n times.
 - Let X₁, X₂, ..., X_n denote the values obtained during the n throws.
 - The mean of the values is $(X_1+X_2+...+X_n)/n$.
 - Since the probability of getting values 1 to 6 is (1/6) in average, we can expect each of the 6 values to show up (1/6)n times.
 - So, the numerator in the expression for mean can be written as $(1/6)n\cdot 1+(1/6)n\cdot 2+...+(1/6)n\cdot 6$
 - The mean, hence, reduces to (1/6)·1+(1/6)·2+...(1/6)·6,
 which is what we get if we apply the definition of expectation.

Indicator Random Variables

- A simple yet powerful technique for computing the expected value of a random variable.
- Convenient method for converting between probabilities and expectations.
- Helpful in situations in which there may be dependence.
- Takes only 2 values, 1 and 0.
- Indicator Random Variable for an event A of a sample space is defined as:

$$I\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs,} \\ 0 & \text{if } A \text{ does not occur.} \end{cases}$$

Indicator Random Variable

<u>Lemma 5.1</u>

Given a sample space S and an event A in the sample space S, let $X_A = I\{A\}$. Then $E[X_A] = Pr\{A\}$.

Proof: Let $\overline{A} = S - A$ (Complement of A) Then, $E[X_A] = E[I\{A\}]$ $= 1 \cdot Pr\{A\} + 0 \cdot Pr\{\overline{A}\}$ $= Pr\{A\}$