
COMP251: proofs

Jérôme Waldispühl & Giulia Alberini
School of Computer Science

McGill University
Based on slides from (Langer,2012), (CRLS, 2009) & 

(Sora,2015)



Outline

• Induction proofs
o Introduction
o Definition
o Examples

• Loop invariants
o Definition
o Example (Insertion sort)

• Recursive algorithms
o Analogy with induction proofs
o Example (Merge sort)



for any n ≥ 2, n2 ≥ 2n ?

g(x) = 2x

f(x) = x2

f(x) starts out 
lesser than 
g(x) and ends 
up greater…
Is this true as x 
tends to ∞ ?



for any n ≥ 5, n2 ≤ 2n ?

g(x) = 2x

f(x) = x2

Turns out that 
was not true! 
But is this new 
claim correct, 
now? How can 
I prove that?



Motivation

for anyn ≥1, 1+ 2+3+ 4+!+ n = n ⋅ (n+1)
2

for anyn ≥1, 1+3+ 5+ 7+!+ (2 ⋅n−1) = n2

for anyn ≥ 5, n2 ≤ 2n

How to prove these?

And in general, any statement of the form:
“for all n≥n0 ,  P(n)” where P(n) is some proposition.



Mathematical induction

Many statement of the form “for all n≥n0 ,  P(n)” can be 
proven with a logical argument called mathematical 
induction.

The proof has two components:
• Base case: P(n0) 
• Induction step: for any n≥n0 , if P(n) then P(n+1)

0 1 2 3 4 5 ... k k+1 …

n0 Is this sufficient to 
prove something 
is true between 
n_0 and very large 
values of n?



Principle

0 1 2 3 4 5 ... k k+1 …

n0

Implies

0 1 2 3 4 5 ... k k+1 …

etc.



Example 1

for anyn ≥1, 1+ 2+3+ 4+!+ n = n ⋅ (n+1)
2

Claim:

Proof:

• Base case: 

• Induction step:

n =1 1= 1⋅2
2
✔

for anyk ≥1, if 1+ 2+3+ 4+!+ k = k ⋅ (k +1)
2

then 1+ 2+3+ 4+!+ k + (k +1) = (k +1) ⋅ (k + 2)
2



Example 1

for anyn ≥1, 1+ 2+3+ 4+!+ n = n ⋅ (n+1)
2

Claim:

Proof:

• Base case: 

• Induction step:

n =1 1= 1⋅2
2
✔

for anyk ≥1, if 1+ 2+3+ 4+!+ k = k ⋅ (k +1)
2

then 1+ 2+3+ 4+!+ k + (k +1) = (k +1) ⋅ (k + 2)
2



Example 1

Assume 1+ 2+3+ 4+!+ k = k ⋅ (k +1)
2

then 1+ 2+3+ 4+!+ k + (k +1)

=
k ⋅ (k +1)
2

+ (k +1)

=
k ⋅ (k +1)+ 2 ⋅ (k +1)

2

=
(k + 2) ⋅ (k +1)

2

Induction 
hypothesis

We substitute 1…k in 
the left-side 
expression to resolve



Summary

Base case: P(1) ✔

Induction step: for any k≥1, if P(k) then P(k+1) ✔

Thus for all n≥1, P(n) ☐
The proposition is true!



Example 2

for anyn ≥1, 1+3+ 5+ 7+!+ (2 ⋅n−1) = n2Claim:

Proof:

• Base case: 

• Induction step:

n =1 1=12 ✔

for anyk ≥1, if 1+3+ 5+ 7+!+ (2 ⋅ k −1) = k2

then 1+3+ 5+ 7+!+ (2 ⋅ (k +1)−1) = (k +1)2



Example 2

Assume 1+3+ 5+ 7+!+ (2 ⋅ k −1) = k2

then 1+3+ 5+ 7+!+ (2 ⋅ k −1)+ (2 ⋅ (k +1)−1)
= k2 + 2 ⋅ (k +1)−1
= k2 + 2 ⋅ k +1
= (k +1)2

Induction 
hypothesis     



Example 3

f(x) = 2x+1

g(x) = 2x

for anyn ≥ 3, 2 ⋅n+1< 2n

What if instead we 
have inequalities?



Example 3

for anyn ≥ 3, 2 ⋅n+1< 2nClaim:

Proof:

• Base case: 

• Induction step:

n = 3 2 ⋅3+1= 7 < 23 = 8 ✔

for anyk ≥ 3, if 2 ⋅ k +1< 2k

then 2 ⋅ (k +1)+1< 2k+1



Example 3

Assume 2 ⋅ k +1< 2k

then 2 ⋅ (k +1)+1
= 2 ⋅ k + 2+1
< 2k + 2
≤ 2k + 2k for k ≥1
= 2k+1

Induction 
hypothesis     

Stronger than we need, 
but that works!

Here we can use 
the fact that 2 ≤
a bigger, more 
convenient value



Example 4

g(x) = 2x

f(x) = x2

for anyn ≥ 5, n2 ≤ 2n



Example 4

for anyn ≥ 5, n2 ≤ 2nClaim:

Proof:

• Base case: 

• Induction step:

n = 5 25≤ 32 ✔

for anyk ≥ 5, if k2 ≤ 2n

then (k +1)2 ≤ 2k+1



Example 4

Assume k2 ≤ 2k

then (k +1)2

= k2 + 2 ⋅ k +1
≤ 2k + 2 ⋅ k +1
≤ 2k + 2k

= 2k+1

Induction hypothesis     

From previous example

Remember example 3!



Example 5
Fibonacci sequence:
Fib0 = 0 base case
Fib1 = 1 base case
Fibn = Fibn-1 + Fibn-2 for n > 1  recursive case

Claim: For all n≥0, Fibn<2n

Base case: Fib0=0<20=1, Fib1=1<21=2
Q: Why should we check both Fib0 and Fib1?

Induction step: for any i≤k, if Fibi<2i then Fibk+1<2k+1

This also works with 
recursively defined 
functions!



Example 5

Assume that for all i ≤ k, Fibi < 2i      (Note variation of 
induction hypothesis)

Then Fibk+1 = Fibk + Fibk-1

<   2k +  2k-1

≤   2k +  2k for k≥1

=   2k+1

Induction hypothesis (x2)     
Strong induction 
assumes the 
hypothesis is 
true for all ranks 
until k, not just 
for k.Remember example 3 where 

we substituted a greater, 
more convenient value.



LOOP INVARIANTS
Proving the correctness of an algorithm



Algorithm specification

• An algorithm is described by:
– Input data
– Output data
– Pre-conditions: specifies restrictions on input data
– Post-conditions: specifies what is the  result

• Example: Binary Search 
– Input data:  a:array of integer; x:integer;
– Output data: index:integer;
– Precondition: a is sorted in ascending order
– Postcondition: index of x if x is in a, and -1 otherwise.



Correctness of an algorithm
An algorithm is correct if:
– for any correct input data:
• it stops and 
• it produces correct output.

– Correct input data: satisfies pre-condition
– Correct output data: satisfies post-condition

Problem: Proving the correctness of an algorithm may 
be complicated when it is repetitive or contains loop 
instructions.



How to prove the correctness of an 
algorithm?

• Recursive algorithm ⇒ Induction proofs

• Iterative algorithm (loops) ⇒ ???



Loop invariant

A loop invariant is a loop property that hold 

before and after each iteration of a loop.

Preferably, a property that will help 
to show that the algorithm compute 
what it is expected to do.



Insertion sort

for i ← 1 to length(A) - 1
j ← i
while j > 0 and A[j-1] > A[j]

swap A[j] and A[j-1]
j ← j - 1

end while
end for

(Seen in previous lecture)



Insertion sort

1 3 5 6 2 4

n elements 
already sorted

New element 
to sort

1 2 3 5 6 4

n+1 elements sorted



Loop invariant

The array A[0…i-1] is fully sorted.

1 3 5 6 2 4

i
A[0…i-1]

In other words:
At the time of insert i into the 
pre-sorted list, every element 
to the left of i is already sorted



Overview of the proof

for i ← 1 to length(A) - 1
j ← i
while j > 0 and A[j-1] > A[j]

swap A[j] and A[j-1]
j ← j - 1

end while
end for

1

2

Once you established the loop invariant property, you want to 
check that:
1. The property holds true at the beginning
2. The instruction block within the loop restore the property 

when we add one more element
3. The loop terminates and all elements are sorted.

3



Initialization

Just before the first iteration (i = 1), the sub-array
A[0 … i−1] is the single element A[0], which is the 
element originally in A[0], and it is trivially sorted.

1 3 5 6 2 4

i=1



Maintenance

1 3 5 6 2 4

n elements 
already sorted

i

1 2 3 5 6 4

n+1 elements sorted i+1

Note: To be self-content, we would also need to state and prove 
a loop invariant for the ``inner’’ while loop.

Iteration i

Iteration i+1

After the inner loop completes, the 
left-side list is still sorted.

Before the inner loop starts, the 
left-side list is still sorted.



Termination
The outer for loop ends when i ≥ length(A) and 
increment by 1 at each iteration starting from 1.

Therefore, at exit i = length(A).

By the loop invariant property, the sub-array A[0 … 
length(A)-1] consists of the elements originally in A[0 … 
length(A)-1] but in sorted order.

A[0 … length(A)-1] contains length(A) elements (i.e., all 
initial elements!) and no element is duplicated/deleted.

In other words, the entire array is sorted.
We need to show that the algorithm terminates and respects the postcondition. 
Here, the loop invariant helps us convince ourselves that the output is correct.



Proof using loop invariants

We must show:

1. Initialization: It is true prior to the first iteration of 
the loop.

2. Maintenance: If it is true before an iteration of the 
loop, it remains true before the next iteration.

3. Termination: When the loop terminates, the 
invariant gives us a useful property that helps show 
that the algorithm is correct.

We want a property that, if we show it is respected 
throughout the execution, will help us show the output 
is correct. The difficulty is to find the right property!



LOOP INVARIANTS AND INDUCTION 
PROOFS

Proving the correctness of a recursive algorithm



Analogy to induction proofs

Using loop invariants is like mathematical induction.

• You prove a base case and an inductive step.
• Showing that the invariant holds before the first iteration is 

like the base case.
• Showing that the invariant holds from iteration to iteration is 

like the inductive step.
• The termination part differs from classical mathematical 

induction. Here, we stop the ``induction’’ when the loop 
terminates instead of using it infinitely.

We can show the three parts in any order. 



Merge Sort
MERGE-SORT(A,p,r)

if p < r then
q=(p+r)/2
MERGE-SORT(A,p,q)
MERGE-SORT(A,q+1,r)
MERGE(A,p,q,r)

Precondition:
Array A has at least 1 element between indexes p and r (p≤r)

Postcondition:
The elements between indexes p and r are sorted

There are two proofs to make:
1. The recursive function MERGE-SORT (by induction)
2. The function MERGE (using loop invariants)

p rq



Merge method
MERGE (A,p,q,r)

Precondition: A is an 
array and p, q, and r 
are indices into the 
array such that p <= q 
< r. The subarrays
A[p.. q] and A[q +1.. 
r] are sorted 

Postcondition: The 
subarray A[p..r] is 
sorted

• MERGE-SORT calls a 
function MERGE(A,p,q,r) to 
merge the sorted subarrays
of A into a single sorted one

• The proof of MERGE can be 
done separately, using loop 
invariants



Procedure Merge
Merge(A, p, q, r)
1  n1¬ q – p + 1
2  n2¬ r – q
3 for i ¬ 1 to n1
4 do L[i] ¬ A[p + i – 1]
5 for j ¬ 1 to n2
6 do R[j] ¬ A[q + j]
7 L[n1+1] ¬¥
8 R[n2+1] ¬¥
9 i ¬ 1
10 j ¬ 1
11 for k ¬p to r
12 do if L[i] £ R[j]
13 then A[k] ¬ L[i]
14 i ¬ i + 1
15 else A[k] ¬ R[j]
16 j ¬ j + 1

Input: Array containing 
sorted subarrays A[p..q] 
and A[q+1..r].

Output: Merged sorted 
subarray in A[p..r].



434232269 8 6 1 

Merge/combine – Example 

… …A

6 8 26 32 1 9 42 43¥ ¥6 8 26 32 1 9 42 43L R

Idea: The lists L and R are already sorted.



Correctness proof for Merge
• Loop Invariant: The array A[p,k] stored the (k-p+1) smallest 

elements of L and R sorted in increasing order.
• Initialization: k = p 

– A contains a single element (which is trivially “sorted”)
– A[p] is the smallest element of L and R  

• Maintenance:
– Assume that Merge satisfies the loop invariant property until k.
– (k-p+1) smallest elements of L and R are already sorted in A.
– Next value to be inserted is the smallest one remaining in L and R.
– This value is larger than those previously inserted in A.
– Loop invariant property satisfied for k+1.

• Termination Step:
– Merge terminates when k=r, thus when r-p+1 elements have been 

inserted in A ⇒ All elements are sorted.
The loop invariant we chose tells us something important about the algorithm and its postcondition!



Correctness proof for Merge Sort 
• Recursive property: For 0 ≤ 𝑘 = 𝑟 − 𝑝 + 1, A[p,r] is sorted.
• Base Case: p = r 

– A contains a single element (which is trivially “sorted”)  
• Inductive Hypothesis:

– Assume that MergeSort correctly sorts n=1, 2, ..., k elements 
• Inductive Step: 

– Show that MergeSort correctly sorts n = k + 1 elements. 
• Termination Step:

– MergeSort terminate and all elements are sorted.

Note: Merge Sort is a recursive algorithm. We already proved 
that the Merge procedure is correct. Here, we complete the 
proof of correctness of the main method using induction.



Inductive step
• Inductive Hypothesis:
– Assume MergeSort correctly sorts n=1, ... , k elements 

• Inductive Step: 
– Show that MergeSort correctly sorts n = k + 1 elements. 

• Proof:
– First recursive call n1=q-p+1=(k+1)/2 ≤ k

=> subarray A[p .. q] is sorted 
– Second recursive call n2=r-q=(k+1)/2 ≤ k

=> subarray A[q+1 .. r] is sorted
– A, p q, r fulfill now  the precondition of  Merge
– The post-condition of Merge guarantees that the array   

A[p ..  r] is sorted => post-condition of MergeSort satisfied.

Our inductive 
hypothesis is that we 
can correctly store 
arrays smaller than k



Termination Step

We have to show the size of the problem decreases 
with every recursive call:  the length of the subarray of 
A to be sorted MergeSort.

At each recursive call of MergeSort, the length of the 
subarray is strictly decreasing.

When MergeSort is called on an array of size ≤ 1 (i.e.
the base case), the algorithm terminates without 
making additional recursive calls.

Calling MergeSort(A,0,n) returns a fully sorted array. 


