
COMP251: proofs

Jérôme Waldispühl & Giulia Alberini
School of Computer Science

McGill University
Based on slides from (Langer,2012), (CRLS, 2009) &

(Sora,2015)

Outline

• Induction proofs
o Introduction
o Definition
o Examples

• Loop invariants
o Definition
o Example (Insertion sort)

• Recursive algorithms
o Analogy with induction proofs
o Example (Merge sort)

for any n ≥ 2, n2 ≥ 2n ?

g(x) = 2x

f(x) = x2

f(x) starts out
lesser than
g(x) and ends
up greater…
Is this true as x
tends to ∞ ?

for any n ≥ 5, n2 ≤ 2n ?

g(x) = 2x

f(x) = x2

Turns out that
was not true!
But is this new
claim correct,
now? How can
I prove that?

Motivation

for anyn ≥1, 1+ 2+3+ 4+!+ n = n ⋅ (n+1)
2

for anyn ≥1, 1+3+ 5+ 7+!+ (2 ⋅n−1) = n2

for anyn ≥ 5, n2 ≤ 2n

How to prove these?

And in general, any statement of the form:
“for all n≥n0 , P(n)” where P(n) is some proposition.

Mathematical induction

Many statement of the form “for all n≥n0 , P(n)” can be
proven with a logical argument called mathematical
induction.

The proof has two components:
• Base case: P(n0)
• Induction step: for any n≥n0 , if P(n) then P(n+1)

0 1 2 3 4 5 ... k k+1 …

n0 Is this sufficient to
prove something
is true between
n_0 and very large
values of n?

Principle

0 1 2 3 4 5 ... k k+1 …

n0

Implies

0 1 2 3 4 5 ... k k+1 …

etc.

Example 1

for anyn ≥1, 1+ 2+3+ 4+!+ n = n ⋅ (n+1)
2

Claim:

Proof:

• Base case:

• Induction step:

n =1 1= 1⋅2
2
✔

for anyk ≥1, if 1+ 2+3+ 4+!+ k = k ⋅ (k +1)
2

then 1+ 2+3+ 4+!+ k + (k +1) = (k +1) ⋅ (k + 2)
2

Example 1

for anyn ≥1, 1+ 2+3+ 4+!+ n = n ⋅ (n+1)
2

Claim:

Proof:

• Base case:

• Induction step:

n =1 1= 1⋅2
2
✔

for anyk ≥1, if 1+ 2+3+ 4+!+ k = k ⋅ (k +1)
2

then 1+ 2+3+ 4+!+ k + (k +1) = (k +1) ⋅ (k + 2)
2

Example 1

Assume 1+ 2+3+ 4+!+ k = k ⋅ (k +1)
2

then 1+ 2+3+ 4+!+ k + (k +1)

=
k ⋅ (k +1)
2

+ (k +1)

=
k ⋅ (k +1)+ 2 ⋅ (k +1)

2

=
(k + 2) ⋅ (k +1)

2

Induction
hypothesis

We substitute 1…k in
the left-side
expression to resolve

Summary

Base case: P(1) ✔

Induction step: for any k≥1, if P(k) then P(k+1) ✔

Thus for all n≥1, P(n) ☐
The proposition is true!

Example 2

for anyn ≥1, 1+3+ 5+ 7+!+ (2 ⋅n−1) = n2Claim:

Proof:

• Base case:

• Induction step:

n =1 1=12 ✔

for anyk ≥1, if 1+3+ 5+ 7+!+ (2 ⋅ k −1) = k2

then 1+3+ 5+ 7+!+ (2 ⋅ (k +1)−1) = (k +1)2

Example 2

Assume 1+3+ 5+ 7+!+ (2 ⋅ k −1) = k2

then 1+3+ 5+ 7+!+ (2 ⋅ k −1)+ (2 ⋅ (k +1)−1)
= k2 + 2 ⋅ (k +1)−1
= k2 + 2 ⋅ k +1
= (k +1)2

Induction
hypothesis

Example 3

f(x) = 2x+1

g(x) = 2x

for anyn ≥ 3, 2 ⋅n+1< 2n

What if instead we
have inequalities?

Example 3

for anyn ≥ 3, 2 ⋅n+1< 2nClaim:

Proof:

• Base case:

• Induction step:

n = 3 2 ⋅3+1= 7 < 23 = 8 ✔

for anyk ≥ 3, if 2 ⋅ k +1< 2k

then 2 ⋅ (k +1)+1< 2k+1

Example 3

Assume 2 ⋅ k +1< 2k

then 2 ⋅ (k +1)+1
= 2 ⋅ k + 2+1
< 2k + 2
≤ 2k + 2k for k ≥1
= 2k+1

Induction
hypothesis

Stronger than we need,
but that works!

Here we can use
the fact that 2 ≤
a bigger, more
convenient value

Example 4

g(x) = 2x

f(x) = x2

for anyn ≥ 5, n2 ≤ 2n

Example 4

for anyn ≥ 5, n2 ≤ 2nClaim:

Proof:

• Base case:

• Induction step:

n = 5 25≤ 32 ✔

for anyk ≥ 5, if k2 ≤ 2n

then (k +1)2 ≤ 2k+1

Example 4

Assume k2 ≤ 2k

then (k +1)2

= k2 + 2 ⋅ k +1
≤ 2k + 2 ⋅ k +1
≤ 2k + 2k

= 2k+1

Induction hypothesis

From previous example

Remember example 3!

Example 5
Fibonacci sequence:
Fib0 = 0 base case
Fib1 = 1 base case
Fibn = Fibn-1 + Fibn-2 for n > 1 recursive case

Claim: For all n≥0, Fibn<2n

Base case: Fib0=0<20=1, Fib1=1<21=2
Q: Why should we check both Fib0 and Fib1?

Induction step: for any i≤k, if Fibi<2i then Fibk+1<2k+1

This also works with
recursively defined
functions!

Example 5

Assume that for all i ≤ k, Fibi < 2i (Note variation of
induction hypothesis)

Then Fibk+1 = Fibk + Fibk-1

< 2k + 2k-1

≤ 2k + 2k for k≥1

= 2k+1

Induction hypothesis (x2)
Strong induction
assumes the
hypothesis is
true for all ranks
until k, not just
for k.Remember example 3 where

we substituted a greater,
more convenient value.

LOOP INVARIANTS
Proving the correctness of an algorithm

Algorithm specification

• An algorithm is described by:
– Input data
– Output data
– Pre-conditions: specifies restrictions on input data
– Post-conditions: specifies what is the result

• Example: Binary Search
– Input data: a:array of integer; x:integer;
– Output data: index:integer;
– Precondition: a is sorted in ascending order
– Postcondition: index of x if x is in a, and -1 otherwise.

Correctness of an algorithm
An algorithm is correct if:
– for any correct input data:
• it stops and
• it produces correct output.

– Correct input data: satisfies pre-condition
– Correct output data: satisfies post-condition

Problem: Proving the correctness of an algorithm may
be complicated when it is repetitive or contains loop
instructions.

How to prove the correctness of an
algorithm?

• Recursive algorithm ⇒ Induction proofs

• Iterative algorithm (loops) ⇒ ???

Loop invariant

A loop invariant is a loop property that hold

before and after each iteration of a loop.

Preferably, a property that will help
to show that the algorithm compute
what it is expected to do.

Insertion sort

for i ← 1 to length(A) - 1
j ← i
while j > 0 and A[j-1] > A[j]

swap A[j] and A[j-1]
j ← j - 1

end while
end for

(Seen in previous lecture)

Insertion sort

1 3 5 6 2 4

n elements
already sorted

New element
to sort

1 2 3 5 6 4

n+1 elements sorted

Loop invariant

The array A[0…i-1] is fully sorted.

1 3 5 6 2 4

i
A[0…i-1]

In other words:
At the time of insert i into the
pre-sorted list, every element
to the left of i is already sorted

Overview of the proof

for i ← 1 to length(A) - 1
j ← i
while j > 0 and A[j-1] > A[j]

swap A[j] and A[j-1]
j ← j - 1

end while
end for

1

2

Once you established the loop invariant property, you want to
check that:
1. The property holds true at the beginning
2. The instruction block within the loop restore the property

when we add one more element
3. The loop terminates and all elements are sorted.

3

Initialization

Just before the first iteration (i = 1), the sub-array
A[0 … i−1] is the single element A[0], which is the
element originally in A[0], and it is trivially sorted.

1 3 5 6 2 4

i=1

Maintenance

1 3 5 6 2 4

n elements
already sorted

i

1 2 3 5 6 4

n+1 elements sorted i+1

Note: To be self-content, we would also need to state and prove
a loop invariant for the ``inner’’ while loop.

Iteration i

Iteration i+1

After the inner loop completes, the
left-side list is still sorted.

Before the inner loop starts, the
left-side list is still sorted.

Termination
The outer for loop ends when i ≥ length(A) and
increment by 1 at each iteration starting from 1.

Therefore, at exit i = length(A).

By the loop invariant property, the sub-array A[0 …
length(A)-1] consists of the elements originally in A[0 …
length(A)-1] but in sorted order.

A[0 … length(A)-1] contains length(A) elements (i.e., all
initial elements!) and no element is duplicated/deleted.

In other words, the entire array is sorted.
We need to show that the algorithm terminates and respects the postcondition.
Here, the loop invariant helps us convince ourselves that the output is correct.

Proof using loop invariants

We must show:

1. Initialization: It is true prior to the first iteration of
the loop.

2. Maintenance: If it is true before an iteration of the
loop, it remains true before the next iteration.

3. Termination: When the loop terminates, the
invariant gives us a useful property that helps show
that the algorithm is correct.

We want a property that, if we show it is respected
throughout the execution, will help us show the output
is correct. The difficulty is to find the right property!

LOOP INVARIANTS AND INDUCTION
PROOFS

Proving the correctness of a recursive algorithm

Analogy to induction proofs

Using loop invariants is like mathematical induction.

• You prove a base case and an inductive step.
• Showing that the invariant holds before the first iteration is

like the base case.
• Showing that the invariant holds from iteration to iteration is

like the inductive step.
• The termination part differs from classical mathematical

induction. Here, we stop the ``induction’’ when the loop
terminates instead of using it infinitely.

We can show the three parts in any order.

Merge Sort
MERGE-SORT(A,p,r)

if p < r then
q=(p+r)/2
MERGE-SORT(A,p,q)
MERGE-SORT(A,q+1,r)
MERGE(A,p,q,r)

Precondition:
Array A has at least 1 element between indexes p and r (p≤r)

Postcondition:
The elements between indexes p and r are sorted

There are two proofs to make:
1. The recursive function MERGE-SORT (by induction)
2. The function MERGE (using loop invariants)

p rq

Merge method
MERGE (A,p,q,r)

Precondition: A is an
array and p, q, and r
are indices into the
array such that p <= q
< r. The subarrays
A[p.. q] and A[q +1..
r] are sorted

Postcondition: The
subarray A[p..r] is
sorted

• MERGE-SORT calls a
function MERGE(A,p,q,r) to
merge the sorted subarrays
of A into a single sorted one

• The proof of MERGE can be
done separately, using loop
invariants

Procedure Merge
Merge(A, p, q, r)
1 n1¬ q – p + 1
2 n2¬ r – q
3 for i ¬ 1 to n1
4 do L[i] ¬ A[p + i – 1]
5 for j ¬ 1 to n2
6 do R[j] ¬ A[q + j]
7 L[n1+1] ¬¥
8 R[n2+1] ¬¥
9 i ¬ 1
10 j ¬ 1
11 for k ¬p to r
12 do if L[i] £ R[j]
13 then A[k] ¬ L[i]
14 i ¬ i + 1
15 else A[k] ¬ R[j]
16 j ¬ j + 1

Input: Array containing
sorted subarrays A[p..q]
and A[q+1..r].

Output: Merged sorted
subarray in A[p..r].

434232269 8 6 1

Merge/combine – Example

… …A

6 8 26 32 1 9 42 43¥ ¥6 8 26 32 1 9 42 43L R

Idea: The lists L and R are already sorted.

Correctness proof for Merge
• Loop Invariant: The array A[p,k] stored the (k-p+1) smallest

elements of L and R sorted in increasing order.
• Initialization: k = p

– A contains a single element (which is trivially “sorted”)
– A[p] is the smallest element of L and R

• Maintenance:
– Assume that Merge satisfies the loop invariant property until k.
– (k-p+1) smallest elements of L and R are already sorted in A.
– Next value to be inserted is the smallest one remaining in L and R.
– This value is larger than those previously inserted in A.
– Loop invariant property satisfied for k+1.

• Termination Step:
– Merge terminates when k=r, thus when r-p+1 elements have been

inserted in A ⇒ All elements are sorted.
The loop invariant we chose tells us something important about the algorithm and its postcondition!

Correctness proof for Merge Sort
• Recursive property: For 0 ≤ 𝑘 = 𝑟 − 𝑝 + 1, A[p,r] is sorted.
• Base Case: p = r

– A contains a single element (which is trivially “sorted”)
• Inductive Hypothesis:

– Assume that MergeSort correctly sorts n=1, 2, ..., k elements
• Inductive Step:

– Show that MergeSort correctly sorts n = k + 1 elements.
• Termination Step:

– MergeSort terminate and all elements are sorted.

Note: Merge Sort is a recursive algorithm. We already proved
that the Merge procedure is correct. Here, we complete the
proof of correctness of the main method using induction.

Inductive step
• Inductive Hypothesis:
– Assume MergeSort correctly sorts n=1, ... , k elements

• Inductive Step:
– Show that MergeSort correctly sorts n = k + 1 elements.

• Proof:
– First recursive call n1=q-p+1=(k+1)/2 ≤ k

=> subarray A[p .. q] is sorted
– Second recursive call n2=r-q=(k+1)/2 ≤ k

=> subarray A[q+1 .. r] is sorted
– A, p q, r fulfill now the precondition of Merge
– The post-condition of Merge guarantees that the array

A[p .. r] is sorted => post-condition of MergeSort satisfied.

Our inductive
hypothesis is that we
can correctly store
arrays smaller than k

Termination Step

We have to show the size of the problem decreases
with every recursive call: the length of the subarray of
A to be sorted MergeSort.

At each recursive call of MergeSort, the length of the
subarray is strictly decreasing.

When MergeSort is called on an array of size ≤ 1 (i.e.
the base case), the algorithm terminates without
making additional recursive calls.

Calling MergeSort(A,0,n) returns a fully sorted array.

