
COMP251: Running time analysis
and the Big O notation

Jérôme Waldispühl & Roman Sarrazin-Gendron

School of Computer Science
McGill University

Based on slides from M. Langer and M. Blanchette

Outline
• Motivations
• The Big O notation

o Definition
o Examples
o Rules

• Big Omega and Big Theta
• Applications
• About recursive algorithms

WHAT IS THE RUNNING TIME?
Background

Measuring the running “time”
• Goal: Analyze an algorithm written in

pseudocode and describe its running time
– Without having to write code
– In a way that is independent of the computer

used
• To achieve that, we need to

– Make simplifying assumptions about the running
time of each basic (primitive) operations

– Study how the number of primitive operations
depends on the size of the problem solved

Simple computer operation that can be performed in time that is
always the same, independent of the size of the bigger
problem solved (we say: constant time)

– Assigning a value to a variable: x ¬1 Tassign
– Calling a method: Expos.addWin() Tcall

– Note: doesn’t include the time to execute the method
– Returning from a method: return x; Treturn
– Arithmetic operations on primitive types Tarith

x + y, r*3.1416, x/y, etc.
– Comparisons on primitive types: x==y Tcomp

– Conditionals: if (...) then.. else... Tcond
– Indexing into an array: A[i] Tindex

– Following object reference: Expos.losses Tref

Note: Multiplying two Large Integers is not a primitive operation,
because the running time depends on the size of the numbers
multiplied.

Primitive Operations

FindMin analysis
Algorithm findMin(A, start, stop)
Input: Array A, index start & stop
Output: Index of the smallest element of A[start:stop]

minvalue ¬ A[start]

minindex ¬ start

index ¬ start + 1

while (index <= stop) do {

if (A[index]<minvalue)

then {

minvalue ¬ A[index]

minindex ¬ index

}

index = index + 1

}

return minindex

Tindex + Tassign
Tassign
Tarith + Tassign
Tcomp+ Tcond
Tindex + Tcomp + Tcond

Tindex + Tassign
Tassign

Tassign + Tarith
Tcomp+ Tcond (last check of loop)
Treturn

repeated

stop-start

times

Running time

Worst case running time

• Running time depends on n = stop – start + 1
– But it also depends on the content of the array!

• What kind of array of n elements will give the
worst case running time for findMin?

• The best case running time?

5 4 3 2 1 0Example:

0 1 2 3 4 5Example:

More assumptions

• Counting each type of primitive operations is tedious

• The running time of each operation is roughly
comparable:

Tassign » Tcomp » Tarith » ...	» Tindex=	1	primitive operation

• We are only interested in the number of primitive
operations performed

Worst-case running time for findMin becomes:

T(n)	=	8	+	10	*	(n-1)	
8 primitive operations
outside the loop

10 primitive operations
inside the loop

Algorithm SelectionSort(A,n)

Input: an array A of n elements

Output: the array is sorted

i¬ 0

while (i<n) do {

minindex ¬ findMin(A,i,n-1)

t ¬ A[minindex]

A[minindex] ¬ A[i]

A[i] ¬ t

i ¬ i + 1

}

Primitive operations
(worst case) :

1

2

3 + TFindMin(n-1-i+1)=3 +(10 (n-i) - 2)

2

3

2

2

2 (last check of loop condition)

Selection Sort

Selection sort builds a sorted list by casting findMin on the unsorted region and
swapping

Selection Sort: adding it up

Total: T(n) = 1 + (å 12 + 10 (n - i)) + 2

= 3 + (12 n + 10 å (n-i))

= 3 + 12 n + 10 (å n) – 10 (å i)

= 3 + 12 n + 10 n * n - 10 ((n-1)*n) / 2)

= 3 + 12 n + 10 n2 - 5 n2 + 5 n

= 5 n2 + 17 n + 3

n-1
i=0

n-1
i=0

n-1
i=0

n-1
i=0

You can take the time to go through the math later, here the
main idea is that we can sum up all the individual operations
to estimate the running time.

CLASSIFYING RUNNING TIMES
Conceptualization

More simplifications

We have: T(n) = 5 n2 + 17 n + 3

Simplification #1:
When n is large, T(n) » 5 n2

Simplification #2:
When n is large, T(n) grows approximately like n2

We will write T(n) is O(n2)
“T(n) is big O of n squared”

Asymptotic behavior

TOWARDS A FORMAL DEFINITION
Asymptotic notation

Towards a formal definition of big O
Let T(𝑛) be a function that describes the time it takes for
some algorithm on input size 𝑛.

We would like to express how T(𝑛) grows with 𝑛, as 𝑛
becomes large i.e. asymptotic behavior.

Unlike with limits, we want
to say that T(𝑛) grows like
certain simpler functions
such as 𝑛, log! 𝑛 , 𝑛, 𝑛!, 2"…

Think about this as categorizing algorithms by running time “classes”

Preliminary Definition

Let 𝑡(𝑛) and 𝑔(𝑛) be two functions, where 𝑛 ≥ 0. We say 𝑡(𝑛)
is asymptotically bounded above by 𝑔(𝑛) if there exists 𝑛#
such that, for all 𝑛 ≥ 𝑛#,

𝑡(𝑛) ≤ 𝑔(𝑛)

WARNING: This is not yet a formal definition!

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛!, 𝑡(𝑛) ≤ 𝑔(𝑛)

Example

Claim: 5𝑛 + 70 is asymptotically bounded above by 6𝑛.

Proof:
(State definition) We want to show there exists an 𝑛# such
that, for all 𝑛 ≥ 𝑛#, 5 2 𝑛 + 70 ≤ 6 2 𝑛.

5𝑛 + 70 ≤ 6𝑛
⇔ 70 ≤ 𝑛

Thus, we can use 𝑛# = 70

Symbol “⟺ " means “if and only if” i.e. logical equivalence

Example

Choosing a function and constants

(A) (B) (C)

Which of these should we use as our upper bound?

Motivation

We would like to express formally how some function 𝑡(𝑛)
grows with 𝑛, as 𝑛 becomes large.

We would like to compare the function 𝑡(𝑛) with simpler
functions , g(𝑛), such as 𝑛, log! 𝑛 , 𝑛, 𝑛!, 2"…

Formal Definition

Let 𝑡 𝑛 and 𝑔 𝑛 be two functions, where 𝑛 ≥ 0.

We say 𝑡(𝑛) is 𝑂(𝑔(𝑛)) if there exists two positive
constants 𝑛# and 𝑐 such that, for all 𝑛 ≥ 𝑛#,

𝑡(𝑛) ≤ 𝑐 2 𝑔(𝑛)

Note: 𝑔(𝑛) will be a simple function, but this is not required
in the definition.

Intuition
“𝑓 𝑛 𝑖𝑠 𝑂(𝑔 𝑛)” if and only if there exists a point 𝑛#
beyond which 𝑓 𝑛 is less than some fixed constant times
𝑔(𝑛).

PRACTICING THE BIG-OH NOTATION
Examples

Example (1)

Claim: 5 " 𝑛 + 70 𝑖𝑠 𝑂(𝑛)

Proof(s)
Claim: 5 2 𝑛 + 70 𝑖𝑠 𝑂(𝑛)

Proof 1: 5 2 𝑛 + 70 ≤ 5 2 𝑛 + 70 2 𝑛 = 75 2 𝑛, 𝑖𝑓 𝑛 ≥ 1
Thus, take 𝑐 = 75 and 𝑛# = 1.

Proof 2: 5 2 𝑛 + 70 ≤ 5 2 𝑛 + 6 2 𝑛 = 11 2 𝑛, 𝑖𝑓 𝑛 ≥ 12
Thus, take 𝑐 = 11 and 𝑛# = 12.

Proof 3: 5 2 𝑛 + 70 ≤ 5 2 𝑛 + 𝑛 = 6 2 𝑛, 𝑖𝑓 𝑛 ≥ 70
Thus, take 𝑐 = 6 and 𝑛# = 70.

All these proofs are correct and show that 5 2 𝑛 + 70 is 𝑂(𝑛)

Hint: substitute in something easy to deal with

Visualization

(A) (B) (C)

All three upper bounds can be used to prove 5n + 70 is O(n)

Example (2)

Claim: 8 2 𝑛! − 17 2 𝑛 + 46 is 𝑂 𝑛! .

Proof 1: 8𝑛! − 17𝑛 + 46 ≤ 8𝑛! + 46𝑛!, if 𝑛 ≥ 1
≤ 54𝑛!

Thus, we can take 𝑐 = 54 and 𝑛# = 1.

Proof 2: 8𝑛! − 17𝑛 + 46 ≤ 8𝑛!, if 𝑛 ≥ 3
Thus, we can take 𝑐 = 8 and 𝑛# = 3.

DEVELOPING YOUR INTUITION
Tips & rules

What does O(1) mean?

We say 𝑡(𝑛)	is 𝑂(1), if there exist two positive constants 𝑛#
and 𝑐 such that, for all 𝑛 ≥ 𝑛#.

𝑡 𝑛 ≤ 𝑐

So, it means that 𝑡(𝑛)	is bounded.

Tips

Never write 𝑂 3𝑛 , 𝑂 5 log! 𝑛 , 𝑒𝑡𝑐.

Instead, write 𝑂 𝑛 , 𝑂 log! 𝑛 , 𝑒𝑡𝑐.

Why? The point of the big O notation is to avoid dealing with
constant factors. It’s technically correct but we don’t do it,
since that would defeat the point of using big O notation

If you want to describe an exact upper bound, you can
simply say a function is bounded above by another.

Other considerations

• 𝑛# and 𝑐 are not uniquely defined. For a given 𝑛# and 𝑐
that satisfies 𝑂(), we can increase one or both to again
satisfy the definition. There is not “better” choice of
constants.

• However, we generally want a “tight” upper bound
(asymptotically), so functions in the big O gives us more
information (Note: This is not the same as smaller 𝑛# or 𝑐).
For instance, 𝑓(𝑛) that is 𝑂 𝑛 is also 𝑂 𝑛! and 𝑂 2" .
But 𝑂 𝑛 is more informative.

If you think of big O complexities as classes, this makes sense!

Growth of functions

(from stackoverflow)

Tip: It is helpful to memorize the relationship between basic functions.

Practical meaning of big O…

If the unit is in seconds, this would make ~1011 years…

Constant Factor rule

Suppose f(n)	is O(g(n))	and a is a positive constant.
Then, 𝑎 2 𝑓 𝑛 is also 𝑂(𝑔 𝑛)

Proof: By definition, if f(n)	is O(g(n))	then there exists two
positive constants 𝑛# and 𝑐 such that for all 𝑛 ≥ 𝑛#,

𝑓(𝑛) ≤ 𝑐 2 𝑔(𝑛)

Thus, a 2 𝑓(𝑛) ≤ a 2 𝑐 2 𝑔(𝑛)

We use the constant 𝑎 2 𝑐 to show that 𝑎 2 𝑓 𝑛 is 𝑂(𝑔 𝑛).

Multiplying a function by a constant does not change its Big O upper
bound since these upper bounds ignore constants

Sum rule

Suppose 𝑓$ 𝑛 𝑖𝑠 𝑂 𝑔(𝑛) and 𝑓! 𝑛 𝑖𝑠 𝑂 𝑔(𝑛).
Then, 𝑓$ 𝑛 + 𝑓!(𝑛) 𝑖𝑠 𝑂 𝑔(𝑛).

Proof: Let 𝑛$, 𝑐$ and 𝑛!, 𝑐! be constants such that

𝑓$(𝑛) ≤ 𝑐$𝑔(𝑛), for all 𝑛 ≥ 𝑛$
𝑓!(𝑛) ≤ 𝑐!𝑔(𝑛), for all 𝑛 ≥ 𝑛!

So, 𝑓$ 𝑛 + 𝑓! 𝑛 ≤ (𝑐$+𝑐!)𝑔(𝑛), for all 𝑛 ≥ max(𝑛$, 𝑛!).

We can use the constants 𝑐$ + 𝑐! and max(𝑛$, 𝑛!) to satisfy
the definition.
A sum of two functions is inferior to a sum of two greater functions

Generalized Sum rule

Suppose 𝑓$ 𝑛 𝑖𝑠 𝑂 𝑔(𝑛) and 𝑓! 𝑛 𝑖𝑠 𝑂 𝑔(𝑛).

Then, 𝑓$ 𝑛 + 𝑓! 𝑛 𝑖𝑠 𝑂 𝑔$(𝑛 + 𝑔!(𝑛)).

Proof: Exercise…

Simply generalized the idea from the previous proof.
Share your answer on Ed!

Product Rule
Suppose 𝑓$ 𝑛 𝑖𝑠 𝑂 𝑔(𝑛) and 𝑓! 𝑛 𝑖𝑠 𝑂 𝑔(𝑛).

Then, 𝑓$ 𝑛 2 𝑓! 𝑛 𝑖𝑠 𝑂 𝑔$(𝑛 2 𝑔!(𝑛)).

Proof: Let 𝑛$, 𝑐$ and 𝑛!, 𝑐! be constants such that

𝑓$(𝑛) ≤ 𝑐$𝑔$(𝑛), for all 𝑛 ≥ 𝑛$
𝑓!(𝑛) ≤ 𝑐!𝑔!(𝑛), for all 𝑛 ≥ 𝑛!

So, 𝑓$ 𝑛 2 𝑓! 𝑛 ≤ (𝑐$2 𝑐!) 2 (𝑔$(𝑛) 2 𝑔!(𝑛)) , for all 𝑛 ≥
max(𝑛$, 𝑛!).
We can use the constants 𝑐$ 2 𝑐! and max(𝑛$, 𝑛!) to satisfy
the definition.

A product of two functions is less than a product of two greater functions

Transitivity Rule
Suppose 𝑓 𝑛 𝑖𝑠 𝑂 𝑔(𝑛) and 𝑔 𝑛 𝑖𝑠 𝑂 ℎ(𝑛).

Then, 𝑓 𝑛 𝑖𝑠 𝑂(ℎ(𝑛)).

Proof: Let 𝑛$, 𝑐$ and 𝑛!, 𝑐! be constants such that

𝑓(𝑛) ≤ 𝑐$𝑔(𝑛), for all 𝑛 ≥ 𝑛$
𝑔(𝑛) ≤ 𝑐!ℎ(𝑛), for all 𝑛 ≥ 𝑛!

So, 𝑓 𝑛 ≤ (𝑐$2 𝑐!)ℎ(𝑛), for all 𝑛 ≥ max(𝑛$, 𝑛!).

We can use the constants 𝑐$ 2 𝑐! and max(𝑛$, 𝑛!) to satisfy
the definition.

If a function A is greater than function B, and function B is greater than
function C, then function A is greater than function C

Notations
If 𝑓(𝑛) is 𝑂 𝑔 𝑛 , we often write 𝑓(𝑛) ∈ 𝑂(𝑔 𝑛). That is a
member of the functions that are 𝑂 𝑔 𝑛 .

For n sufficiently large we have, 1 < log! 𝑛 < 𝑛 < 𝑛 log! 𝑛…
And we write 𝑂 1 ⊂ 𝑂 log! 𝑛 ⊂ 𝑂 𝑛 ⊂ 𝑂 𝑛 log! 𝑛 …

Element of/belongs to

Strict subset of

BEYOND THE BIG OH NOTATION
(Big) omega and Theta

The Big Omega notation (Ω)

Let 𝑡 𝑛 and 𝑔 𝑛 be two functions with 𝑛 ≥ 0.

We say 𝑡 𝑛 is Ω(𝑔 𝑛), if there exists two positive constants
𝑛# and 𝑐 such that, for all 𝑛 ≥ 𝑛#,

𝑡(𝑛) ≥ 𝑐 2 𝑔(𝑛)

Note: This is the opposite of the big O notation. The function
𝑔 is now used as a "lower bound”.

Example

Claim: "("&$)
!

is Ω(𝑛!).

Proof: We show first that "("&$)
!

≥ "!

(
.

⇔ 2𝑛(𝑛 − 1) ≥ 𝑛!

⇔ 𝑛! ≥ 2𝑛

⇔ 𝑛 ≥ 2

Thus, we take 𝑐 = $
(

and 𝑛# = 2.

Exercise: Prove that it also works with 𝑐 = $
) and 𝑛# = 3

Intuition

And now… big Theta!
Let 𝑡(𝑛) and 𝑔(𝑛) be two functions, where 𝑛 ≥ 0.

We say 𝑡(𝑛) is Θ(𝑔(𝑛)) if there exists three positive
constants 𝑛# and 𝑐$, 𝑐! such that, for all 𝑛 ≥ 𝑛#,

𝑐$ 2 𝑔(𝑛) ≤ 𝑡(𝑛) ≤ 𝑐! 2 𝑔(𝑛)

Note: if 𝑡 𝑛 is Θ(𝑔(𝑛)). Then, it is also 𝑂(𝑔(𝑛)) and Ω(𝑔(𝑛)) .

Example

Let 𝑡 𝑛 = 4 + 17 log! 𝑛 + 3𝑛 + 9𝑛 log! 𝑛 +
"("&$)

!

Claim: 𝑡(𝑛) is Θ(𝑛!)

Proof:
𝑛!

4
≤ 𝑡 𝑛 ≤ (4 + 17 + 3 + 9 +

1
2
) 2 𝑛!

Big vs. little

(from geekforgeek.org)

The big O (resp. big Ω) denotes a tight upper (resp. lower)
bounds, while the little o (resp. little 𝜔) denotes a loose
upper (resp. lower) bounds.

RUNNING TIME OF RECURSIVE
ALGORITHMS

Algorithm analysis

Algorithm analysis
How to estimate the running time of a recursive algorithm?

1. Define a function T(n) representing the time spent by
your algorithm to execute an entry of size n

2. Write a recursive formula computing T(n)
3. Solve the recurrence

Notes:
• n can be anything that characterizes accurately the size of the

input (e.g., size of the array, number of bits)
• We count the number of elementary operations (e.g.,

addition, shift) to estimate the running time.
• We usually compute an upper bound rather than exact count.
• We will introduce later a general method to solve this.

Examples (binary search)
int bsearch(int[] A, int i, int j, int x) {

if (i<=j) { // the region to search is non-empty

int e = ⎣(i+j)/2⎦;
if (A[e] > x) { return bsearch(A,i,e-1,x);

} elif (A[e] < x) { return bsearch(A,e+1,j,x);

} else { return e; }

} else { return -1; } // value not found

}

𝑇 𝑛 = Y
𝑐 𝑖𝑓 𝑛 = 1

𝑇
𝑛
2
+ 𝑐′ 𝑖𝑓 𝑛 > 1

Notes:
• n is the size of the array
• Formally, we should use ≤ rather than =

Example (naïve Fibonacci)
public static int Fib(int n) {

if (n <= 1) { return n; }
return Fib(n-1) + Fib(n-2);

}

What are the value of c and c’ ?
• If 𝑛 ≤ 1 there is only one comparison thus c=1
• If 𝑛 > 1 there is one comparison and one addition thus c’=2

Notes:
• we neglect other constants
• We can approximate c and c’ with an asymptotic notation O(1)

𝑇 𝑛 = \
𝑐 𝑖𝑓 𝑛 ≤ 1

𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 𝑐′ 𝑖𝑓 𝑛 > 1

Example (Merge sort)
MergeSort (A, p, r)
if (p < r) then

q ¬ ë(p+r)/2û
MergeSort (A, p, q)
MergeSort (A, q+1, r)
Merge (A, p, q, r)

• Base case: constant time c
• Divide: computing the middle takes constant time c’
• Conquer: solving 2 subproblems takes 2・T(n/2)
• Combine: merging n elements takes k · n

𝑇 𝑛 = Y
𝑐 𝑖𝑓 𝑛 = 1

2 2 𝑇 "
!
+ 𝑘 2 𝑛 + 𝑐 + 𝑐′ 𝑖𝑓 𝑛 > 1

Substitution method
How to solve a recursive equation?
1. Guess the solution.
2. Use induction to find the constants and show that the solution

works.

Example:

Guess: 𝑇 𝑛 = 2" (remember the Fibonacci recursive tree)
Base case: 𝑇 0 = 2# = 1✓
Inductive case:
Assume 𝑇 𝑛 = 2" until rank n-1, then show it is true at rank n.
𝑇 𝑛 = 2 2 𝑇 𝑛 − 1 = 2 2 2"&$ = 2"✓

𝑇 𝑛 = \
1 𝑖𝑓 𝑛 = 0

2 2 𝑇(𝑛 − 1) 𝑖𝑓 𝑛 > 0

Running time of binary search

𝑇 𝑛 = Y
0 𝑖𝑓 𝑛 = 1

𝑇
𝑛
2
+ 1 𝑖𝑓 𝑛 > 1

Note: set the constant c=0 and c’=1

Guess: 𝑇 𝑛 = log! 𝑛
Base case: 𝑇 1 = log! 1 = 0✓
Inductive case:
Assume 𝑇 ⁄𝑛 2 = log!(⁄𝑛 2)
𝑇 𝑛 = 𝑇 ⁄𝑛 2 + 1 = log! ⁄𝑛 2 + 1

= log! 𝑛 − log! 2 + 1 = log! 𝑛✓

We simplify the formula and say that 𝑇(𝑛) is 𝑂(log 𝑛)

Induction hypothesis
can be anything < n

Running time of Merge Sort

We use a simplified version:

𝑇 𝑛 = Y
1 𝑖𝑓 𝑛 = 1

2 2 𝑇
𝑛
2
+ 𝑛 𝑖𝑓 𝑛 > 1

Simulation:

n 1 2 4 8 16 32 64 … n
T(n) 1 5 15 39 95 223 511 … ?

This is not as easy
to guess. Let’s try
plotting it!

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70

T(n)

linear time

quadratic

Running time of Merge Sort

Running time of Merge Sort
Remember the recursive case: 𝑇 𝑛 =

Guess: 𝑇 𝑛 = n 2 log 𝑛 + 𝑛

Base case: 𝑇 1 = 1 2 log 1 + 1 = 1✓
Inductive case:
Assume 𝑇 ⁄𝑛 2 = "

!
2 log "

!
+ "

!

𝑇 𝑛 = 2 2 𝑇
𝑛
2
+ 𝑛 = 2 2

𝑛
2
2 log

𝑛
2
+
𝑛
2
+ 𝑛

= 𝑛 2 log 𝑛 − log 2 + 𝑛 + 𝑛 = 𝑛 2 log 𝑛 − 𝑛 + 2 2 𝑛
= 𝑛 2 log 𝑛 + 𝑛✓

We simplify the formula and say that 𝑇(𝑛) is 𝑂(𝑛 2 log 𝑛)

