COMP251: Randomized
Algorithms

Jérome Waldispihl & Roman Sarrazin-Gendron
School of Computer Science
McGill University

Based on (Kleinberg & Tardos, 2006)

Algorithm Design Techniques

Greedy Algorithms
Dynamic Programming
Divide-and-Conquer
Network Flows

Randomization

Randomization

Principle: Allow fait coin flip in unit time.

Why? Can lead to simplest, fastest, or only
known algorithm for a particular problem.

Examples:

* Quicksort

* Graph Algorithms

* Hashing

* Monte-Carlo integration
* Cryptography

Global Min Cut

Definition: Given a connected, undirected graph G=(V,E), find a
cut with minimum cardinality.

Applications:

e Partitioning items in database

* Identify clusters of related documents
* Network reliability

* TSP solver

Network solution:

* Replace every edge (u,v) with 2 antiparallel edges (u,v) & (v,u)

* Pick some vertex s, and compute min s-v cut for each other
vertex v.

False Intuition: Global min-cut is harder that min s-t cut!

Contraction algorithm

Contraction algorithm. [Karger 1995]
* Pick an edge e = (u,v) uniformly at random.
* Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
« Repeat until graph has just two nodes y; and v,.
« Return the cut (all nodes that were contracted to form v,).

A
N N/
#\ :/6 contract u-v \o
f
I

Contraction algorithm

Contraction algorithm. [Karger 1995] Merging nodes is
* Pick an edge e = (1, v) uniformly at random. equivalent to build
 Contract edge e. disjoint sets of
- replace u and v by single new super-node w increasing sizes

- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
« Repeat until graph has just two nodes y; and v,.
« Return the cut (all nodes that were contracted to form v,).

AREREPY
AT

Reference: Thore Husfeldt

Contraction Algorithm

Randomization]

Contraction(V,E):

While |[V| > 2 do
Choose e € E uniformly at random
G « G —{e} //contract G

return { the only cut in G }

Why are we doing that?
What is the likelihood to get a global min cut at the end?

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob = 2/»2.

(n=1[V]) That’s the
Pf. Consider a global min-cut (A*, B¥) of G. probability to
* Let F* be edges with one endpoint in A* and the other in B*. pick a wrong
* Letk = |F*| = size of min cut. edge...

In first step, algorithm contracts an edge in F* probability k /I E|.

Every node has degree = k since otherwise (A*, B*) would not be

- k 2
amin-cut = |El=zWkn ©—<-
|E| — n

Thus, algorithm contracts an edge in F* with probability < 2/ .

If a node u has a degree
d, <k, we can make a
partition {{u},V-{u}} A*
& 257

whose cut is d, < k (and
F* cannot be a global ’><‘
min-cut).

F*

B*

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob > 2/ n2.

We are just

Pf. Consider a global min-cut (A*, B*) of G. repeating

Let F* be edges with one endpoint in A* and the other in B*. the same

Let k = | F*| = size of min cut. observations
Let G' be graph after j iterations. There are n' =n—j supernodes.

Suppose no edge in F* has been contracted. The min-cut in G' is still .
Since value of min-cutis &, |E'|= % kn'.

Thus, algorithm contracts an edge in F* with probability < 2/n'.

Let E; = event that an edge in F* is not contracted in iteration j.

Pr[E, NE,---NE,,] = Pr[E]x Pr[E, |E] x - x Pr[E, , |ENE,--NE, ;]

= (1-3)(1-2) = (1-3)(1-3)
- () (3) - ())

n 2/n? is not much but it is still something...

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction

algorithm many times.
with independent random choices,

'

Claim. If we repeat the contraction algorithm »2In n times,
then the probability of failing to find the global min-cut is < 1/n2.

Pf. By independence, the probability of failure is at most

(1 =1/ <1/e

Contraction algorithm: example execution

I drdrfeffefegeg-fele PERRY
w DHEZEOOSR8sadm
o WGRESLLNDEsacrry
o WOSEIENERCELUM
2 BB R R R R R DAL F)
- @ﬁ@%%éé@@@%%@@%&

eeeeeeeeeeeeeeeeeeeeee

Global min cut: context

Remark. Overall running time is slow since we perform O(n2log n) iterations
and each takes Q@m) time. Where m = |E|. Overall complexity O(n*mlogn)

Improvement. [Karger-Stein 1996] O®2 log3 n).
» Early iterations are less risky than later ones: probability of contracting
an edge in min cut hits 50% when n/+v2 nodes remain.
 Run contraction algorithm until n/v2 nodes remain.
* Run contraction algorithm twice on resulting graph and
return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O(m log3n).

\

faster than best known max flow algorithm or
deterministic global min cut algorithm

SAT formula

Boolean variables: x;or X;

A clause is true if one
Clause: C; = xi, V Xy, V Xi, Voo V Xy, of his variable is true
Size of a clause = number of variables in the clause
SAT formula: A; C; (a formula is satisfied if all clauses are true)
Example (3 SAT formula):
(xq VX VX3) A (X1 VX3V Xy)

X;=1; X,=1; x3=1; x,=1 = True

X;=1; X,=0; x3=1; x,=0 = False

Maximum 3-satisfiability

exactly 3 distinct literals per clause

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment

that satisfies as many clauses as possible.

C, = X VX3V X
C, = X, VX3VZX,
C; = X, VX,Vx
Cy = X VX V¥
Cs = X, VX,VXx,

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability /%,

independently for each variable.

Is it a good idea?

24

Maximum 3-satisfiability: analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses
satisfied by a random assignment is 7k /8.

Pf. Consider random variable Z; =

1 if clause C i 1s satisfied
0 otherwise.

* Let Z= weight of clauses satisfied by assignment Z.

k
E[Z] = Y E[Z;]
j=1

linearity of expectation

I
(\Yk

Pr[clause C; is satistied]

~
I

k

ool

There is 23 possible assighments for a clause of 3-SAT. Only one
makes the clause false (all variable are false). Thus, 7/8 return true.

25

The Probabilistic Method

Corollary. For any instance of 3-SaT, there exists a truth assignment that
satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. =

Probabilistic method. [Paul Erdos] Prove the existence of a non-obvious

property by showing that a random construction produces it with
positive probability!

Although the proof uses probability, the conclusion is
determined for certain, without any possible error.

Not at the final!

26

Maximum 3-satisfiability: analysis

Q. Can we turn this idea into a 7/8-approximation algorithm?
A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies > 7k / 8 clauses
is at least 1/ (8k).

Pf. Let p, be probability that exactly j clauses are satisfied;
let p be probability that > 7k /8 clauses are satisfied.

Tk = ; _
sk = ElZ] = EOJPJ Split around
. ~ themean
= X Jjp;j + X b
j<Tk/8 j=Tk/8
Find an upper
S8 s j=7k/8 ° bound for each
< ({k-9 1 + kp

Rearranging terms yields p = 1/(8k). =

27

Maximum 3-satisfiability: analysis

Johnson's algorithm. Repeatedly generate random truth assignments until
one of them satisfies > 7k / 8 clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.
Pf. By previous lemma, each iteration succeeds with probability > 1/ (8k).

By the waiting-time bound, the expected number of trials to find the
satisfying assignment is at most 8k. =

An approximation algorithm returns a solution provably close to the
optimal.

28

Monte Carlo vs. Las Vegas algorithms

Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson's Max-3-SaT algorithm.

stop algorithm
after a certain point

/

Remark. Can always convert a Las Vegas algorithm into Monte Carlo,
but no known method (in general) to convert the other way.

30

