
COMP251: Randomized 
Algorithms

Jérôme Waldispühl & Roman Sarrazin-Gendron
School of Computer Science

McGill University
Based on (Kleinberg & Tardos, 2006)



Algorithm Design Techniques

• Greedy Algorithms
• Dynamic Programming
• Divide-and-Conquer
• Network Flows
• Randomization



Randomization

Principle: Allow fait coin flip in unit time.
Why? Can lead to simplest, fastest, or only 
known algorithm for a particular problem.
Examples:
• Quicksort
• Graph Algorithms
• Hashing
• Monte-Carlo integration
• Cryptography 



Global Min Cut

Definition: Given a connected, undirected graph G=(V,E), find a 
cut with minimum cardinality.

Applications:
• Partitioning items in database
• Identify clusters of related documents
• Network reliability
• TSP solver

Network solution:
• Replace every edge (u,v) with 2 antiparallel edges (u,v) & (v,u)
• Pick some vertex s, and compute min s-v cut for each other 

vertex v. 

False Intuition: Global min-cut is harder that min s-t cut!  



10

Contraction algorithm

Contraction algorithm.  [Karger 1995]

・Pick an edge e = (u, v) uniformly at random.

・Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops

・Repeat until graph has just two nodes v1 and v1.

・Return the cut (all nodes that were contracted to form v1).
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Contraction algorithm

Contraction algorithm.  [Karger 1995]

・Pick an edge e = (u, v) uniformly at random.

・Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops

・Repeat until graph has just two nodes v1 and v1.

・Return the cut (all nodes that were contracted to form v1).

Reference: Thore Husfeldt

u1

Merging nodes is 
equivalent to build 
disjoint sets of 
increasing sizes



Contraction Algorithm

Contraction(V,E):

While 𝑉 > 2 do

Choose 𝑒 ∈ 𝐸 uniformly at random

𝐺 ← 𝐺 − 𝑒 // contract G

return { the only cut in G }

Randomization

Why are we doing that?
What is the likelihood to get a global min cut at the end?



( 𝑛 = 𝑉 )

⇔
𝑘
𝐸
≤
2
𝑛

If a node u has a degree 
du < k, we can make a 
partition {{u},V-{u}} 
whose cut is du < k (and 
F* cannot be a global 
min-cut).

That’s the 
probability to 
pick a wrong 
edge…
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Contraction algorithm

Claim.  The contraction algorithm returns a min cut with prob  ≥  2 / n2.

Pf.  Consider a global min-cut (A*, B*) of G.

・Let F* be edges with one endpoint in A* and the other in B*.

・Let k  =  | F* |  = size of min cut.

・Let G' be graph after j iterations. There are n' = n – j supernodes.

・Suppose no edge in F* has been contracted. The min-cut in G' is still k.

・Since value of min-cut is k, | E' | ≥ ½ k n'.

・Thus, algorithm contracts an edge in F* with probability ≤  2 / n'.

・Let Ej = event that an edge in F* is not contracted in iteration j.

  

€ 
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We are just 
repeating 
the same 
observations

2/n2 is not much but it is still something…
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Contraction algorithm

Amplification.  To amplify the probability of success, run the contraction 

algorithm many times.

Claim.  If we repeat the contraction algorithm n2 ln n times,

then the probability of failing to find the global min-cut is  ≤ 1 / n2.

Pf.  By independence, the probability of failure is at most
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 with independent random choices,
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Contraction algorithm:  example execution

trial 1

trial 2

trial 3

trial 4

trial 5
(finds min cut)

trial 6

...
Reference: Thore Husfeldt
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Global min cut:  context

Remark.  Overall running time is slow since we perform Θ(n2 log n) iterations 

and each takes Ω(m) time.

Improvement.  [Karger-Stein 1996]   O(n2 log3 n).

・Early iterations are less risky than later ones: probability of contracting 

an edge in min cut hits 50% when n / √2 nodes remain.

・Run contraction algorithm until n / √2 nodes remain.

・Run contraction algorithm twice on resulting graph and

return best of two cuts. 

Extensions.  Naturally generalizes to handle positive weights.

Best known.  [Karger 2000]  O(m log3 n).

faster than best known max flow algorithm or
deterministic global min cut algorithm

Where 𝑚 = 𝐸 . Overall complexity 𝑂(𝑛!𝑚 log 𝑛)



SAT formula
Boolean variables: 𝑥-or "𝑥-

Clause: 𝐶- = 𝑥-' ∨ 𝑥-( ∨ 𝑥-) ∨ ⋯∨ 𝑥-*

Size of a clause = number of variables in the clause

SAT formula: ⋀- 𝐶- (a formula is satisfied if all clauses are true) 

Example (3 SAT formula):

(𝑥. ∨ 𝑥/ ∨ 𝑥0) ∧ (𝑥. ∨ 𝑥/ ∨ 𝑥1)

x1=1; x2=1; x3=1; x4=1 ⇒ True

x1=1; x2=0; x3=1; x4=0 ⇒ False

A clause is true if one 
of his variable is true
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Maximum 3-satisfiability

Maximum 3-satisfiability.  Given a 3-SAT formula, find a truth assignment 

that satisfies as many clauses as possible.

Remark.  NP-hard search problem.

Simple idea.  Flip a coin, and set each variable true with probability ⇥, 

independently for each variable.

€ 

C1 = x2 ∨ x3 ∨ x4
C2 = x2 ∨ x3 ∨ x4
C3 = x1 ∨ x2 ∨ x4
C4 = x1 ∨ x2 ∨ x3
C5 = x1 ∨ x2 ∨ x4

exactly 3 distinct literals per clause

Is it a good idea?
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Claim.  Given a 3-SAT formula with k clauses, the expected number of clauses 

satisfied by a random assignment is 7k / 8.

Pf.  Consider random variable

・Let Z = weight of clauses satisfied by assignment Zj.

€ 

E[Z ] = E[Z j
j=1

k
∑ ] 

= Pr[clause Cj  is satisfied
j=1

k
∑ ]

= 7
8 k

Maximum 3-satisfiability:  analysis

€ 

Z j =
1 if clause Cj  is satisfied
0 otherwise.

" 
# 
$ 

linearity of expectation

There is 23 possible assignments for a clause of 3-SAT. Only one 
makes the clause false (all variable are false). Thus, 7/8 return true.
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Corollary.  For any instance of 3-SAT, there exists a truth assignment that 

satisfies at least a 7/8 fraction of all clauses.

Pf.  Random variable is at least its expectation some of the time.   ▪

Probabilistic method.  [Paul Erdös]  Prove the existence of a non-obvious 

property by showing that a random construction produces it with

positive probability!

The Probabilistic Method

Although the proof uses probability, the conclusion is 
determined for certain, without any possible error.

Not at the final!
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Maximum 3-satisfiability:  analysis

Q.  Can we turn this idea into a 7/8-approximation algorithm?

A.  Yes (but a random variable can almost always be below its mean).

Lemma.  The probability that a random assignment satisfies ≥ 7k / 8 clauses 

is at least 1 / (8k).

Pf.  Let pj be probability that exactly j clauses are satisfied;

let p be probability that ≥ 7k / 8 clauses are satisfied.

Rearranging terms yields  p  ≥  1 / (8k).    ▪

€ 
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Split around 
the mean

Find an upper 
bound for each
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Maximum 3-satisfiability:  analysis

Johnson's algorithm.  Repeatedly generate random truth assignments until 

one of them satisfies ≥ 7k / 8 clauses.

Theorem.  Johnson's algorithm is a 7/8-approximation algorithm.

Pf.  By previous lemma, each iteration succeeds with probability ≥ 1 / (8k).
By the waiting-time bound, the expected number of trials to find the 

satisfying assignment is at most 8k.   ▪

An approximation algorithm returns a solution provably close to the 
optimal. 
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Monte Carlo vs. Las Vegas algorithms

Monte Carlo.  Guaranteed to run in poly-time, likely to find correct answer.

Ex:  Contraction algorithm for global min cut.

Las Vegas.  Guaranteed to find correct answer, likely to run in poly-time.

Ex:  Randomized quicksort, Johnson's MAX-3-SAT algorithm.

Remark.  Can always convert a Las Vegas algorithm into Monte Carlo,

but no known method (in general) to convert the other way.

stop algorithm
after a certain point


