
COMP251: Randomized
Algorithms

Jérôme Waldispühl & Roman Sarrazin-Gendron
School of Computer Science

McGill University
Based on (Kleinberg & Tardos, 2006)

Algorithm Design Techniques

• Greedy Algorithms
• Dynamic Programming
• Divide-and-Conquer
• Network Flows
• Randomization

Randomization

Principle: Allow fait coin flip in unit time.
Why? Can lead to simplest, fastest, or only
known algorithm for a particular problem.
Examples:
• Quicksort
• Graph Algorithms
• Hashing
• Monte-Carlo integration
• Cryptography

Global Min Cut

Definition: Given a connected, undirected graph G=(V,E), find a
cut with minimum cardinality.

Applications:
• Partitioning items in database
• Identify clusters of related documents
• Network reliability
• TSP solver

Network solution:
• Replace every edge (u,v) with 2 antiparallel edges (u,v) & (v,u)
• Pick some vertex s, and compute min s-v cut for each other

vertex v.

False Intuition: Global min-cut is harder that min s-t cut!

10

Contraction algorithm

Contraction algorithm. [Karger 1995]

・Pick an edge e = (u, v) uniformly at random.

・Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops

・Repeat until graph has just two nodes v1 and v1.

・Return the cut (all nodes that were contracted to form v1).

u v w

⇒
contract u-v

a b c

e

f

ca b

f

d

u1

11

Contraction algorithm

Contraction algorithm. [Karger 1995]

・Pick an edge e = (u, v) uniformly at random.

・Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops

・Repeat until graph has just two nodes v1 and v1.

・Return the cut (all nodes that were contracted to form v1).

Reference: Thore Husfeldt

u1

Merging nodes is
equivalent to build
disjoint sets of
increasing sizes

Contraction Algorithm

Contraction(V,E):

While 𝑉 > 2 do

Choose 𝑒 ∈ 𝐸 uniformly at random

𝐺 ← 𝐺 − 𝑒 // contract G

return { the only cut in G }

Randomization

Why are we doing that?
What is the likelihood to get a global min cut at the end?

(𝑛 = 𝑉)

⇔
𝑘
𝐸
≤
2
𝑛

If a node u has a degree
du < k, we can make a
partition {{u},V-{u}}
whose cut is du < k (and
F* cannot be a global
min-cut).

That’s the
probability to
pick a wrong
edge…

13

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob ≥ 2 / n2.

Pf. Consider a global min-cut (A*, B*) of G.

・Let F* be edges with one endpoint in A* and the other in B*.

・Let k = | F* | = size of min cut.

・Let G' be graph after j iterations. There are n' = n – j supernodes.

・Suppose no edge in F* has been contracted. The min-cut in G' is still k.

・Since value of min-cut is k, | E' | ≥ ½ k n'.

・Thus, algorithm contracts an edge in F* with probability ≤ 2 / n'.

・Let Ej = event that an edge in F* is not contracted in iteration j.

€

Pr[E1 ∩E2∩ En−2] = Pr[E1] × Pr[E2 | E1] ×  × Pr[En−2 | E1∩ E2∩ En−3]
≥ 1− 2

n() 1− 2
n−1() 1− 2

4() 1− 2
3()

= n−2
n() n−3

n−1()  2
4() 1

3()
= 2

n(n−1)

≥ 2
n2

We are just
repeating
the same
observations

2/n2 is not much but it is still something…

14

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction

algorithm many times.

Claim. If we repeat the contraction algorithm n2 ln n times,

then the probability of failing to find the global min-cut is ≤ 1 / n2.

Pf. By independence, the probability of failure is at most

€

1− 2
n2

$
%

&
'
(
n2 lnn

= 1− 2
n2

$
%

&
'
(

1
2n

2)

*
+
+

,

-
.
.

2lnn

≤ e−1()
2lnn

= 1
n2

(1 – 1/x)x ≤ 1/e

 with independent random choices,

15

Contraction algorithm: example execution

trial 1

trial 2

trial 3

trial 4

trial 5
(finds min cut)

trial 6

...
Reference: Thore Husfeldt

16

Global min cut: context

Remark. Overall running time is slow since we perform Θ(n2 log n) iterations

and each takes Ω(m) time.

Improvement. [Karger-Stein 1996] O(n2 log3 n).

・Early iterations are less risky than later ones: probability of contracting

an edge in min cut hits 50% when n / √2 nodes remain.

・Run contraction algorithm until n / √2 nodes remain.

・Run contraction algorithm twice on resulting graph and

return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O(m log3 n).

faster than best known max flow algorithm or
deterministic global min cut algorithm

Where 𝑚 = 𝐸 . Overall complexity 𝑂(𝑛!𝑚 log 𝑛)

SAT formula
Boolean variables: 𝑥-or "𝑥-

Clause: 𝐶- = 𝑥-' ∨ 𝑥-(∨ 𝑥-) ∨ ⋯∨ 𝑥-*

Size of a clause = number of variables in the clause

SAT formula: ⋀- 𝐶- (a formula is satisfied if all clauses are true)

Example (3 SAT formula):

(𝑥. ∨ 𝑥/ ∨ 𝑥0) ∧ (𝑥. ∨ 𝑥/ ∨ 𝑥1)

x1=1; x2=1; x3=1; x4=1 ⇒ True

x1=1; x2=0; x3=1; x4=0 ⇒ False

A clause is true if one
of his variable is true

24

Maximum 3-satisfiability

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment

that satisfies as many clauses as possible.

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability ⇥,

independently for each variable.

€

C1 = x2 ∨ x3 ∨ x4
C2 = x2 ∨ x3 ∨ x4
C3 = x1 ∨ x2 ∨ x4
C4 = x1 ∨ x2 ∨ x3
C5 = x1 ∨ x2 ∨ x4

exactly 3 distinct literals per clause

Is it a good idea?

25

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses

satisfied by a random assignment is 7k / 8.

Pf. Consider random variable

・Let Z = weight of clauses satisfied by assignment Zj.

€

E[Z] = E[Z j
j=1

k
∑]

= Pr[clause Cj is satisfied
j=1

k
∑]

= 7
8 k

Maximum 3-satisfiability: analysis

€

Z j =
1 if clause Cj is satisfied
0 otherwise.

"

$

linearity of expectation

There is 23 possible assignments for a clause of 3-SAT. Only one
makes the clause false (all variable are false). Thus, 7/8 return true.

26

Corollary. For any instance of 3-SAT, there exists a truth assignment that

satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. ▪

Probabilistic method. [Paul Erdös] Prove the existence of a non-obvious

property by showing that a random construction produces it with

positive probability!

The Probabilistic Method

Although the proof uses probability, the conclusion is
determined for certain, without any possible error.

Not at the final!

27

Maximum 3-satisfiability: analysis

Q. Can we turn this idea into a 7/8-approximation algorithm?

A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies ≥ 7k / 8 clauses

is at least 1 / (8k).

Pf. Let pj be probability that exactly j clauses are satisfied;

let p be probability that ≥ 7k / 8 clauses are satisfied.

Rearranging terms yields p ≥ 1 / (8k). ▪

€

7
8 k = E[Z] = j pj

j≥0
∑

= j pj + j pj
j≥7k /8
∑

j<7k /8
∑

≤ (7k
8 −

1
8) pj + k pj

j≥7k /8
∑

j<7k /8
∑

≤ (7
8 k − 1

8) ⋅ 1 + k p

Split around
the mean

Find an upper
bound for each

28

Maximum 3-satisfiability: analysis

Johnson's algorithm. Repeatedly generate random truth assignments until

one of them satisfies ≥ 7k / 8 clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability ≥ 1 / (8k).
By the waiting-time bound, the expected number of trials to find the

satisfying assignment is at most 8k. ▪

An approximation algorithm returns a solution provably close to the
optimal.

30

Monte Carlo vs. Las Vegas algorithms

Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer.

Ex: Contraction algorithm for global min cut.

Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.

Ex: Randomized quicksort, Johnson's MAX-3-SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte Carlo,

but no known method (in general) to convert the other way.

stop algorithm
after a certain point

