COMP251: Randomized Algorithms

Jérôme Waldispühl & Roman Sarrazin-Gendron
School of Computer Science
McGill University

Based on (Kleinberg & Tardos, 2006)
Algorithm Design Techniques

• Greedy Algorithms
• Dynamic Programming
• Divide-and-Conquer
• Network Flows
• Randomization
Randomization

Principle: Allow fait coin flip in unit time.

Why? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Examples:
- Quicksort
- Graph Algorithms
- Hashing
- Monte-Carlo integration
- Cryptography
Global Min Cut

Definition: Given a connected, undirected graph $G=(V,E)$, find a cut with minimum cardinality.

Applications:
- Partitioning items in database
- Identify clusters of related documents
- Network reliability
- TSP solver

Network solution:
- Replace every edge (u,v) with 2 antiparallel edges (u,v) & (v,u)
- Pick some vertex s, and compute min $s-v$ cut for each other vertex v.

False Intuition: Global min-cut is harder than min $s-t$ cut!
Contraction algorithm

Contraction algorithm. [Karger 1995]

• Pick an edge $e = (u, v)$ uniformly at random.
• **Contract** edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
• Repeat until graph has just two nodes u_1 and v_1.
• Return the cut (all nodes that were contracted to form v_1).
Contraction algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge \(e = (u, v) \) uniformly at random.
- **Contract** edge \(e \).
 - replace \(u \) and \(v \) by single new super-node \(w \)
 - preserve edges, updating endpoints of \(u \) and \(v \) to \(w \)
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes \(u_1 \) and \(v_1 \).
- Return the cut (all nodes that were contracted to form \(v_1 \)).

Merging nodes is equivalent to build disjoint sets of increasing sizes

Reference: Thore Husfeldt
Contraction Algorithm

Contraction(V,E):

While $|V| > 2$ do

Choose $e \in E$ uniformly at random

$G \leftarrow G - \{e\}$ // contract G

return { the only cut in G }

Why are we doing that?
What is the likelihood to get a global min cut at the end?
Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.
($n = |V|$)

Pf. Consider a global min-cut (A^*, B^*) of G.

- Let F^* be edges with one endpoint in A^* and the other in B^*.
- Let $k = |F^*| = $ size of min cut.
- In first step, algorithm contracts an edge in F^* probability $k/|E|$.
- Every node has degree $\geq k$ since otherwise (A^*, B^*) would not be a min-cut $\Rightarrow |E| \geq \frac{1}{2} k n$. $\iff \frac{k}{|E|} \leq \frac{2}{n}$
- Thus, algorithm contracts an edge in F^* with probability $\leq 2/n$.

If a node u has a degree $d_u < k$, we can make a partition $\{\{u\}, V-\{u\}\}$ whose cut is $d_u < k$ (and F^* cannot be a global min-cut).

That’s the probability to pick a wrong edge...
Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob \(\geq \frac{2}{n^2} \).

Pf. Consider a global min-cut \((A^*, B^*)\) of \(G\).
- Let \(F^*\) be edges with one endpoint in \(A^*\) and the other in \(B^*\).
- Let \(k = |F^*| = \text{size of min cut}\).
- Let \(G'\) be graph after \(j\) iterations. There are \(n' = n - j\) supernodes.
- Suppose no edge in \(F^*\) has been contracted. The min-cut in \(G'\) is still \(k\).
- Since value of min-cut is \(k\), \(|E'| \geq \frac{1}{2} kn'\).
- Thus, algorithm contracts an edge in \(F^*\) with probability \(\leq \frac{2}{n'} \).
- Let \(E_j\) = event that an edge in \(F^*\) is not contracted in iteration \(j\).

\[
\Pr[E_1 \cap E_2 \cdots \cap E_{n-2}] = \Pr[E_1] \times \Pr[E_2 \mid E_1] \times \cdots \times \Pr[E_{n-2} \mid E_1 \cap E_2 \cdots \cap E_{n-3}]
\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right)
= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \cdots \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)
= \frac{2}{n(n-1)}
\geq \frac{2}{n^2}
\]

We are just repeating the same observations

\(2/n^2\) is not much but it is still something...
Contraction algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm \(n^2 \ln n \) times, then the probability of failing to find the global min-cut is \(\leq 1 / n^2 \).

Pf. By independence, the probability of failure is at most

\[
\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left[\left(1 - \frac{2}{n^2}\right)^{\frac{1}{2}n^2}\right]^{2 \ln n} \leq (e^{-1})^{2 \ln n} = \frac{1}{n^2}
\]

with independent random choices.

\[(1 - \frac{1}{x})^x \leq 1/e \]
Contraction algorithm: example execution

Reference: Thore Husfeldt
Global min cut: context

Remark. Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time. Where $m = |E|$. Overall complexity $O(n^2 m \log n)$

Improvement. [Karger-Stein 1996] $O(n^2 \log^3 n)$.
- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm until $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^3 n)$.

faster than best known max flow algorithm or deterministic global min cut algorithm
SAT formula

Boolean variables: x_i or $\overline{x_i}$

Clause: $C_i = x_{i_1} \lor x_{i_2} \lor x_{i_3} \lor \cdots \lor x_{i_k}$

Size of a clause = number of variables in the clause

SAT formula: $\land_i C_i$ (a formula is satisfied if all clauses are true)

Example (3 SAT formula):

$$(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_4)$$

$x_1=1; x_2=1; x_3=1; x_4=1 \Rightarrow \text{True}$

$x_1=1; x_2=0; x_3=1; x_4=0 \Rightarrow \text{False}$

A clause is true if one of his variable is true
Maximum 3-satisfiability

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

\[
C_1 = x_2 \lor \overline{x_3} \lor \overline{x_4}
\]
\[
C_2 = x_2 \lor x_3 \lor \overline{x_4}
\]
\[
C_3 = \overline{x_1} \lor x_2 \lor x_4
\]
\[
C_4 = \overline{x_1} \lor \overline{x_2} \lor x_3
\]
\[
C_5 = x_1 \lor x_2 \lor x_4
\]

Remark. **NP**-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability ½, independently for each variable.

Is it a good idea?
Maximum 3-satisfiability: analysis

Claim. Given a 3-SAT formula with \(k \) clauses, the expected number of clauses satisfied by a random assignment is \(7k / 8 \).

Pf. Consider random variable \(Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise} \end{cases} \).

- Let \(Z = \) weight of clauses satisfied by assignment \(Z_j \).

\[
E[Z] = \sum_{j=1}^{k} E[Z_j]
\]

(linearity of expectation)

\[
= \sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}]
\]

\[
= \frac{7}{8}k
\]

There is \(2^3 \) possible assignments for a clause of 3-SAT. Only one makes the clause false (all variables are false). Thus, \(7/8 \) return true.
The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a $7/8$ fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. □

Probabilistic method. [Paul Erdős] Prove the existence of a non-obvious property by showing that a random construction produces it with positive probability!

Although the proof uses probability, the conclusion is determined for *certain*, without any possible error.

Not at the final!
Maximum 3-satisfiability: analysis

Q. Can we turn this idea into a $7/8$-approximation algorithm?
A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies $\geq 7k/8$ clauses is at least $1/(8k)$.

Pf. Let p_j be probability that exactly j clauses are satisfied; let p be probability that $\geq 7k/8$ clauses are satisfied.

\begin{align*}
\frac{7}{8} k &= E[Z] = \sum_{j \geq 0} j p_j \\
&= \sum_{j < 7k/8} j p_j + \sum_{j \geq 7k/8} j p_j \\
&\leq \left(\frac{7k}{8} - \frac{1}{8} \right) \sum_{j < 7k/8} p_j + k \sum_{j \geq 7k/8} p_j \\
&\leq \left(\frac{7}{8} k - \frac{1}{8} \right) \cdot 1 + k p
\end{align*}

Rearranging terms yields $p \geq 1/(8k)$. □
Maximum 3-satisfiability: analysis

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7k/8$ clauses.

Theorem. Johnson's algorithm is a $7/8$-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability $\geq 1/(8k)$. By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most $8k$. □

An approximation algorithm returns a solution provably close to the optimal.
Monte Carlo vs. Las Vegas algorithms

Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson's MAX-3-SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method (in general) to convert the other way.