COMP251: Amortized Analysis

Jérôme Waldispühl & Guilia Alberini
School of Computer Science
McGill University

Based on (Cormen et al., 2009)
Overview

• Analyze a sequence of operations on a data structure.
• We will talk about average cost in the worst case (i.e., not averaging over a distribution of inputs. No probability!)
• **Goal:** Show that although some individual operations may be expensive, on average the cost per operation is small.
• 3 methods:
 1. aggregate analysis
 2. accounting method
 3. potential method (See textbook for more details)
• **Approach:** Evaluate the total cost of a sequence of n operations. Divide the total cost by n to obtain the average cost of an operation.
Context

- You have a method that is called to perform a certain function (e.g., sorting)
- The cost (e.g., running time) varies from one call to another of the method
- This method is called multiple times during the execution of your program

Question: What is the average cost of a call to this method?

By contrast, the worst-case analysis tries to estimate the worst-case scenario of the cost for a single call to the method.
Aggregate analysis

• You aim to directly compute an upper bound $T(n)$ on the cost of a sequence of n operations.

• Once $T(n)$ is determined, we divide it by n to obtain the average cost an operation $T(n)/n$

• Advantage: You do not need to have an intuition of the result

• Challenge: Sometimes obtaining a tight upper bound is hard
Operations on a stack

Stack operations

• **PUSH**(\(S, x\)): \(O(1)\) for a single operation \(\Rightarrow\) \(O(n)\) for any sequence of \(n\) PUSH operations.

• **POP**(\(S\)): \(O(1)\) for a single operation \(\Rightarrow\) \(O(n)\) for any sequence of \(n\) POP operations.

• **MULTIPOP**(\(S, k\)):

\[
\text{while } S \neq \emptyset \text{ and } k > 0 \text{ do }
\]
\[
\text{POP}(S)
\]
\[
k \leftarrow k - 1
\]

The analysis of MULTIPOP is not straightforward because we do not know how many iteration the while loop it will make.

Running time of a sequence of operations including MULTIPOP?
Running time of *multiple operations*

Running time of a single MULTIPOP operation:
- Let each PUSH/POP cost 1.
- # of iterations of *while* loop is \(\text{min}(s, k) \), where \(s = \# \text{ of objects on stack} \). Therefore, total cost = \(\text{min}(s, k) \).

Sequence of \(n \) PUSH, POP, MULTIPOP operations:
- Worst-case cost of MULTIPOP is \(O(n) \).
- Have \(n \) operations.
- Therefore, worst-case cost of sequence is \(O(n^2) \).

But...
- Each object can be popped only once per time that it is pushed.
- Have \(\leq n \) PUSHes \(\Rightarrow \) \(\leq n \) POPs, including those in MULTIPOP.
- Therefore, total cost = \(O(n) \).
- **Average over the \(n \) operations \(\Rightarrow O(1) \) per operation on average.**
Binary Counter

We store numbers using a binary representation.

The number of bits k is fixed ($k=3$ in the example below).

<table>
<thead>
<tr>
<th>N</th>
<th>Polynomial</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>$0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>001</td>
</tr>
<tr>
<td>2</td>
<td>$0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>010</td>
</tr>
<tr>
<td>3</td>
<td>$0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>011</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

The decomposition in binary representation is unique

What is the cost of incrementing the value of N?

How do we measure the cost?
Binary Counter

- k-bit binary counter $A[0 \ldots k-1]$ of bits, where $A[0]$ is the least significant bit and $A[k-1]$ is the most significant bit.
- Counts upward from 0.
- Value of counter is: $\sum_{i=0}^{k-1} A[i] \cdot 2^i$
- Initially, counter value is 0, so $A[0 \ldots k-1] = 0$.
- To increment, add 1 (mod 2^k):
 Increment(A,k):

 \[
 i \leftarrow 0
 \]
 \[
 \text{while } i < k \text{ and } A[i] = 1 \text{ do}
 \]
 \[
 A[i] \leftarrow 0
 \]
 \[
 i \leftarrow i + 1
 \]
 \[
 \text{if } i < k \text{ then}
 \]
 \[
 A[i] \leftarrow 1
 \]
Example (1)

Let $k=3$

<table>
<thead>
<tr>
<th>Counter Value</th>
<th>A</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>14</td>
</tr>
</tbody>
</table>

Cost of INCREMENT = $\Theta(\# \text{ of bits flipped})$

Analysis: Each call could flip k bits, so n INCREMENTs takes $O(nk)$ time.
Example (2)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Flips how often</th>
<th>Time in n INCREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Every time</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>½ of the time</td>
<td>floor(n/2)</td>
</tr>
<tr>
<td>2</td>
<td>¼ of the time</td>
<td>floor(n/4)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>1/2^i of the time</td>
<td>floor(n/2^i)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i≥k</td>
<td>Never</td>
<td>0</td>
</tr>
</tbody>
</table>

Thus, total # flips = \[\sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor < n \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = n \left(\frac{1}{1-1/2} \right) = 2 \cdot n\]

Therefore, \(n\) INCREMENTS costs \(O(n)\).

Average cost per operation = \(O(1)\).
Accounting method

Assign different charges to different operations.
- Some are charged more than actual cost.
- Some are charged less.

Amortized cost = amount we charge.
- When amortized cost is higher than the actual cost, store the difference on specific objects in the data structure as **credit**.
- Use credit later to pay for operations whose actual cost is higher than the amortized cost.

But we need to guarantee that the credit never goes negative!

Differs from aggregate analysis:
- In aggregate analysis, different operations can have different costs.
- In accounting method, all operations have same cost.
Definitions

Let $c_i = \text{actual cost of } i^{\text{th}} \text{ operation.}$

$\hat{c}_i = \textbf{amortized cost of } i^{\text{th}} \text{ operation.}$

Then, require $\sum_{i=1}^{n} \hat{c}_i \geq \sum_{i=1}^{n} c_i$ for any sequences of n operations.

Total credit stored = $\sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i \geq 0$

At any step of the sequence of operations, the accumulated credit stored cannot be negative.

You cannot afford bankruptcy!
Stack

Intuition: When pushing an object, pay $2.

- $1 pays for the PUSH.
- $1 is prepayment for it being popped by either POP or MULTIPOP.
- Since each object has $1, which is credit, the credit can never go negative.
- Total amortized cost ($= O(n)$) is an upper bound on total actual cost.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Actual cost</th>
<th>Amortized cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUSH</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>POP</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MULTIPOP</td>
<td>min(k,s)</td>
<td>0</td>
</tr>
</tbody>
</table>

This is the challenge of the accounting method: You must find values for the amortized costs.
Binary counter

Charge $2 to set a bit to 1.
- $1 pays for setting a bit to 1.
- $1 is prepayment for flipping it back to 0.
- Have $1 of credit for every 1 in the counter.
- Therefore, credit ≥ 0.

Amortized cost of INCREMENT:
- Cost of resetting bits to 0 is paid by credit.
- At most 1 bit is set to 1.
- Therefore, amortized cost ≤ $2.
- For n operations, amortized cost = $O(n)$.
Dynamic tables

Scenario
• Have a table (e.g., a hash table).
• Don’t know in advance how many objects will be stored in it.
• When it fills, must reallocate with a larger size, copying all objects into the new, larger table.
• When it gets sufficiently small, might want to reallocate with a smaller size.

Goals
1. $O(1)$ amortized time per operation.
2. Unused space always \leq constant fraction of allocated space.

Load factor $\alpha = (\# \text{ items stored}) / \text{(allocated size)}$

Never allow $\alpha > 1$; Keep $\alpha > \text{a constant fraction} \Rightarrow \text{Goal 2.}$
Table expansion

Consider only insertion.

• When the table becomes full, double its size and reinsert all existing items.
• Guarantees that $\alpha \geq \frac{1}{2}$.
• Each time we insert an item into the table, it is an elementary insertion.

$\text{T A B L E} - \text{I N S E R T}(T, x)$
if $size[T] = 0$
 then allocate $table[T]$ with 1 slot
 $size[T] \leftarrow 1$
if $num[T] = size[T]$ then
 allocate new-table with $2 \cdot size[T]$ slots
 insert all items in $table[T]$ into new-table
 free $table[T]$;
 $table[T] \leftarrow \text{new-table}$
 $size[T] \leftarrow 2 \cdot size[T]$
insert x into $table[T]$
$num[T] \leftarrow num[T] + 1$ (Initially, $num[T] = size[T] = 0$)
Example

A table T is created.

The size of the table T double!

The size of the table T double again!

And again!

What is the amortized cost of TABLE-INSERT?
Aggregate analysis

How do we estimate the cost?
• Cost of 1 per elementary insertion.
• Count only elementary insertions (the sum of the other costs is constant).

Introduce a variable $c_i =$ actual cost of i^{th} operation

When executing TABLE–INSERT, we observe that:
• If T is not full $\Rightarrow c_i = 1$
• If T is full:
 - There is $i-1$ items in T at the start of the i^{th} operation
 - We create a new table with of twice the size of T
 - We copy all $i-1$ existing items in the new table and insert the new i^{th} item
$\Rightarrow c_i = i$.
Aggregate analysis

Naïve analysis:

- n operations
- $c_i = O(n)$

$\Rightarrow O(n^2)$ time for n operations (amortized cost is $O(n)$)

Better analysis:

The cost c_i varies:

- $c_i = \begin{cases}
n & \text{if } i-1 \text{ is power of 2} \\
1 & \text{Otherwise}
\end{cases}

Total cost = $\sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{\lfloor \log n \rfloor} 2^j = n + \frac{2^{\lfloor \log n \rfloor+1} - 1}{2-1} < n + 2n = 3n$

Amortized cost per operation = 3.

The key is to precisely determine when the cost is higher (and when it is not!).

In average, a call to TABLE–INSERT is $O(1)$
Accounting method

First, you propose an amortized cost:
Charge $3 per insertion of x.
• 1 pays for x’s insertion.
• 1 pays for x to be moved in the future.
• 1 pays for some other item to be moved.

Then, you prove it (i.e., You prove the credit never goes negative):
• $size=m$ before and $size=2m$ after expansion.
• Assume that the expansion used up all the credit, thus that there is no credit available after the expansion.
• We will expand again after another m insertions.
• Each insertion will put 1 on one of the m items that were in the table just after expansion and will put 1 on the item inserted.
• Have $2m$ of credit by next expansion, when there are $2m$ items to move. Just enough to pay for the expansion...