
COMP251: Amortized Analysis

Jérôme Waldispühl & Guilia Alberini
School of Computer Science

McGill University
Based on (Cormen et al., 2009)

Overview
• Analyze a sequence of operations on a data structure.

• We will talk about average cost in the worst case (i.e., not
averaging over a distribution of inputs. No probability!)

• Goal: Show that although some individual operations may
be expensive, on average the cost per operation is small.

• 3 methods:
1. aggregate analysis
2. accounting method
3. potential method (See textbook for more details)

• Approach: Evaluate the total cost of a sequence of n
operations. Divide the total cost by n to obtain the
average cost of an operation.

Context

• You have a method that is called to perform a certain function
(e.g., sorting)

• The cost (e.g., running time) varies from one call to another of
the method

• This method is called multiple times during the execution of
your program

Question: What is the average cost of a call to this method?

By contrast, the worst-case analysis tries to estimate the worst-case scenario
of the cost for a single call to the method.

Aggregate analysis

• You aim to directly compute an upper bound T(n) on the cost
of a sequence of n operations.

• Once T(n) is determined, we divide it by n to obtain the
average cost an operation T(n)/n

• Advantage: You do not need to have an intuition of the result

• Challenge: Sometimes obtaining a tight upper bound is hard

Operations on a stack

Stack operations

• PUSH(S, x): O(1) for a single operation ⇒ O(n) for any
sequence of n PUSH operations.

• POP(S): O(1) for a single operation ⇒ O(n) for any sequence
of n POP operations.

• MULTIPOP(S,k):
while S≠Ø and k>0 do

POP(S)
k⟵k−1

Running time of a sequence of operations including MULTIPOP?

The analysis of MULTIPOP is not
straightforward because we do
not know how many iteration the
while loop it will make.

Running time of multiple operations
Running time of a single MULTIPOP operation:
• Let each PUSH/POP cost 1.
• # of iterations of while loop is min(s, k), where s = # of objects on

stack. Therefore, total cost = min(s, k).

Sequence of n PUSH, POP, MULTIPOP operations:
• Worst-case cost of MULTIPOP is O(n).
• Have n operations.
• Therefore, worst-case cost of sequence is O(n2).
But…
• Each object can be popped only once per time that it is pushed.
• Have ≤ n PUSHes ⇒ ≤ n POPs, including those in MULTIPOP.
• Therefore, total cost = O(n).
• Average over the n operations ⇒ O(1) per operation on average.

A rough analysis
overestimates the
running time of
MULTIPOP

Binary Counter
We store numbers using a binary representation.

The number of bits k is fixed (k=3 in the example below).

N Polynomial 22 21 20 representation
0 0 1 2! + 0 1 2" + 0 1 2# 0 0 0 000
1 0 1 2! + 0 1 2" + 1 1 2# 0 0 1 001
2 0 1 2! + 1 1 2" + 0 1 2# 0 1 0 010
3 0 1 2! + 1 1 2" + 1 1 2# 0 1 1 011
… … … … … …

The decomposition in binary representation is unique

What is the cost of incrementing the value of N?

How do we measure the cost?

Binary Counter
• k-bit binary counter A[0 . . k − 1] of bits, where A[0] is the

least significant bit and A[k − 1] is the most significant bit.
• Counts upward from 0.

• Value of counter is:

• Initially, counter value is 0, so A[0 . . k − 1] = 0.
• To increment, add 1 (mod 2k):

Increment(A,k):
i←0
while i<k and A[i]=1 do

A[i]←0
i←i+1

if i < k then
A[i] ← 1

A[i]⋅2i
i=0

k−1

∑

Example (1)
Counter A

Value 2 1 0 cost

0 0 0 0 0

1 0 0 1 1

2 0 1 0 3

3 0 1 1 4

4 1 0 0 7

5 1 0 1 8

6 1 1 0 10

7 1 1 1 11

0 0 0 0 14

Cost of INCREMENT = 𝛩(# of bits flipped)
Analysis: Each call could flip k bits,

so n INCREMENTs takes O(nk) time.

Let k=3

We underline
the bits we will
flip at the next
increment

Example (2)
Bit Flips how often Time in n

INCREMENTs

0 Every time n

1 ½ of the time floor(n/2)

2 ¼ of the time floor(n/4)

… …

i 1/2i of the time floor(n/2i)

… …

i≥k Never 0

Thus, total # flips =

Therefore, n INCREMENTs costs O(n).
Average cost per operation = O(1).

n 2i!" #$
i=0

k−1

∑ < n ⋅ 1 2i
i=0

∞

∑ = n 1
1−1 2
)

*
+

,

-
.= 2 ⋅n

Accounting method
Assign different charges to different operations.
• Some are charged more than actual cost.
• Some are charged less.
Amortized cost = amount we charge.
• When amortized cost is higher than the actual cost, store the

difference on specific objects in the data structure as credit.
• Use credit later to pay for operations whose actual cost is

higher than the amortized cost.
But we need to guarantee that the credit never goes negative!
Differs from aggregate analysis:
• In aggregate analysis, different operations can have different

costs.
• In accounting method, all operations have same cost.

Definitions

ĉi
i=1

n

∑ − ci ≥ 0
i=1

n

∑

Let = actual cost of ith operation.
= amortized cost of ith operation.

Then, require for any sequences of n operations.

Total credit stored =

ĉi
ci

ĉi
i=1

n

∑ ≥ ci
i=1

n

∑

At any step of the sequence of operations, the
accumulated credit stored cannot be negative.

You cannot afford bankruptcy!

Stack

Intuition: When pushing an object, pay $2.
• $1 pays for the PUSH.
• $1 is prepayment for it being popped by either POP or MULTIPOP.
• Since each object has $1, which is credit, the credit can never go

negative.
• Total amortized cost (= O(n)) is an upper bound on total actual cost.

Operation Actual cost Amortized cost
PUSH 1 2
POP 1 0

MULTIPOP min(k,s) 0
This is the challenge of
the accounting method:
You must find values for
the amortized costs.

Binary counter

Charge $2 to set a bit to 1.
• $1 pays for setting a bit to 1.
• $1 is prepayment for flipping it back to 0.
• Have $1 of credit for every 1 in the counter.
• Therefore, credit ≥ 0.

Amortized cost of INCREMENT:
• Cost of resetting bits to 0 is paid by credit.
• At most 1 bit is set to 1.
• Therefore, amortized cost ≤ $2.
• For n operations, amortized cost = O(n).

Dynamic tables
Scenario
• Have a table (e.g., a hash table).
• Don’t know in advance how many objects will be stored in it.
• When it fills, must reallocate with a larger size, copying all

objects into the new, larger table.
• When it gets sufficiently small, might want to reallocate with

a smaller size.

Goals
1. O(1) amortized time per operation.
2. Unused space always ≤ constant fraction of allocated space.

Load factor α = (# items stored) / (allocated size)

Never allow α > 1; Keep α > a constant fraction ⇒ Goal 2.

Table expansion
Consider only insertion.
• When the table becomes full, double its size and reinsert all existing items.
• Guarantees that α ≥ ½.
• Each time we insert an item into the table, it is an elementary insertion.

TABLE-INSERT(T,x)
if size[T]=0

then allocate table[T] with 1 slot
size[T]←1

if num[T]=size[T] then
allocate new-table with 2 · size[T] slots
insert all items in table[T] into new-table
free table[T]
table[T]←new-table
size[T]←2·size[T]

insert x into table[T]
num[T]←num[T] + 1 (Initially, num[T]=size[T]= 0)

Example

X1

X1 X2

X1 X2 X3

X1 X2 X3 X4

X1 X2 X3 X4 X5

TABLE-INSERT(T,X2)

TABLE-INSERT(T,X3)

TABLE-INSERT(T,X4)

TABLE-INSERT(T,X5)

TABLE-INSERT(T,X1)

The size of the table T double!

The size of the table T
double again!

And again!

A table T is created.

What is the amortized cost of TABLE-INSERT?

Aggregate analysis
How do we estimate the cost?
• Cost of 1 per elementary insertion.
• Count only elementary insertions (the sum of the other costs

is constant).

Introduce a variable ci = actual cost of ith operation

When executing TABLE-INSERT, we observe that:
• If T is not full ⇒ ci =1
• If T is full:

- There is i−1 items in T at the start of the ith operation
- We create a new table with of twice the size of T
- We copy all i − 1 existing items in the new table and insert

the new ith item
⇒ ci = i.

Aggregate analysis
Naïve analysis:
• n operations
• ci = O(n)
⇒ O(n2) time for n operations (amortized cost is O(n))

Better analysis:
The cost ci varies:

Total cost =

Amortized cost per operation = 3.

ci =
i if i−1 is power of 2
1 Otherwise

"
#
$

%$

ci ≤ n+ 2 j

j=0

logn"# $%

∑
i=1

n

∑ = n+ 2
logn"# $%+1 −1
2−1

< n+ 2n = 3n

The key is to
precisely determine
when the cost is
higher (and when it
is not!).

In average, a call to
TABLE-INSERT is O(1)

Accounting method
First, you propose an amortized cost:
Charge $3 per insertion of x.
• $1 pays for x’s insertion.
• $1 pays for x to be moved in the future.
• $1 pays for some other item to be moved.
Then, you prove it (i.e., You prove the credit never goes negative):
• size=m before and size=2m after expansion.
• Assume that the expansion used up all the credit, thus that there

is no credit available after the expansion.
• We will expand again after another m insertions.
• Each insertion will put $1 on one of the m items that were in the

table just after expansion and will put $1 on the item inserted.
• Have $2m of credit by next expansion, when there are 2m items

to move. Just enough to pay for the expansion…

You must first come
with a good intuition
of the amortized cost

