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Outline

• Introduction: Thinking recursively

• Definition

• Examples:
o Binary search
o Fibonacci numbers
o Merge sort (bonus: insertion sort)
o Quicksort

• Running time

• Substitution method



Course credits
c(x) = total number of credits required to complete course x
c(COMP462) = ?

= 3 credits + #credits for prerequisites

COMP462 has 2 prerequisites: COMP251 & MATH323
= 3 credits + c(COMP251) + c(MATH323)

The function c calls itself twice

c(COMP251) = ? c(MATH323) = ?

c(COMP251) = 3 credits + c(COMP250) COMP250 is a prerequisite

Substitute c(COMP251) into the formula:
c(COMP462) = 3 credits + 3 credits + c(COMP250) + c(MATH323)
c(COMP462) = 6 credits + c(COMP250)  + c(MATH323)  



Course credits
c(COMP462) = 6 credits + c(COMP250)  + c(MATH323)  

c(COMP250) = ? c(MATH323) = ?
c(COMP250) = 3 credits # no prerequisite

c(COMP462) = 6 credits + 3 credits + c(MATH323)
c(MATH240) = ?
c(MATH240) = 3 credits + c(MATH141) 

c(COMP462) = 9 credits + 3 credits + c(MATH141)
c(MATH141) = ?
c(MATH141) = 4 credits # no prerequisite

c(COMP462) = 12 credits + 4 credits = 16 credits



Recursive definition
A noun phrase is either

• a noun,     or
• an adjective followed by a noun phrase

<noun phrase> ⟶ <noun> OR <adjective> <noun phrase>

<noun phrase>

<adjective>            <noun phrase>

<adjective>    <noun phrase>

<noun>

big             blue           boat



Aside on grammars
• The previous slide was a simplified 

example of how we can use grammars 
to define sentences

• Grammars also exist outside of natural 
language.

• They are commonly used in computer 
science to represent as tree any kind of 
sequence of words, events, nucleotides.

• Trees contains more information than 
the string alone.

• You can read more here: 
https://en.wikipedia.org/wiki/Formal_g
rammar

• You will discuss this in more detail in 
COMP 330!

Chomsky, Noam. "On the notion ‘rule of 
grammar’." Proceedings of the Twelfth 
Symposium in Applied Mathematics. Vol. 12. 
American Mathematical Society, 1961.

https://en.wikipedia.org/wiki/Formal_grammar


Definitions

Recursive definition:
A definition that is defined in terms of itself.

Recursive method:
A method that calls itself (directly or indirectly).

Recursive programming:
Writing methods that call themselves to solve problems 
recursively.



Why using recursions?
• "cultural experience" - A different way of thinking of 

problems

• Can solve some kinds of problems better than 
iteration

• Leads to elegant, simplistic, short code (when used 
well)

• Many programming languages ("functional" 
languages such as Scheme, ML, and Haskell) use 
recursion exclusively  (no loops)

• Recursions can be a good alternative to iteration 
(loops). 



Definition
Definition (recurrence):

A recurrence is a function that is defined in terms of 
• one or more base cases, and
• itself, but with smaller arguments. 

Examples:

! " = $ 1 &' " = 1
! " − 1 + 1 &' " > 1 ! " = +

1 &' " = 1
! "
3 + ! 2 . "

3 + " &' " > 1

Many technical issues: 
• Floors and ceilings 
• Exact vs. asymptotic functions
• Boundary conditions 
Note: we will usually express the solution of the recurrence 
using the asymptotic notation. 



Iterative algorithms
Definition (iterative algorithm): Algorithm where a 
problem is solved  by iterating (going step-by-step) 
through a set of commands, often using loops.

Algorithm: power(a,n) 
Input: non-negative integers a, n 
Output: an
product ← 1 
for i = 1 to n do

product ← product * a 
return product 

i 0 1 2 3 4
product 1 a a * a = a2 a2 * a = a3 a3 * a = a4



Recursive algorithms

Definition (Recursive algorithm): algorithm is recursive if 
in the process of solving the problem, it calls itself one or 
more times.

Algorithm: power(a,n) 
Input: non-negative integers a, n 
Output: an
if (n=0) then

return 1 
else

return a * power(a,n-1) 



Example
power(7,4) calls

7 * power(7,3)
7 * power(7,2)

7 * power(7,1)
7 * power(7,0)

1
7 * 1 = 7

7 * 7 = 49
7 * 49 = 343

7 * 343 = 2041



Algorithm structure
Every recursive algorithm involves at least 2 cases:

base case: A simple occurrence that can be answered 
directly.

recursive case: A more complex occurrence of the problem 
that cannot be directly answered but can instead be 
described in terms of smaller occurrences of the same 
problem.

Some recursive algorithms have more than one base or recursive 
case, but all have at least one of each.

A crucial part of recursive programming is identifying these 
cases.



Binary Search
Algorithm binarySearch(array, start, stop, key)

Input: - A sorted array 
- the region [start , ... , stop] (inclusively) to be searched 
- the key to be found 

Output: returns the index at which the key has been found, or 
returns -1 if the key is not in array [start , ... , stop]. 

Example:  Does the following sorted array A contains the 
number 6? 

1 1 3 5 6 7 9 9

Call: binarySearch(A, 0, 7, 6)

A =



Binary search example
1 1 3 5 6 7 9 9

5 < 6 Þ look into right half 
of the array

Search [0:7]

1 1 3 5 6 7 9 9

7 > 6 Þ look into left half 
of the array

1 1 3 5 6 7 9 9

6 is found. Return 4 (index)

Search [4:7]

Search [4:4]

We are splitting 
the array in two 
at each step



Binary Search Algorithm
int bsearch(int[] A, int i, int j, int x) {

if (i<=j) { // the region to search is non-empty
int e = ⎣(i+j)/2⎦;
if (A[e] > x) {

return bsearch(A,i,e-1,x);
} else if (A[e] < x) {

return bsearch(A,e+1,j,x);
} else {

return e; 
}

} else { return -1; } // value not found 
}



Fibonacci numbers

Fib0 = 0 base case
Fib1 = 1 base case
Fibn = Fibn-1 + Fibn-2 for n > 1  recursive case

i 0 1 2 3 4 5 6 7
Fibi 0 1 1 2 3 5 8 13



Recursive algorithm
Compute Fibonacci number n (for n ≥ 0)

public static int Fib(int n) {
if (n <= 1) { Can handle both

return n; base cases together
}
// {n > 1}
return Fib(n-1) + Fib(n-2); Recursive case

} (2 recursive calls)

Note: The algorithm follows the definition of Fibonacci numbers.



Recursion is not always efficient!

Question: When computing Fib(n), how many times are 
Fib(0) or Fib(1) called?

Fib(5)

Fib(3)Fib(4)

Fib(2)Fib(3) Fib(1)Fib(2)

Fib(1) Fib(0)Fib(1)Fib(2) Fib(0)Fib(1)

Fib(0)Fib(1)

Note: This is a 
recursion tree



Designing recursive algorithms

• To write a recursive algorithm:
– Find how the problem can be broken up in one or more smaller 

problems of the same nature
– Remember the base case!

• Naive implementation of recursive algorithms may lead 
to prohibitive running time.
– Naive Fibonacci Þ O(!n) operations
– Better Fibonacci Þ O(log n) operations

• Usually, better running times are obtained when the size 
of the sub-problems are approximately equal.
– power(a,n) = a * power(a,n-1)     Þ O(n) operations
– power(a,n) = (power(a,n/2))2      Þ O(log n) operations



Sorting problem
Problem: Given a list of n elements from a totally ordered 
universe, rearrange them in ascending  order.

Classical problem in computer science with many different 
algorithms (bubble sort, merge sort, quick sort, etc.)



Insertion sort (example)
6 3 1 5 2 4

6 3 1 5 2 4

3 6 1 5 2 4

1 3 6 5 2 4

1 3 5 6 2 4

1 2 3 5 6 4

1 2 3 4 5 6

We are 
expanding a 
sorted region by 
traversing the 
list from left to 
right and 
swapping from 
right to left until 
the key is at a 
right place.



Insertion sort (principle)

1 3 5 6 2 4

n elements 
already sorted

New element 
to sort

1 2 3 5 6 4

n+1 elements sorted



Insertion sort (iterative algorithm)

For i ← 1 to length(A) - 1
j ← i
while j > 0 and A[j-1] > A[j]

swap A[j] and A[j-1]
j ← j - 1

end while
end for

• Iterative method to sort objects.
• Relatively slow, we can do better using a recursive approach! 



Merge Sort
Sort using a divide-and-conquer approach:

• Divide: Divide the n-element sequence to be sorted 
into two subsequences of n/2 elements each.

• Conquer: Sort the two subsequences recursively 
using merge sort.

• Combine: Merge the two sorted subsequences to 
produce the sorted answer.

Note: We will speak more of divide-and-conquer 
techniques when we will discuss algorithm design.



Merge Sort (example)

4 3 2 1

4 3 2 1

4 3 2 1

3 4 1 2

1 2 3 4

Divide

Merge



Merge sort (principle)

• Unsorted array A with n elements

• Split A in half  ® 2 arrays L and R with n/2 elements

• Sort L and R

• Merge the two sorted arrays L and R

Re
cu

rs
iv

e 
ca

se

Base case: Stop the recursion when the array is of size 1.
Why? Because the array is already sorted!



Merge-Sort (A, p, r)

INPUT: a sequence of n numbers stored in array A
OUTPUT: an ordered sequence of n numbers

MergeSort (A, p, r)   // sort A[p..r] by divide & conquer
1 if p < r
2 then q¬ ë(p+r)/2û
3 MergeSort (A, p, q)
4 MergeSort (A, q+1, r)
5 Merge (A, p, q, r) // merges A[p..q] with A[q+1..r] 

Initial Call: MergeSort(A, 1, n)



Procedure Merge
Merge(A, p, q, r)
1  n1¬ q – p + 1
2  n2¬ r – q
3 for i ¬ 1 to n1
4 do L[i] ¬ A[p + i – 1]
5 for j ¬ 1 to n2
6 do R[j] ¬ A[q + j]
7 L[n1+1] ¬¥
8 R[n2+1] ¬¥
9 i ¬ 1
10 j ¬ 1
11 for k ¬p to r
12 do if L[i] £ R[j]
13 then A[k] ¬ L[i]
14 i ¬ i + 1
15 else A[k] ¬ R[j]
16 j ¬ j + 1

Sentinels, to avoid having to
check if either subarray is
fully copied at each step.

Input: Array containing 
sorted subarrays A[p..q] 
and A[q+1..r].

Output: Merged sorted 
subarray in A[p..r].

Copy subarrays n1 
and n2 into L and R



Quicksort(A, p, r)
if p < r then

q := Partition(A, p, r);
Quicksort(A, p, q – 1);
Quicksort(A, q + 1, r)

fi

Partition(A, p, r)
x, i := A[r], p – 1;
for j := p to r – 1 do

if A[j]  £ x then
i := i + 1;
A[i] «A[j]

fi
od;
A[i + 1] «A[r];
return i + 15

A[p..r]

A[p..q – 1] A[q+1..r]

£ 5 ³ 5

Partition 5

QuickSort

Partition stores all the 
elements lesser than the pivot, 
then the pivot, then the other 
elements



Algorithm analysis
Q: How to estimate the running time of a recursive algorithm?
A:

1. Define a function T(n) representing the time spent by 
your algorithm to execute an entry of size n

2. Write a recursive formula computing T(n)
3. Solve the recurrence

Notes:
• n can be anything that characterizes accurately the size of the 

input (e.g., size of the array, number of bits)
• We count the number of elementary operations (e.g., 

addition, shift) to estimate the running time.
• We usually compute an upper bound rather than exact count.
• We will introduce later a general method to solve this.



Examples (binary search)
int bsearch(int[] A, int i, int j, int x) {

if (i<=j) { // the region to search is non-empty
int e = ⎣(i+j)/2⎦;
if (A[e] > x) { return bsearch(A,i,e-1,x);
} elif (A[e] < x) { return bsearch(A,e+1,j,x);
} else { return e; }

} else { return -1; } // value not found 
}

$ % = '
( )* % = 1

$ %
2 + (′ )* % > 1

Notes:
• n is the size of the array
• Formally, we should use ≤ rather than = 



Example (naïve Fibonacci)
public static int Fib(int n) {

if (n <= 1) { return n; }
return Fib(n-1) + Fib(n-2);

}

What are the value of c and c’ ?
• If % ≤ 1 there is only one comparison thus c=1
• If % > 1 there is one comparison and one addition thus c’=2

Notes:
• we neglect other constants
• We can approximate c and c’ with an asymptotic notation O(1)  

$ % = 1 ( )* % ≤ 1
$ % − 1 + $ % − 2 + (′ )* % > 1



Example (Merge sort)
MergeSort (A, p, r)
if (p < r) then

q ¬ ë(p+r)/2û
MergeSort (A, p, q)
MergeSort (A, q+1, r)
Merge (A, p, q, r)

• Base case: constant time c
• Divide: computing the middle takes constant time c’
• Conquer: solving 2 subproblems takes 2・T(n/2)
• Combine: merging n elements takes k · n

$ % = '
( )* % = 1

2 3 $ /
0 + 4 3 % + ( + (′ )* % > 1


