
COMP251: Dynamic
programming (2)

Jérôme Waldispühl & Roman Sarrazin-Gendron
School of Computer Science

McGill University
Based on (Kleinberg & Tardos, 2005) & Slides by K. Wayne

Outline

• Dynamic programming in a nutshell

• Single source shortest path with Bellman-Ford

• The Knapsack problem!

Dynamic Programming in a nutshell
• Optimization method introduced by Richard Bellman in 1953
• Principle of Optimality: “An optimal policy has the property that what-

ever the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the
first decision” (Bellman, 1957)

• The term “dynamic programming” was chosen by Bellman to emphasize
the progressive approach to solving an optimization problem (and because
it is impressive!).

• The technique aims to solve the problem by increasing size (i.e., once you
have the optimal solution for all sub-problems of size 1, you can compute
solution for size 2 using previously computed results, etc.)

• We say we use a bottom-up approach
• Define a data structure that stores the value to optimize on subproblems

of given size and iterate over increasing sizes.

What is Richard Bellman also known for?

SINGLE SOURCE SHORTEST PATHS

Modeling as graphs
Input:
• Directed graph G = (V, E)
• Weight function w : E → R
Weight of path p = ⟨v0,v1,...,vk⟩

=

= sum of edge weights on path p.
Shortest-path weight u to v:

Shortest path u to v is any path p such that w(p) = δ(u,v).
Generalization of breadth-first search to weighted graphs.

w(vk−1,vk)
k=1

n

∑

δ(u,v) = min w(p) :u! v
p{ }

∞

"

#
$

%
$

If there exists a path u v.

Otherwise.

Dijkstra’s algorithm
• No negative-weight edges.
• Weighted version of BFS:
• Instead of a FIFO queue, uses a priority queue.
• Keys are shortest-path weights (d[v]).

• Greedy choice: At each step we choose the light edge.

Can we adapt Dijkstra’s to deal with negative weight edges?
• Allow re-insertion in queue? ⟹ Exponential running time…
• Add constant to each edge?

0

6

34

6 -3

0

9

77

9 0
Not working…

Bellman-Ford Algorithm

• Allows negative-weight edges.

• Computes d[v] and π[v] for all v ∈ V.

• Returns TRUE if no negative-weight cycles
reachable from s, FALSE otherwise.

If Bellman-Ford has not converged after V(G) - 1
iterations, then there cannot be a shortest path
tree, so there must be a negative weight cycle.

If there is a negative
cycle, there is no point
of computing the
shortest path. We only
want to decide in finite
time if such cycle exists.

By contrast, Dijkstra’s finishes on a graph with negative weight edges, but it does
not detect the occurrence of them and thus the correctness of the output.

Bellman-Ford Algorithm
• Can have negative-weight edges.
• Will “detect” reachable negative-weight cycles.

Initialize(G, s);
for i := 1 to |V[G]| –1 do

for each (u, v) in E[G] do
Relax(u, v, w)

for each (u, v) in E[G] do
if d[v] > d[u] + w(u, v) then

return false
return true

Time
Complexity
is O(VE).

We introduce the
algorithm first.
We will see later
how to present it
as a dynamic
programming
algorithm. Why?

Note: We no longer use a priority queue. We relax all edges at each iteration.

Example

¥

¥0

s x

y

5

7

–2

–4

Example

¥

50

s x

y

5

7

–2

–4

Iteration 1

Example

-4

50

s x

y

5

7

–2

–4

Iteration 1

Example

-4

50

s x

y

5

7

–2

–4

Iteration 1

Example

-4

30

s x

y

5

7

–2

–4

Iteration 1

Example

-4

30

s x

y

5

7

–2

–4

Iteration 2

Example

-4

30

s x

y

5

7

–2

–4

Iteration 2

Example

-4

30

s x

y

5

7

–2

–4

Iteration 2

Example

-4

30

s x

y

5

7

–2

–4

Iteration 2

Bellman-Ford terminates and all shortest paths are computed.

Example 2

¥

¥0

s x

y

5

7

–4

–4

Example 2

¥

50

s x

y

5

7

–4

–4

Iteration 1

Example 2

-4

50

s x

y

5

7

–4

–4

Iteration 1

Example 2

-4

50

s x

y

5

7

–4

–4

Iteration 1

Example 2

-4

30

s x

y

5

7

–4

–4

Iteration 1

Example 2

-4

30

s x

y

5

7

–4

–4

Iteration 2

Example 2

-4

30

s x

y

5

7

–4

–4

Iteration 2

Example 2

-4

3-1

s x

y

5

7

–4

–4

Iteration 2

Example 2

-4

3-1

s x

y

5

7

–4

–4

Iteration 2

Example 2

-4

3-1

s x

y

5

7

–4

–4

Check

d[y] > d[s] + w(s, y)
⟹ FALSE

At the end, all vertices have been relaxed on any order possible. If a shortest
path estimate still decreases after relaxing another edge and visiting a vertex
twice, it implies that there is a negative weight cyle.

Another Look at Bellman-Ford
Bellman-Ford is essentially a dynamic programming algorithm.

Let d(i, j) = cost of the shortest path from s to i that is at most j hops.

d(i, j) =

z u v x y
1 2 3 4 5

0 0 ¥ ¥ ¥ ¥
1 0 6 ¥ 7 ¥
2 0 6 4 7 2
3 0 2 4 7 2
4 0 2 4 7 –2

j

i

0 if i = s Ù j = 0
¥ if i ¹ s Ù j = 0
min({d(k, j–1) + w(k, i): i Î Adj(k)} È {d(i, j–1)}) if j > 0

d(*,*) is our
dynamic array!

We fill the array d
in increasing length
of the path (i.e.,
#hops).

The third row of the
recursive formula is
the relaxation of all
in-going edges to
vertex i.

Example

0 ¥

¥ ¥

S U

V W

S U V W
0 0 ¥ ¥ ¥
1
2
3
4

Initialization. The first row stores the distance from the source to all vertex in
the graph.

1

4

2 1

2

Example

0 4

1 ¥

S U

V W

S U V W
0 0 ¥ ¥ ¥
1 0 4 1 ¥
2
3
4

We only need/consider values stored in the row above the current one that is
being filled.

1

4

2 1

2

Example

0 3

1 5

S U

V W

S U V W
0 0 ¥ ¥ ¥
1 0 4 1 ¥
2 0 3 1 5
3
4

1

4

2 1

2

Example

0 3

1 5

S U

V W

S U V W
0 0 ¥ ¥ ¥
1 0 4 1 ¥
2 0 3 1 5
3 0 3 1 4
4

1

4

2 1

2

At this point, we considered all paths with |V|-1 edges, which means we
considered any possible path including those visiting all vertices.

Are we done?

Example

0 3

1 5

S U

V W

S U V W
0 0 ¥ ¥ ¥
1 0 4 1 ¥
2 0 3 1 5
3 0 3 1 4
4 0 3 1 4

1

4

2 1

2

We relax all edges one more time (i.e., we fill another row) to check the result
is stable!
If the two last rows are identical, there is no negative weight cycle, and your
result is stored in the last row!

Example 2

0 4

1 ¥

S U

V W

S U V W
0 0 ¥ ¥ ¥
1 0 4 1 ¥
2
3
4

1

4

2 -1

-2

Let’s see what is happening when there is a negative cycle…

Example 2

0 3

1 3

S U

V W

S U V W
0 0 ¥ ¥ ¥
1 0 4 1 ¥
2 0 3 1 3
3
4

1

4

2 -1

-2

Example 2

0 3

1 2

S U

V W

S U V W
0 0 ¥ ¥ ¥
1 0 4 1 ¥
2 0 3 1 3
3 0 3 1 2
4

1

4

2 -1

-2

Example 2

0 3

0 2

S U

V W

S U V W
0 0 ¥ ¥ ¥
1 0 4 1 ¥
2 0 3 1 3
3 0 3 1 2
4 0 3 0 2

1

4

2 -1

-2

The last two rows are different. There must be a negative weight cycle!
Return False.

Note: You do not need to wait to observe a discrepancy for all vertices on the
negative weight cycle. You only need to guarantee you observe a decrease of
the shortest path estimate for at least one vertex.

Pseudo-Code
Input: weighted directed graph G(V,E,w)
Output: Boolean indicating the absence of a negative
weight cycle

for i in V do
d(i,0)=¥

d(s,0)=0
for j=1 to |V|-1 do

for i in V do
d(i,j)=d(i,j-1)
for (k,i) in E do

if d(k,j-1)+w(k,i)<d(i,j) then
d(i,j)= d(k,j-1)+w(k,i)

for i in V do
if d(i,|V|)!= d(i,|V|-1) then

return False
return True

Correctness of the algorithm
You need to prove that your formulation of the problem satisfies
the optimal substructure property.

In this case, we simply need the lemma introduced in lecture 13

Lemma (shortest path’s optimal substructure)
Any subpath of a shortest path is a shortest path.

Proof : See lecture 13

Then, for Bellman-Ford, all you need to show is that you can
compute the shortest path (from s to i) of length j using only the
knowledge of shortest path of length j-1.

You can derive this result from the optimal substructure
property.

Exercise!

KNAPSACK PROBLEM

Knapsack problem

(slide by K. Wayne)

False start…

(slide by K. Wayne)

Let’s try a similar approach to those used for the weighted scheduling problem:

i.e., After selecting the best solution out of { 1, 2, … , i-1 }, we do not know if
we can add I without exceeding the weight limit.

New variable

(slide by K. Wayne)

The new variable enable us to decide if there is enough room to
accommodate item i.

Dynamic programming algorithm

We are filling the dynamic array by increasing
number of items and then weight limit.

Example

i vi wi

1 1 1
2 6 2
3 18 5
4 22 6
5 28 7

Max weight W = 11

Example
i vi wi

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

M 0 1 2 3 4 5 6 7 8 9 10 11

{} 0 0 0 0 0 0 0 0 0 0 0 0

{1} 0

{1,2} 0

{1,2,3} 0

{1,2,3,4} 0

{1,2,3,4,5} 0

w

i

Example
i vi wi

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

M 0 1 2 3 4 5 6 7 8 9 10 11

{} 0 0 0 0 0 0 0 0 0 0 0 0

{1} 0 1 1 1 1 1 1 1 1 1 1 1

{1,2} 0

{1,2,3} 0

{1,2,3,4} 0

{1,2,3,4,5} 0

Example
i vi wi

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

M 0 1 2 3 4 5 6 7 8 9 10 11

{} 0 0 0 0 0 0 0 0 0 0 0 0

{1} 0 1 1 1 1 1 1 1 1 1 1 1

{1,2} 0 1

{1,2,3} 0

{1,2,3,4} 0

{1,2,3,4,5} 0

Example
i vi wi

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

M 0 1 2 3 4 5 6 7 8 9 10 11

{} 0 0 0 0 0 0 0 0 0 0 0 0

{1} 0 1 1 1 1 1 1 1 1 1 1 1

{1,2} 0 1 6

{1,2,3} 0

{1,2,3,4} 0

{1,2,3,4,5} 0

M(i-1,w)
V2+M(i-1,w-w2)

Example
i vi wi

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

M 0 1 2 3 4 5 6 7 8 9 10 11

{} 0 0 0 0 0 0 0 0 0 0 0 0

{1} 0 1 1 1 1 1 1 1 1 1 1 1

{1,2} 0 1 6 7

{1,2,3} 0

{1,2,3,4} 0

{1,2,3,4,5} 0

M(i-1,w)

V2+M(i-1,w-w2)

Example
i vi wi

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

M 0 1 2 3 4 5 6 7 8 9 10 11

{} 0 0 0 0 0 0 0 0 0 0 0 0

{1} 0 1 1 1 1 1 1 1 1 1 1 1

{1,2} 0 1 6 7 7 7 7 7 7 7 7 7

{1,2,3} 0

{1,2,3,4} 0

{1,2,3,4,5} 0

Example
i vi wi

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

M 0 1 2 3 4 5 6 7 8 9 10 11

{} 0 0 0 0 0 0 0 0 0 0 0 0

{1} 0 1 1 1 1 1 1 1 1 1 1 1

{1,2} 0 1 6 7 7 7 7 7 7 7 7 7

{1,2,3} 0 1 6 7 7 18 19 24 25 25 25 25

{1,2,3,4} 0

{1,2,3,4,5} 0

Example
i vi wi

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

M 0 1 2 3 4 5 6 7 8 9 10 11

{} 0 0 0 0 0 0 0 0 0 0 0 0

{1} 0 1 1 1 1 1 1 1 1 1 1 1

{1,2} 0 1 6 7 7 7 7 7 7 7 7 7

{1,2,3} 0 1 6 7 7 18 19 24 25 25 25 25

{1,2,3,4} 0 1 6 7 7 18 22 24 28 29 29 40

{1,2,3,4,5} 0

Example
i vi wi

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

M 0 1 2 3 4 5 6 7 8 9 10 11

{} 0 0 0 0 0 0 0 0 0 0 0 0

{1} 0 1 1 1 1 1 1 1 1 1 1 1

{1,2} 0 1 6 7 7 7 7 7 7 7 7 7

{1,2,3} 0 1 6 7 7 18 19 24 25 25 25 25

{1,2,3,4} 0 1 6 7 7 18 22 24 28 29 29 40

{1,2,3,4,5} 0 1 6 7 7 18 22 28 29 34 35 40

Item 4 in solution

Item 3 in solution

Analysis

(slide by K. Wayne)

