COMP251: Dynamic programming (1)

Jérôme Waldispühl & Giulia Alberini School of Computer Science McGill University

Based on (Cormen et al., 2002) & (Kleinberg & Tardos, 2005)

Algorithm paradigms

• Greedy:

- \circ Build up a solution incrementally
- $\circ~$ Iteratively decompose and reduce the size of the problem
- Top-down approach
- Dynamic programming:
 - Solve all possible sub-problems.
 - $\circ~$ Assemble them to build up solutions to larger problems.
 - Bottom-up approach.

Although both techniques seems disconnected, we will highlight similarities.

An example?

Principle: Use answers previously computed for a smaller instance

INTRODUCTION

- <u>Input:</u> Set *S* of *n* activities, $a_1, a_2, ..., a_n$.
 - $-s_i$ = start time of activity *i*.
 - $-f_i$ = finish time of activity *i*.
- <u>Output:</u> Subset A of maximum number of compatible activities.
 - 2 activities are compatible, if their intervals do not overlap.

Example:

Activities in each line are compatible.

Activities sorted by finishing time.

i	1	2	3	4	5	6	7
Si	0	1	2	4	5	6	8
f _i	2	3	5	6	9	9	10

Activities sorted by finishing time.

Activities sorted by finishing time.

Activities sorted by finishing time.

Optimal sub-structure

- Let S_{ij} = subset of activities in S that start after a_i finishes and finish before a_j starts. $S_{ii} = \{a_k \in S : \forall i, j \mid f_i \le s_k < f_k \le s_j\}$
- A_{ij} = optimal solution to S_{ij}
- $A_{ij} = A_{ik} U \{ a_k \} U A_{kj}$

Greedy choice

We can solve the problem S_{ij} top-down:

- Consider all $a_k \in S_{ij}$
- Solve S_{ik} and S_{kj}
- Pick the best *m* such that $A_{ij} = A_{im} \cup \{a_m\} \cup A_{im}$

Greedy choice

Theorem:

Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time: $f_m = \min\{f_k : a_k \in S_{ij}\}$. Then:

- 1. a_m is used in some maximum-size subset of mutually compatible activities of S_{ij} .
- 2. $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.

Greedy choice

We can now solve the problem S_{ii} top-down:

- Choose $a_m \in S_{ij}$ with the earliest finish time (greedy choice).
- Solve S_{mj} .

Objective

- A greedy algorithm can compute an optimal solution if we identify:
 - a greedy choice
 - an optimal substructure property
- A greedy choice is not always available.
- What can we do if we have an optimal substructures property but not a greedy choice?
- How can we use the optimal substructures property to design an efficient algorithm?

We will illustrate this approach on a variant of the interval scheduling problem. Next week, we will review more examples.

WEIGHTED INTERVAL SCHEDULING

Weighted interval scheduling

- Input: Set S of n activities, $a_1, a_2, ..., a_n$.
 - $-s_i$ = start time of activity *i*.
 - $-f_i$ = finish time of activity *i*.
 - w_i= weight of activity i

The weight can be anything

- Output: find maximum weight subset of mutually compatible activities.
 - 2 activities are compatible, if their intervals do not overlap.

Example:

Application of the greedy algorithm

Discussion

- Optimal substructure: \checkmark
 - A_{ij} = optimal solution to S_{ij}
 - A_{ij} = A_{ik} U { a_k } U A_{kj}
- Greedy Choice: X
 - Select the activity with earliest finishing time.

Without the greedy choice property, we need to consider all possible decompositions of A_{ii} to find the optimal one.

Data structure (1)

Notation: All activities are sorted by finishing time $f_1 \le f_2 \le ... \le f_n$

Definition: p(j) = largest index i < j such that activity/job i is compatible with activity/job j.

Examples: p(6)=4, p(5)=2, p(4)=2, p(2)=0.

OPT() stores the value we want to optimize

Data Structure (2)

Note: OPT(n) is the solution to our problem, where n is the number of activities.

OPT(j) = value of the optimal solution to the problem including activities 1 to j

= max total weight of compatible activities 1 to j

Examples: OPT(6) = 8, OPT(3)=5, OPT(1)=2

Binary Choice

Objective: We want to recursively compute OPT.

Question: Is activity j used in the optimal solution OPT(j)?

Case 1: OPT uses activity j

- The weight w_i is used to compute OPT(j)
- We cannot use activities NOT compatible with j
- We build an optimal solution with activities { 1, 2, ... , p(j) }
- The weight of the optimal solution is w_i + OPT(p(j))

Case 2: OPT does not use activity j

- We build an optimal solution with other activities {1, ..., j-1}
- The weight of the optimal solution is OPT(j-1)

A recursive solution

Recursive case: We determine if it is best to use or not activity j.

Recursive Algorithm

```
Input: n, s[1..n], f[1..n], w[1..n]
```

Number of activities, starting and finishing times, weights

```
Preprocessing:
```

- Sort activities by finishing time f[1] ≤ ... ≤ f[n]
- Compute p[1], p[2], ..., p[n]

Main: Compute-Opt(j) if j = 0 return 0 else return max(w[j] + Compute-Opt(p[j]), Compute-Opt(j-1))

Brute Force Approach

Memoization

Memoization: Cache results of each subproblem; lookup as needed.

```
Input: n, s[1..n], f[1..n], w[1..n]
Sort jobs by finish time so that f[1] \le f[2] \le \dots \le f[n].
Compute p[1], p[2], ..., p[n].
for j = 1 to n
   OPT[j] \leftarrow empty.
OPT[0] \leftarrow 0. Initialization of OPT. We store the values of OPT(j) in a
                                        table, so that we can re-use them
Compute-Opt(j)
                                        instead of computing them again.
if OPT[j] is empty
   OPT[j] \leftarrow max(w[j]+Compute-Opt(p[j]), Compute-Opt(j-1))
return OPT[j].
```

Running time

Claim: Memoized version of the algorithm takes *O(n log n)* time

- Sort by finishing time: O(n log n)
- Computing p(): O(n log n) via sorting by starting time
- Compute-Opt(j): each invocation takes *O(1)* time, and either:
 - i. Returns an existing value OPT(j)
 - ii. Fills in one new entry OPT(j) and makes two recursive calls
- Progress measure Φ = # non-empty entries of OPT
 - i. Initially $\Phi = 0$, throughout $\Phi \le n$
 - ii. Increases Φ by $1 \Rightarrow 2$ recursive calls
 - iii. At most 2n recursive calls
- Overall running time of Compute-Opt(n) is O(n)

Note: O(n) if the activities are presorted

DYNAMIC PROGRAMMING

Bottom-up

Observation: When we compute OPT[j], we only need values OPT[k] for k<j.

```
BOTTOM-UP (n; s_1, \ldots, s_n; f_1, \ldots, f_n; w_1, \ldots, w_n):
Sort jobs by finish time so that f_1 \leq f_2 \leq \ldots \leq f_n
Compute p(1), p(2), \ldots, p(n).
OPT[0] \leftarrow 0
for j = 1 to n
OPT[j] \leftarrow \max \{ W_j + OPT[p(j)], OPT[j-1] \}
```

Main Idea of Dynamic Programming: Solve the sub-problems in an order that makes sure when you need an answer, it's already been computed. For now, you can see it as a variant of the memoization

algorithm that incrementally compute the OPT(k)

Finding a solution

Dyn. Prog. algorithm computes the optimal value.

Q: How to find a solution that reaches this optimal value?A: Bactracking! Knowing the optimal solution, we determine if

activity j has been used (or not) to obtain it

```
Find-Solution(j)
if j = 0
  return Ø
else if (v[j] + M[p[j]] > M[j-1])
  return { j } U Find-Solution(p[j])
else
  return Find-Solution(j-1)
```

Analysis. # of recursive calls $\leq n \Rightarrow O(n)$.

Example: Computing solution This is p() activity 1 3 2 4 5 predecessor 2 2 3 0 \mathbf{O} OPT[j] w_i+OPT[p(j)] OPT[j-1]

		activity	1	2	3	4	5
(predecessor	0	0	2	2	3
	M[0]=0	OPT[j]	2	-	-	-	-
		w _j +OPT[p(j)]	2	-	-	-	-
		OPT[j-1]	0	-	-	-	-

activity	1	2	3	4	5
predecessor	0	0	2	2	3
OPT[j]	2	3	-	-	-
w _j +OPT[p(j)]	2	3	-	-	-
OPT[j-1]	0	2	-	_	-

activity	1	2	3	4	5
predecessor	0	0	2	2	3
OPT[j]	2	3	4	-	-
w _j +OPT[p(j)]	2	3	4	-	-
OPT[j-1]	0	2	3	-	-

activity	1	2	3	4	5
predecessor	0	0	2	2	3
OPT[j]	2	3	4	9	-
w _j +OPT[p(j)]	2	3	4	9	-
OPT[j-1]	0	2	3	4	-

activity	1	2	3	4	5	Optimal
predecessor	0	0	2	2	3	solution
OPT[j]	2	3	4	9	9	
w _j +OPT[p(j)]	2	3	4	9	8	
OPT[j-1]	0	2	3	4	9	

Example: Reconstruction

activity	1	2	3	4	5
predecessor	0	0	2	2	3
OPT[j]	2	3	4	9	9
w _j +OPT[p(j)]	2	3	4	9	8
OPT[j-1]	0	2	3	4	\ 9

Example: Reconstruction

activity	1	2 🔨	3	4	5
predecessor	0	0	2	2	3
OPT[j]	2	3	4	9	9
w _j +OPT[p(j)]	2	3	4	9	8
OPT[j-1]	0	2	3	4	9

Example: Reconstruction

activity	1	2	3	4	5
predecessor	0	0	2	2	3
OPT[j]	2	3	4	9	9
w _j +OPT[p(j)]	2	3	4	9	8
OPT[j-1]	0	2	3	4	9

