
COMP251: Dynamic
programming (1)

Jérôme Waldispühl & Giulia Alberini
School of Computer Science

McGill University
Based on (Cormen et al., 2002) & (Kleinberg & Tardos, 2005)

Algorithm paradigms

• Greedy:
o Build up a solution incrementally
o Iteratively decompose and reduce the size of the problem
o Top-down approach

• Dynamic programming:
o Solve all possible sub-problems.
o Assemble them to build up solutions to larger problems.
o Bottom-up approach.

Although both techniques seems disconnected, we will highlight similarities.

An example?

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 = ?

20!

1+1 = ?

21
Principle: Use answers previously computed for a smaller instance

INTRODUCTION

Activity-selection Problem
• Input: Set S of n activities, a1, a2, …, an.
– si = start time of activity i.
– fi = finish time of activity i.

• Output: Subset A of maximum number of compatible
activities.
– 2 activities are compatible, if their intervals do not overlap.

Example:
Activities in each line
are compatible.

0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

0 1 2 3 4 5 6 7 8 9 10

s6
a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities sorted by finishing time.

Activity-selection Problem

0 1 2 3 4 5 6 7 8 9 10

s6
a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities sorted by finishing time.

Activity-selection Problem

0 1 2 3 4 5 6 7 8 9 10

s6
a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities sorted by finishing time.

Activity-selection Problem

0 1 2 3 4 5 6 7 8 9 10

s6
a6

a5

a4

a3

a2

a1 a7
s1

s2

s3

s4

s5

s7f1

f2

f3

f4

f5

f6

f7

i 1 2 3 4 5 6 7
si 0 1 2 4 5 6 8
fi 2 3 5 6 9 9 10

Activities sorted by finishing time.

Optimal sub-structure

• Let Sij = subset of activities in S that start after ai
finishes and finish before aj starts.

• Aij = optimal solution to Sij

• Aij = Aik U { ak } U Akj

Sij = ak ∈ S :∀i, j fi ≤ sk < fk ≤ sj{ }

Greedy choice

Before theorem
subproblems in
optimal solution

2

choices to consider j-i-1

We can solve the problem Sij top-down:

• Consider all ak∈Sij
• Solve Sik and Skj
• Pick the best m such that Aij = Aim U { am } U Aim

Aij = Aik U { ak } U Akj

Greedy choice

Theorem:
Let Sij ≠ ∅, and let am be the activity in Sij with the
earliest finish time: fm = min{ fk : ak ∈Sij}. Then:

1. am is used in some maximum-size subset of
mutually compatible activities of Sij.

2. Sim = ∅, so that choosing am leaves Smj as the only
nonempty subproblem.

Greedy choice

Before theorem After theorem
subproblems in
optimal solution

2 1

choices to consider j-i-1 1

We can now solve the problem Sij top-down:

• Choose am∈Sij with the earliest finish time (greedy choice).

• Solve Smj.

Aij = Aik U { ak } U Akj Aij = { am } U Amj

Objective
• A greedy algorithm can compute an optimal solution if we

identify:

- a greedy choice

- an optimal substructure property

• A greedy choice is not always available.

• What can we do if we have an optimal substructures property
but not a greedy choice?

• How can we use the optimal substructures property to design
an efficient algorithm?

We will illustrate this approach on a variant of the interval scheduling
problem. Next week, we will review more examples.

WEIGHTED INTERVAL SCHEDULING

Weighted interval scheduling
• Input: Set S of n activities, a1, a2, …, an.
– si = start time of activity i.
– fi = finish time of activity i.
– wi= weight of activity i

• Output: find maximum weight subset of mutually compatible
activities.
– 2 activities are compatible, if their intervals do not overlap.

Example:

0 1 2 3 4 5 6 7 8 9 10

2

3 3

4
2

2
2

The weight can be anything

Application of the greedy algorithm

0 1 2 3 4 5 6 7 8 9 10

2

3 3

4
2

2
2

0 1 2 3 4 5 6 7 8 9 10

2
8

1

✓

✗

W=9

W=3

Discussion

• Optimal substructure:
• Aij = optimal solution to Sij

• Aij = Aik U { ak } U Akj

• Greedy Choice:
• Select the activity with earliest finishing time.

✗

✓

Without the greedy choice property, we need to consider all possible
decompositions of Aij to find the optimal one.

Data structure (1)
Notation: All activities are sorted by finishing time f1 ≤ f2≤ … ≤ fn

Definition: p(j) = largest index i < j such that activity/job i is
compatible with activity/job j.

Examples: p(6)=4, p(5)=2, p(4)=2, p(2)=0.

0 1 2 3 4 5 6 7 8 9 10

a4

a3

a5

a1

a2

a6

Data Structure (2)
OPT(j) = value of the optimal solution to the problem

including activities 1 to j
= max total weight of compatible activities 1 to j

Examples: OPT(6) = 8, OPT(3)=5, OPT(1)=2

0 1 2 3 4 5 6 7 8 9 10

a4

a3

a5

a1

a2

a6

OPT() stores the
value we want to
optimize

Note: OPT(n) is
the solution to
our problem,
where n is the
number of
activities.

Binary Choice
Objective: We want to recursively compute OPT.

Question: Is activity j used in the optimal solution OPT(j)?

Case 1: OPT uses activity j
• The weight wj is used to compute OPT(j)
• We cannot use activities NOT compatible with j
• We build an optimal solution with activities { 1, 2, … , p(j) }
• The weight of the optimal solution is wj + OPT(p(j))

Case 2: OPT does not use activity j
• We build an optimal solution with other activities {1, … , j-1}
• The weight of the optimal solution is OPT(j-1)

A recursive solution

𝑂𝑃𝑇 𝑗 = '
0 𝑖𝑓 𝑗 = 0

𝑚𝑎𝑥 𝑤! + 𝑂𝑃𝑇(𝑝 𝑗), 𝑂𝑃𝑇(𝑗 − 1) 𝑂𝑡ℎ𝑒rwise

Base case: If there is no activity to select from, the weight is null.

Recursive case: We determine if it is best to use or not activity j.

Recursive Algorithm

Input: n, s[1..n], f[1..n], w[1..n]

Preprocessing:
• Sort activities by finishing time f[1] ≤ ... ≤ f[n]
• Compute p[1], p[2], ..., p[n]

Main:
Compute-Opt(j)
if j = 0

return 0
else

return max(w[j] + Compute-Opt(p[j]), Compute-Opt(j–1))

Number of activities, starting
and finishing times, weights

Brute Force Approach

OPT(6)

w6+w4+
OPT(2)

w6+
OPT(3)

w5+
OPT(2) OPT(4)

w6+w4+
w2

w6+w4+
OPT(1)

w6+w3+
OPT(1)

w6+
OPT(2) w5+w2

w5+
OPT(1)

w6+
OPT(4)

Case 1

OPT(5)

Case 2

…

Observation: OPT(j) is calculated
multiple times…

Memoization
Memoization: Cache results of each subproblem; lookup as needed.

Input: n, s[1..n], f[1..n], w[1..n]
Sort jobs by finish time so that f[1]≤f[2]≤ ... ≤f[n].
Compute p[1], p[2], ..., p[n].

for j = 1 to n
OPT[j] ← empty.

OPT[0] ← 0.

Compute-Opt(j)
if OPT[j] is empty

OPT[j]←max(w[j]+Compute-Opt(p[j]),Compute-Opt(j–1))
return OPT[j].

We store the values of OPT(j) in a
table, so that we can re-use them
instead of computing them again.

Initialization of OPT.

Running time
Claim: Memoized version of the algorithm takes O(n log n) time

• Sort by finishing time: O(n log n)
• Computing p(): O(n log n) via sorting by starting time

• Compute-Opt(j): each invocation takes O(1) time, and either:
i. Returns an existing value OPT(j)
ii. Fills in one new entry OPT(j) and makes two recursive calls

• Progress measure ⏀= # non-empty entries of OPT
i. Initially ⏀=0, throughout ⏀ ≤ n
ii. Increases ⏀ by 1 ⇒ 2 recursive calls
iii. At most 2n recursive calls

• Overall running time of Compute-Opt(n) is O(n)

Note: O(n) if the activities are presorted

DYNAMIC PROGRAMMING

Bottom-up

BOTTOM-UP (n;s1,...,sn;f1,...,fn;w1,...,wn):

Sort jobs by finish time so that f1≤f2≤...≤fn
Compute p(1), p(2), ..., p(n).

OPT[0]←0

for j = 1 to n
OPT[j] ← max { Wj + OPT[p(j)], OPT[j–1] }

Observation: When we compute OPT[j], we only need values
OPT[k] for k<j.

Main Idea of Dynamic Programming: Solve the sub-problems in
an order that makes sure when you need an answer, it's already
been computed. For now, you can see it as a variant of the memoization

algorithm that incrementally compute the OPT(k)

Finding a solution
Dyn. Prog. algorithm computes the optimal value.

Q: How to find a solution that reaches this optimal value?
A: Bactracking!

Find-Solution(j)
if j = 0

return ∅
else if (v[j] + M[p[j]] > M[j–1])

return { j } ∪ Find-Solution(p[j])
else

return Find-Solution(j–1)

Analysis. # of recursive calls ≤ n ⇒ O(n).

Knowing the optimal solution, we determine if
activity j has been used (or not) to obtain it

Example: Computing solution

0 1 2 3 4 5 6 7 8 9 10

a1

a2

a3

a4

a5

activity 1 2 3 4 5
predecessor 0 0 2 2 3

OPT[j] - - - - -
wj+OPT[p(j)] - - - - -

OPT[j-1] - - - - -

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

This is p()

Example: Computing solution

0 1 2 3 4 5 6 7 8 9 10

a1

a2

a3

a4

a5

activity 1 2 3 4 5
predecessor 0 0 2 2 3

OPT[j] 2 - - - -
wj+OPT[p(j)] 2 - - - -

OPT[j-1] 0 - - - -

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

M[0]=0

Example: Computing solution

0 1 2 3 4 5 6 7 8 9 10

a1

a2

a3

a4

a5

activity 1 2 3 4 5
predecessor 0 0 2 2 3

OPT[j] 2 3 - - -
wj+OPT[p(j)] 2 3 - - -

OPT[j-1] 0 2 - - -

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

Example: Computing solution

0 1 2 3 4 5 6 7 8 9 10

a1

a2

a3

a4

a5

activity 1 2 3 4 5
predecessor 0 0 2 2 3

OPT[j] 2 3 4 - -
wj+OPT[p(j)] 2 3 4 - -

OPT[j-1] 0 2 3 - -

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

Example: Computing solution

0 1 2 3 4 5 6 7 8 9 10

a1

a2

a3

a4

a5

activity 1 2 3 4 5
predecessor 0 0 2 2 3

OPT[j] 2 3 4 9 -
wj+OPT[p(j)] 2 3 4 9 -

OPT[j-1] 0 2 3 4 -

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

Example: Computing solution

0 1 2 3 4 5 6 7 8 9 10

a1

a2

a3

a4

a5

activity 1 2 3 4 5
predecessor 0 0 2 2 3

OPT[j] 2 3 4 9 9
wj+OPT[p(j)] 2 3 4 9 8

OPT[j-1] 0 2 3 4 9

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

Optimal
solution

Example: Reconstruction

0 1 2 3 4 5 6 7 8 9 10

a1

a2

a3

a4

a5

activity 1 2 3 4 5
predecessor 0 0 2 2 3

OPT[j] 2 3 4 9 9
wj+OPT[p(j)] 2 3 4 9 8

OPT[j-1] 0 2 3 4 9

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

Example: Reconstruction

0 1 2 3 4 5 6 7 8 9 10

a1

a2

a3

a4

a5

activity 1 2 3 4 5
predecessor 0 0 2 2 3

OPT[j] 2 3 4 9 9
wj+OPT[p(j)] 2 3 4 9 8

OPT[j-1] 0 2 3 4 9

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

Example: Reconstruction

0 1 2 3 4 5 6 7 8 9 10

a1

a2

a3

a4

a5

activity 1 2 3 4 5
predecessor 0 0 2 2 3

OPT[j] 2 3 4 9 9
wj+OPT[p(j)] 2 3 4 9 8

OPT[j-1] 0 2 3 4 9

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

