COMP251: Dynamic
programming (1)

Jérome Waldispuhl & Giulia Alberini
School of Computer Science

McGill University

Based on (Cormen et al., 2002) & (Kleinberg & Tardos, 2005)

Algorithm paradigms

* Greedy:
o Build up a solution incrementally
1 o Iteratively decompose and reduce the size of the problem
o Top-down approach

* Dynamic programming:
o Solve all possible sub-problems.
I o Assemble them to build up solutions to larger problems.
o Bottom-up approach.

Although both techniques seems disconnected, we will highlight similarities.

An example?

1+1+1+1+1+1+1+1+1+1+1 41 +1+1+1+1+1 4140 4+1 = 7

20!

1+1+1+1+1+1+1+14+1+1+1+1+1+1+1+1+1+1+1+1+1 = 7

21

Principle: Use answers previously computed for a smaller instance

INTRODUCTION

Activity-selection Problem

* |Input: Set S of n activities, a,, a,, ..., @

.
— s; = start time of activity /.
— f; = finish time of activity i.

* Qutput: Subset A of maximum number of compatible
activities.

— 2 activities are compatible, if their intervals do not overlap.
Activities in each line

Example: are compatible.
d <4 4 :
[_ ® @ ®
[® | _ — [_ 9

Activity-selection Problem

1 2 3 4 5 6 7

s |0 1 2 4 5 6 8
f |2 3 5 6 9 9 10
Activities sorted by finishing time.
as S ag
S5 ® ® ® -® f6
f3
d; ds
S, @ o f, | Sce ¢ fc
al a4 a7
o f, | s, o f, | S; o f;
0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

1 2 3 4 5 6 7

s | 0 1 2 4 5 6 8
f |12 3 5 6 9 9 10
Activities sorted by finishing time.
as S ag
S5 ® @ ® -® f6
f3
d; ds
S, @ o f, | Sce ¢ fc
a]_ a4 a7
o f, | s, o f, | S; o f;
0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

1 2 3 4 5 6 7

s | 0 1 2 4 5 6 8
f |12 3 5 6 9 9 10
Activities sorted by finishing time.
as S ag
S3 ¢ . ® ® f6
f5
d; ds
S, @ o f, | Sce ¢ fc
a]_ a4 a7
o f, | s, 0 o f, | S; o o f;
0 1 2 3 4 5 6 7 8 9 10

Activity-selection Problem

1 2 3 4 5 6 7

s | 0 1 2 4 5 6 8
f |12 3 5 6 9 9 10
Activities sorted by finishing time.
as S ag
S5 ® ° ® -® f6
f3
d; ds
S, @ o f, | Sce ¢ fc
a]_ a4 a7
o f, | s, 0 o f, | S; o f;
0 1 2 3 4 5 6 7 8 9 10

Optimal sub-structure

* LetS; = subset of activities in S that start after g,
finishes and finish before g; starts.

S, ={akES:Vi,j f, ssk<fkssj}
* A, = optimal solution to §;

* A;j=AU{a }UA

Greedy choice

Before theorem

subproblems in 2
optimal solution

choices to consider j-i-1

\)
!

AijzAikU{ak}UAkj

We can solve the problem S; top-down:
* Consider all a,€S;;
* Solve Sy and S,

* Pick the best msuch that A;= A, U{a, }UA,,

Greedy choice

Theorem:

Let S; # @, and let a,, be the activity in S; with the
earliest finish time: f,, = min{ f, : a, €5;}. Then:

1. a,,is usedin some maximum-size subset of
mutually compatible activities of S;;.

2. S, =0, sothat choosing a,, leaves S, as the only
nonempty subproblem.

Greedy choice

Before theorem

After theorem

subproblems in 2
optimal solution

choices to consider j-i-1

1

1

Y
AijzAikU{ak}UAkj

Y
Aij={am}UAmj

We can now solve the problem S; top-down:

* Choose a,,€S; with the earliest finish time (greedy choice).

* Solve S,

Objective

* A greedy algorithm can compute an optimal solution if we
identify:

- a greedy choice
- an optimal substructure property
* A greedy choice is not always available.

 What can we do if we have an optimal substructures property
but not a greedy choice?

* How can we use the optimal substructures property to design
an efficient algorithm?

We will illustrate this approach on a variant of the interval scheduling
problem. Next week, we will review more examples.

WEIGHTED INTERVAL SCHEDULING

Weighted interval scheduling

* Input: Set S of n activities, a4, a,, ..., a,,.
— s; = start time of activity /.
— f; = finish time of activity /.
— w;= weight of activity i The weight can be anything
e Output: find maximum weight subset of mutually compatible
activities.
— 2 activities are compatible, if their intervals do not overlap.

Example:

Application of the greedy algorithm

2 4 W=9

2 2 2
© o ° ¢ ¢ ® \/

0 1 2 3 4 5 6 7 8 9 10

Discussion

* Optimal substructure: \/
* A, = optimal solution to S;
* AijzAikU{ak}UAkj

* Greedy Choice: X
* Select the activity with earliest finishing time.

Without the greedy choice property, we need to consider all possible
decompositions of A; to find the optimal one.

Data structure (1)

Notation: All activities are sorted by finishing time f; < f,< ... < f,

Definition: p(j) = largest index i < j such that activity/job i is
compatible with activity/job j.

Examples: p(6)=4, p(5)=2, p(4)=2, p(2)=0.

dq

OPT() stores the Note: OPT(n) 'S
the solution to

value we want to Data Structu re (2) our problem,

optimize ,
where n is the
OPT(j) = value of the optimal solution to the problem gé‘tr::ti:f

including activities 1 to j
= max total weight of compatible activities 1 to |

Examples: OPT(6) = 8, OPT(3)=5, OPT(1)=2

dq

Binary Choice

Objective: We want to recursively compute OPT.
Question: Is activity j used in the optimal solution OPT(j)?

Case 1: OPT uses activity j
* The weight w; is used to compute OPT(j)

* We cannot use activities NOT compatible with j
* We build an optimal solution with activities { 1, 2, ..., p(j) }
* The weight of the optimal solution is w; + OPT(p(j))

Case 2: OPT does not use activity j
 We build an optimal solution with other activities {1, ..., j-1}

 The weight of the optimal solution is OPT(j-1)

A recursive solution

Base case: If there is no activity to select from, the weight is null.

0 ifj=0

OPT(j) = max{wj + OPT (p(j)), OPT(j — 1)} Otherwise

Recursive case: We determine if it is best to use or not activity j.

Recursive Algorithm

Number of activities, starting

Input: n, s[1..n], £[1..n], w[l..n] and finishing times, weights

Preprocessing:
* Sort activities by finishing time f[1l] = ... = f[n]
* Compute p[l], p[2], ..., P[n]

Main:

Compute-0Opt(j)

if 3 =0
return 0

else
return max(w[j] + Compute-Opt(p[]J]), Compute-Opt(J-—1))

Brute Force Approach

y Observation: OPT(j) is calculated
multiple times...

i (ori6))
Case 1 Case 2

Wgt
OPT(4)
WgtWyt+
OPT(2)
WgtWyt+ ()
OPT(1)

Memoization

Memoization: Cache results of each subproblem; lookup as needed.

Input: n, s[l..n], f[l..n], w[l..n]
Sort jobs by finish time so that f[1l]=f[2]= ... =f[n].
Compute p[l], p[2], ..., P[n].

for j =1 ton
OPT[]j] <« empty.

OPT[0] « O. Initialization of OPT. We store the values of OPT(j) in a
_ table, so that we can re-use them
Compute-Opt (]) instead of computing them again.

if OPT[J] is empty
OPT[j]«max(w[J]+Compute-Opt(p[]]),Compute-Opt(J—1))
return OPT[]].

Running time

Claim: Memoized version of the algorithm takes O(n log n) time

e Sort by finishing time: O(n log n)
Computing p(): O(n log n) via sorting by starting time

Compute-Opt(j): each invocation takes O(1) time, and either:
i. Returns an existing value OPT(j)
ii. Fillsin one new entry OPT(j) and makes two recursive calls

* Progress measure O =# non-empty entries of OPT
i. Initially ®=0, throughout ® <n
ii. Increases O® by 1 = 2 recursive calls
iii. At most 2n recursive calls

Overall running time of Compute-Opt(n) is O(n)

Note: O(n) if the activities are presorted

DYNAMIC PROGRAMMING

Bottom-up

Observation: When we compute OPTJ[j], we only need values
OPTIk] for k<;j.

BOTTOM-UP (N;Si,eee,8,5L1,00e, LWy 0e.,W,):
Sort jobs by finish time so that f;=f,=...=f,
Compute p(l), p(2), ..., p(n).

OPT[0]«0

for j = 1 to n
OPT[j] <« max { Wj + OPT[p(7)], OPT[j-1] }

Main Idea of Dynamic Programming: Solve the sub-problems in
an order that makes sure when you need an answetr, it's already

been computed. . . .
For NOW, YOU Can see it as a variant of the memoization

algorithm that incrementally compute the OPT(k)

Finding a solution

Dyn. Prog. algorithm computes the optimal value.

Q: How to find a solution that reaches this optimal value?

A: Bactracking! Knowing the optimal solution, we determine if
activity j has been used (or not) to obtain it

/

Find-Solution(])
if J =0
return 0
else if (v[3] + M[p[3]] > M[j-1])
return { 7 } U Find-Solution(p[]])
else
return Find-Solution(j—1)

Analysis. # of recursive calls < n = O(n).

Example: Computing solution

This is p() activity 1 ’) 3 4 5
: predecessor 0 0 2 2 3

OPTIj] i i - i i

w;+OPT[p(j)] - - - - -

OPT[j-1] _ _ _ _ _

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

2 b .
a, ® ®

dj —

dy ® ®

ac ¢ ®

Example: Computing solution

activity 1 2 3 4 5

predecessor 0 0 2 2 3

M[0]=0 OPTI[j] 2 _ _ _ _
w;+OPT[p(j)] 2 - - - -

OPTIj-1] 0 - - - -

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

2 b I

a, ® ®

dj —

dy ® ®

ac ¢ ®

Example: Computing solution

activity 1 2 3 4 5
predecessor 0 0 2 2 3
OPT(j] 2 3 - - -
w;+OPT[p(j)] 2 3 - - -
OPTI[j-1] 0 2 - - -

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

2 b .
a, ¢ o

dj —

dy ® ®

ac ® ®

Example: Computing solution

activity 1 2 3 4 5
predecessor 0 0 2 2 3
OPT(j] 2 3 4 - -
w;+OPT[p(j)] 2 3 4 - -
OPTI[j-1] 0 2 3 - -

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

2 b .

a, ® ®

dj "

dy ® ®

ac ® ®

Example: Computing solution

activity 1 2 3 4 5
predecessor 0 0 2 2 3
OPT(j] 2 3 4 9 -
w;+OPT[p(j)] 2 3 4 9 -
OPTI[j-1] 0 2 3 4 -

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

2 b .
a, ® ®

dj —

dy ® ®

ac ¢ ®

Example: Computing solution

activity 1 2 3 4 5
predecessor 0 0 2 2 3
OPT(j] 2 3 4 9 9
w+OPT[p(j)] | 2 3 4 9 8
OPTI[j-1] 0 2 3 4 9

Optimal
solution

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

2 b I

d, ¢

a3 P——l

a, *

a5 [_ ®
0 1 2 3 6 9 10

Example: Reconstruction

activity 1 2 3 4 5
predecessor 0 0 2 2 3
OPT(j] 2 3 4 9 9
w;+OPT[p(j)] 2 3 4 9 3
OPTI[j-1] 0 2 3 4 9

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

2 b .
a, ¢ ®

dj e

a, ® ®

a: ® ®

Example: Reconstruction

activity 1 2 3 4 5
predecessor 0 0 2 3
OPT(j] 2 3 4 9 9
w;+OPT[p(j)] 2 3 4 9 3
OPTI[j-1] 0 2 3 4 9

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

2 b .
a, ¢ ®

dj e

a, o .

a: ® ®

Example: Reconstruction

activity 1 2 3 4 5
predecessor 0 2 3
OPT[j] 2 3 4 9 9
w;+OPT[p(j)] 2 3 4 9 3
OPT[j-1] 0) 2 3 4 9
(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.
2 b I
a, ¢ O
ds ¢ ?
a4 ® ®
a5 [_ .

