COMP251: Dynamic programming (1)

Jérôme Waldispühl & Giulia Alberini
School of Computer Science
McGill University

Based on (Cormen et al., 2002) & (Kleinberg & Tardos, 2005)
Algorithm paradigms

- **Greedy:**
 - Build up a solution incrementally
 - Iteratively decompose and reduce the size of the problem
 - Top-down approach

- **Dynamic programming:**
 - Solve all possible sub-problems.
 - Assemble them to build up solutions to larger problems.
 - Bottom-up approach.

Although both techniques seems disconnected, we will highlight similarities.
An example?

1+1 = ?

20!

1+1 = ?

21

Principle: Use answers previously computed for a smaller instance
Activity-selection Problem

• **Input:** Set S of n activities, a_1, a_2, \ldots, a_n.
 - $s_i = \text{start time of activity } i$.
 - $f_i = \text{finish time of activity } i$.

• **Output:** Subset A of maximum number of compatible activities.
 - 2 activities are compatible, if their intervals do not overlap.

Example:

```
0         1          2          3         4          5         6          7         8          9        10
```

Activities in each line are compatible.
Activity-selection Problem

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Optimal sub-structure

• Let $S_{ij} = \text{subset of activities in } S \text{ that start after } a_i \text{ finishes and finish before } a_j \text{ starts.}$

$$S_{ij} = \left\{ a_k \in S : \forall i, j \quad f_i \leq s_k < f_k \leq s_j \right\}$$

• $A_{ij} = \text{optimal solution to } S_{ij}$

• $A_{ij} = A_{ik} \cup \{ a_k \} \cup A_{kj}$
Greedy choice

<table>
<thead>
<tr>
<th># subproblems in optimal solution</th>
<th>Before theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td># choices to consider</td>
<td>j-i-1</td>
</tr>
</tbody>
</table>

\[A_{ij} = A_{ik} \cup \{ a_k \} \cup A_{kj} \]

We can solve the problem \(S_{ij} \) top-down:

- Consider all \(a_k \in S_{ij} \)
- Solve \(S_{ik} \) and \(S_{kj} \)
- Pick the best \(m \) such that \(A_{ij} = A_{im} \cup \{ a_m \} \cup A_{im} \)
Greedy choice

Theorem:
Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time: $f_m = \min\{ f_k : a_k \in S_{ij} \}$. Then:

1. a_m is used in some maximum-size subset of mutually compatible activities of S_{ij}.
2. $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.
Greedy choice

<table>
<thead>
<tr>
<th></th>
<th>Before theorem</th>
<th>After theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td># subproblems in optimal solution</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td># choices to consider</td>
<td>j-i-1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[A_{ij} = A_{ik} \cup \{ a_k \} \cup A_{kj} \]
\[A_{ij} = \{ a_m \} \cup A_{mj} \]

We can now solve the problem \(S_{ij} \) top-down:

- Choose \(a_m \in S_{ij} \) with the earliest finish time (greedy choice).
- Solve \(S_{mj} \).
Objective

• A greedy algorithm can compute an optimal solution if we identify:
 - a greedy choice
 - an optimal substructure property

• A greedy choice is not always available.

• What can we do if we have an optimal substructures property but not a greedy choice?

• How can we use the optimal substructures property to design an efficient algorithm?

We will illustrate this approach on a variant of the interval scheduling problem. Next week, we will review more examples.
WEIGHTED INTERVAL SCHEDULING
Weighted interval scheduling

• **Input:** Set S of n activities, $a_1, a_2, ..., a_n$.
 - s_i = start time of activity i.
 - f_i = finish time of activity i.
 - w_i = weight of activity i

• **Output:** find maximum weight subset of mutually compatible activities.
 - 2 activities are compatible, if their intervals do not overlap.

Example:

![Diagram of intervals and weights](image-url)
Application of the greedy algorithm

W=9

W=3
Discussion

• **Optimal substructure:** ✓
 - $A_{ij} = \text{optimal solution to } S_{ij}$
 - $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$

• **Greedy Choice:** ✗
 - Select the activity with earliest finishing time.

Without the greedy choice property, we need to consider all possible decompositions of A_{ij} to find the optimal one.
Data structure (1)

Notation: All activities are sorted by finishing time $f_1 \leq f_2 \leq ... \leq f_n$

Definition: $p(j) =$ largest index $i < j$ such that activity/job i is compatible with activity/job j.

Examples: $p(6)=4$, $p(5)=2$, $p(4)=2$, $p(2)=0$.
OPT() stores the value we want to optimize

OPT(j) = value of the optimal solution to the problem including activities 1 to j

= max total weight of compatible activities 1 to j

Examples: OPT(6) = 8, OPT(3)=5, OPT(1)=2
Binary Choice

Objective: We want to recursively compute OPT.

Question: Is activity j used in the optimal solution OPT(j)?

Case 1: *OPT uses activity j*
- The weight w_j is used to compute OPT(j)
- We cannot use activities NOT compatible with j
- We build an optimal solution with activities \(\{ 1, 2, \ldots, p(j) \} \)
- The weight of the optimal solution is $w_j + OPT(p(j))$

Case 2: *OPT does not use activity j*
- We build an optimal solution with other activities \(\{1, \ldots, j-1\} \)
- The weight of the optimal solution is OPT(j-1)
A recursive solution

Base case: If there is no activity to select from, the weight is null.

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max\{w_j + OPT(p(j)), OPT(j - 1)\} & \text{Otherwise} \end{cases}$$

Recursive case: We determine if it is best to use or not activity j.
Recursive Algorithm

Input: n, s[1..n], f[1..n], w[1..n]
Number of activities, starting and finishing times, weights

Preprocessing:
- Sort activities by finishing time f[1] ≤ ... ≤ f[n]
- Compute p[1], p[2], ..., p[n]

Main:

```plaintext
Compute-Opt(j)
if j = 0
    return 0
else
    return max(w[j] + Compute-Opt(p[j]), Compute-Opt(j-1))
```
Brute Force Approach

Observation: \(\text{OPT}(j) \) is calculated multiple times...

```
OPT(6)

Case 1
- \( w_6 + \text{OPT}(4) \)
  - \( w_6 + w_4 + \text{OPT}(2) \)
    - \( w_6 + w_4 + w_2 \)
  - \( w_6 + w_4 + \text{OPT}(1) \)

Case 2
- \( w_5 + \text{OPT}(5) \)
  - \( w_5 + w_2 \)
  - \( w_5 + \text{OPT}(1) \)
```

Memoization

Memoization: Cache results of each subproblem; lookup as needed.

Input: n, $s[1..n]$, $f[1..n]$, $w[1..n]$

Sort jobs by finish time so that $f[1] \leq f[2] \leq \ldots \leq f[n]$.

for $j = 1$ to n
 OPT[j] \leftarrow empty.

OPT[0] $\leftarrow 0$. **Initialization of OPT.** We store the values of OPT(j) in a table, so that we can re-use them instead of computing them again.

Compute-Opt(j)

if OPT[j] is empty
 OPT[j] \leftarrow max($w[j]$ + Compute-Opt($p[j]$), Compute-Opt($j-1$))

return OPT[j].
Running time

Claim: Memoized version of the algorithm takes $O(n \log n)$ time

- Sort by finishing time: $O(n \log n)$
- Computing $p()$: $O(n \log n)$ via sorting by starting time
- Compute-Opt(j): each invocation takes $O(1)$ time, and either:
 i. Returns an existing value OPT(j)
 ii. Fills in one new entry OPT(j) and makes two recursive calls
- Progress measure $\phi = \# $ non-empty entries of OPT
 i. Initially $\phi = 0$, throughout $\phi \leq n$
 ii. Increases ϕ by 1 \Rightarrow 2 recursive calls
 iii. At most 2n recursive calls
- Overall running time of Compute-Opt(n) is $O(n)$

Note: $O(n)$ if the activities are presorted
DYNAMIC PROGRAMMING
Bottom-up

Observation: When we compute $OPT[j]$, we only need values $OPT[k]$ for $k<j$.

```plaintext
BOTTOM-UP \( (n; s_1, \ldots, s_n; f_1, \ldots, f_n; w_1, \ldots, w_n) \):

Sort jobs by finish time so that \( f_1 \leq f_2 \leq \ldots \leq f_n \)

Compute \( p(1), p(2), \ldots, p(n) \).

\( OPT[0] \leftarrow 0 \)

for \( j = 1 \) to \( n \)

\( OPT[j] \leftarrow \max \{ \ W_j + OPT[p(j)], \ OPT[j-1] \} \)
```

Main Idea of Dynamic Programming: Solve the sub-problems in an order that makes sure when you need an answer, it's already been computed.

For now, you can see it as a variant of the memoization algorithm that incrementally compute the $OPT(k)$
Finding a solution

Dyn. Prog. algorithm computes the optimal value.

Q: How to find a solution that reaches this optimal value?
A: Backtracking!

```
Find-Solution(j)
if j = 0
    return ∅
else if (v[j] + M[p[j]] > M[j−1])
    return { j } ∪ Find-Solution(p[j])
else
    return Find-Solution(j−1)
```

Analysis. # of recursive calls ≤ n ⇒ O(n).

Knowing the optimal solution, we determine if activity j has been used (or not) to obtain it.
Example: Computing solution

<table>
<thead>
<tr>
<th>activity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>predecessor</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>OPT[j]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>w_j+OPT[p(j)]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OPT[j-1]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.
Example: Computing solution

<table>
<thead>
<tr>
<th>activity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>predecessor</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>OPT[j]</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$w_j + \text{OPT}[p(j)]$</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OPT[j-1]</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

- $M[0]=0$
Example: Computing solution

<table>
<thead>
<tr>
<th>activity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>predecessor</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>OPT[j]</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>w_j+OPT[p(j)]</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OPT[j-1]</td>
<td>0</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.
Example: Computing solution

<table>
<thead>
<tr>
<th>activity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>predecessor</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>OPT[j]</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_j+OPT[p(j)]</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPT[j-1]</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.
Example: Computing solution

<table>
<thead>
<tr>
<th>activity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>predecessor</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>OPT[j]</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>$w_j + OPT[p(j)]$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>OPT[j-1]</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.
Example: Computing solution

<table>
<thead>
<tr>
<th>activity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>predecessor</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>OPT[j]</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>$w_j + OPT[p(j)]$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>OPT[j-1]</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

Optimal solution
Example: Reconstruction

<table>
<thead>
<tr>
<th>activity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>predecessor</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>OPT[j]</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>$w_j + OPT[p(j)]$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>OPT[j-1]</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.
Example: Reconstruction

<table>
<thead>
<tr>
<th>activity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>predecessor</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>OPT[j]</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>$w_j + \text{OPT}[p(j)]$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>OPT[j-1]</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.
Example: Reconstruction

<table>
<thead>
<tr>
<th>activity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>predecessor</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>OPT[j]</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>w_j+OPT[p(j)]</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>OPT[j-1]</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.