
COMP251: Network flows (1)

Jérôme Waldispühl & Giulia Alberini
School of Computer Science

McGill University
Based on slides from M. Langer (McGill) & (Cormen et al., 2009)

Flow Network
G = (V, E) directed.
Each edge (u, v) has a capacity c(u, v) ≥ 0.
If (u,v) Ï E, then c(u,v) = 0.
Source vertex s, sink vertex t, assume s v t for all v ∈ V.

s

3

2

3

2

3

23
1

3

t

2

If there is no edge, there is no capacity

The flow is flowing from the source to the sink

Definitions
Positive flow: A function p : V × V → R satisfying.

Capacity constraint: For all u, v ∈ V, 0 ≤ p(u, v) ≤ c(u, v)

Flow conservation: For all u ∈ V − {s, t}, p(v,u)
v∈V
∑ = p(u,v)

v∈V
∑

Flow into u Flow out of u

1/2

Positive flow Capacity

0/2 2/2
2/3

1/1 1/2
Flow in: 0 + 2 + 1 = 3
Flow out: 2 + 1 = 3

Each pair of vertices gets a value in R

Example

s

1/3

2/2

1/3

2/2

2/3

1/22/3
1/1

2/3

t

1/2

Cancellation with positive flows

• Without loss of generality, can say positive flow goes either
from u to v or from v to u, but not both.

• In the example below, we can “cancel” 3 units of flow in each
direction between the vertices.

• Capacity constraint is still satisfied.

• Flow conservation is still satisfied.

3

5

0

2

Logic: think about water in a river. Some of the water flowing in, in the opposite
direction to the current would not lead to water going in both directions. The current
would keep in direction and the water would slow down.

Net flow

A function f : V × V ® R satisfying:

• Capacity constraint: For all u, v ∈ V, f (u, v) ≤ c(u, v)

• Skew symmetry: For all u, v ∈ V, f (u, v) = − f (v, u)

• Flow conservation: For all u ∈ V − {s, t} , f (u,v)
v∈V
∑ = 0

f (v,u)
v∈V ; f (v,u)>0
∑ = f (u,v)

v∈V ; f (u,v)>0
∑

Total positive flow
entering u

Total positive flow
leaving u

The flow respects the capacity of each edge

Except the source and the sink, the flow entering a vertex is equal to the flow leaving a vertex

Positive vs. Net flows

Define net flow in terms of positive flow:

f (u,v) = p(u,v) − p(v,u).

The differences between positive flow p and net flow f :
• p(u,v) ≥ 0,
• f satisfies skew symmetry.

Values of flows

s

1/3

2/2

1/3

2/2

2/3

0/20/3
1/1

1/3

t

Value of flow f =|f|=3.

Definition: f = |f| = = total flow out of source. f (s,v)
v∈V
∑

2/2

Flow properties

s

1/3

2/2

1/3

2/2

2/3

0/20/3
1/1

1/3

t

2/2

• Flow in == Flow out
• Source s has outgoing flow
• Sink t has ingoing flow
• Flow out of source s == Flow in the sink t

Maximum-flow problem

Given G, s, t, and c, find a flow whose value is maximum.

s

3

2

3

2

3

23
1

3

t

2

Applications

(https://ais.web.cern.ch/ais/)

(http://driverlayer.com)

Naïve algorithm

Initialize f = 0
While true {

if (∃ path P from s to t such that all
edges have a flow less than capacity)

then
increase flow on P up to max capacity

else
break

}

Naïve algorithm

Initialize f = 0
While true {

if (∃ a path P from s to t s.t. all
edges e ∈ P f(e) < c(e))

then {
β = min{ c(e)-f(e) | e ∈ P}
for all e ∈ P { f(e) += β }

} else { break }
}

Find the path

Identify the minimum difference between capacity and flow
and increment every edge’s flow by that much.

Example where algorithm works

s

0/2

0/3

0/2

0/3

0/4

0/3

t

0/2

Example where algorithm works

s

2/2

0/3

2/2

0/3

0/4

2/3

t

0/2

|f|=2

Example where algorithm works

s

2/2

2/3

2/2

2/3

0/4

2/3

t

2/2

|f|=4

Example where algorithm works

s

2/2

3/3

2/2

2/3

1/4

3/3

t

2/2

|f|=5

Example where algorithm fail!

s

0/2

0/3

0/2

0/3

0/4

0/3

t

0/2

Example where algorithm fail!

s

0/2

3/3

0/2

0/3

3/4

3/3

t

0/2

|f|=3 And terminates…

Challenges

How to choose paths such that:

• We do not get stuck

• We are guarantee to find the maximum flow

• The algorithm is efficient!

Just taking the first path we see is not sufficient!

A better algorithm

Motivation: If we could subtract flow, then we could find it.

t

s
0/1 0/1

0/1

0/1 0/1
t

s
0/1 1/1

1/1

1/1 0/1
t

s
1/1 1/1

1-1/1

1/1 1/1
t

s
1/1 1/1

0/1

1/1 1/1

Algo 1
terminates

here…

Negative value
on edge that

does not satisfy
the definition

Using an edge is the
opposite direction
is equivalent to
subtracting the flow

Residual graphs

Given a flow network G=(V,E) with edge capacities c and a
given flow f, define the residual graph Gf as:

• Gf has the same vertices as G

• The edges Ef have capacities cf (called residual capacities)
that allow us to change the flow f, either by:

1. Adding flow to an edge e ∈ E

2. Subtracting flow from an edge ∈ E

Residual graphs
for each edge e = (u, v) ∈ E

if f(e) < c(e)
then {

put a forward edge (u,v) in Ef
with residual capacity cf(e)=c(e)–f(e)

}
if f(e)>0
then {

put a backward edge (v,u) in Ef
with residual capacity cf(e) = f(e)

}
}

We make a forward edge with “unused capacity”

We make a backward edge with the opposite of the positive flow

Example 1/3

t

s
0/1 0/1

0/1

0/1 0/1
t

s
0/1 1/1

1/1

1/1 0/1

Flow network Flow Residual graph

t

s
1 1

1

1 1

forward backward

Example 2/3

t

s
0/1 0/3

0/2

0/3 0/1
t

s
0/1 2/3

2/2

2/3 0/1

Flow network Flow Residual graph

t

s
1 3-2=1

2

3-2=1 1

forward backward

2

2

Remember!
Forward edge: unused capacity
Backwards edge: opposite of the positive flow (i.e., the flow that could be cancelled out)
If you think about it, the opportunity to cancel out that flow is also unused capacity

Example 3/3

s

0/2

0/3

0/2

0/3

0/4

0/3

t

0/2

s

0/2

3/3

0/2

0/3

3/4

3/3

t

0/2

Example 3/3

s

0/2

3/3

0/2

0/3

3/4

3/3

t

0/2

Flow

Residual
graph s

0/2

0/3

0/2

0/3

0/3
0/3

t

0/2

0/1

Notation: flow/capacity

Augmenting path

An augmenting path is a path from the source s to the sink t
in the residual graph Gf that allows us to increase the flow.

s

2

3

2

3

3
3

t

2

1

Q: By how much can we increase the flow using this path?

Example

s

0/2

3/3

0/2

0/3

3/4

3/3

t

0/2

Flow in G

Residual
graph Gf

s

2

3

2

3

3

3

t

2

1

Example

Residual
graph Gf

Augmented
path in Gf
(value of the
flow is the
bottleneck
value)

s

2

3

2

3

3

3

t

2

1

s

2/2

0/3

2/2

2/3

2/3

0/3

t

2/3

0/1

Example

G

Gf s

2

0

2

2

2
0

t

2

0

s

0/2

3/3

0/2

0/3

3/4
3/3

t

0/2

s

2/2

3/3

2/2

2/3

1/4
3/3

t

2/2

|f|=3

|f|=5

β=2

Methodology

• Compute the residual graph Gf

• Find a path P

• Augment the flow f along the path P

1. Let β be the bottleneck (smallest residual capacity cf(e)
of edges on P)

2. Add β to the flow f(e) on each edge of P.

Q: How do we add β into G?

Augmenting a path

f.augment(P) {
β = min { cf(e) | e ∈ P }
for each edge e = (u,v) ∈ P {

if e is a forward edge {
f(e) += β

} else { // e is a backward edge
f(e) -= β

}
}

}
Forward edges model unused flow, so they can be used directly
Backward edges model the ability to reduce opposite flow, so we subtract

Ford-Fulkerson algorithm

f ¬0
Gf¬G
while (there is a s-t path in Gf) {

f.augment(P)
update Gf based on new f

}

Correctness (termination)

Claim: The Ford-Fulkerson algorithm terminates.
Proof:
• The capacities and flows are strictly positive integers.
• The sum of capacities leaving s is finite.
• Bottleneck values β are strictly positive integers.
• The flow increase by β after each iteration of the loop.
• The flow is an increasing sequence of integers that is bounded.

Complexity (Running time)

C = c(e)
e∈E
outgoing
from s

∑• Let

• Finding an augmenting path from s to t
takes O(|E|) (e.g., BFS or DFS).

• The flow increases by at least 1 at each
iteration of the main while loop.

• The algorithm runs in O(C · |E|)

