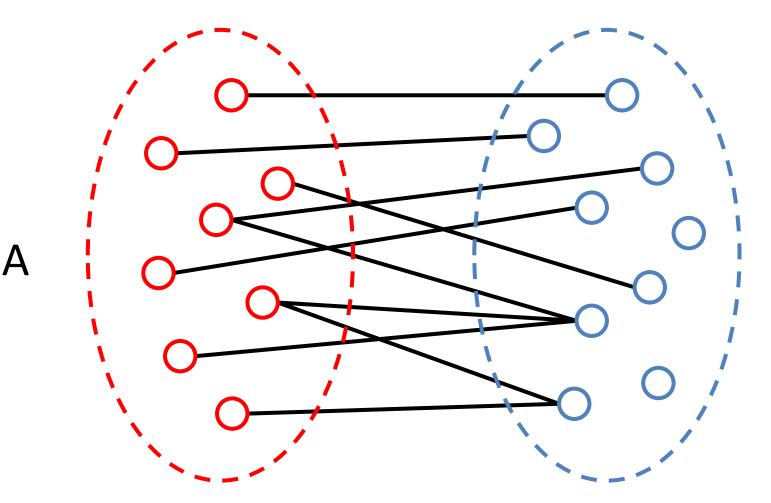
COMP251: Bipartite graphs

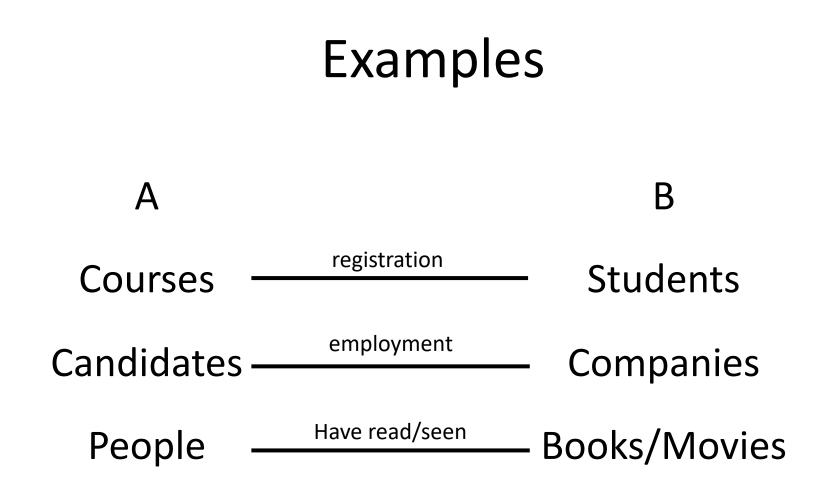
Giulia Alberini & Jérôme Waldispühl School of Computer Science McGill University

Based on slides fom M. Langer (McGill) & P. Beame (UofW) & K. Wayne (Princeton)

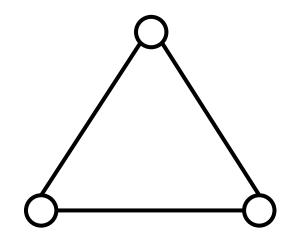
Bipartite graphs

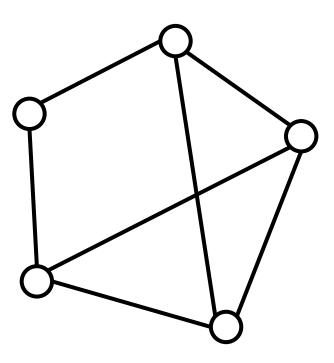


Vertices are partitioned into 2 sets. All edges cross the sets. B



Counter-examples





Easy to identify.

But not always...

Cycles

Core property of bipartite graph: No two vertices of the same set can be adjacent in the graph.

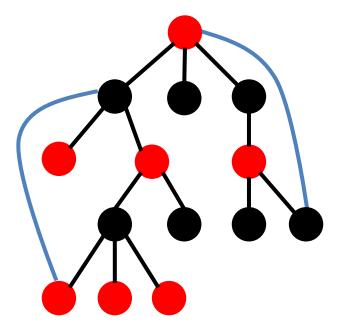
Claim: A graph is bipartite *if and only if* it does not contain an odd cycle.

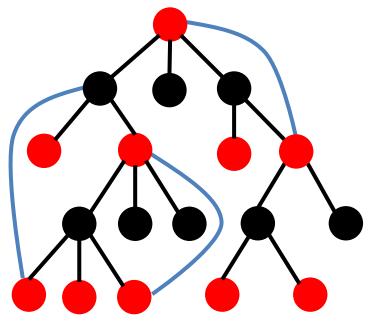
Proof: Exercise.

Is it a bipartite graph?

Assuming G=(V,E) is an undirected connected graph.

- 1. Run DFS and use it to build a DFS tree.
- 2. Color vertices by layers (e.g. red & black)
- 3. If all non-tree edges join vertices of different color, then the graph is bipartite. (guarantees only even cycles)

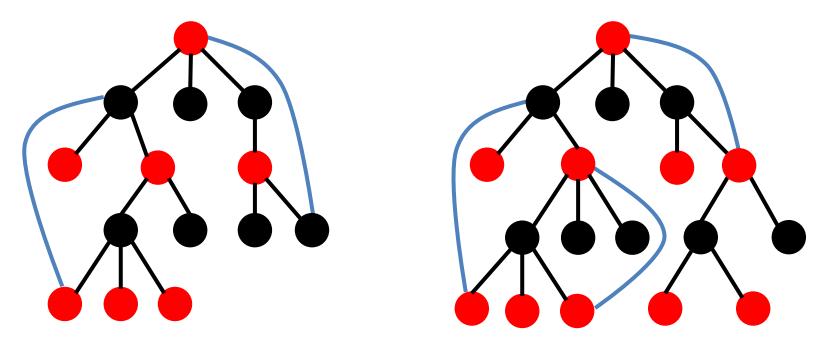




Non-tree edges in DFS tree cross 2 or more levels. Why?

Is it a bipartite graph?

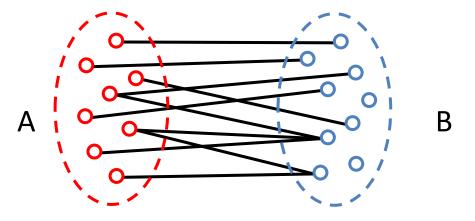
Non-tree edges in DFS tree cross 2 or more levels. Why?



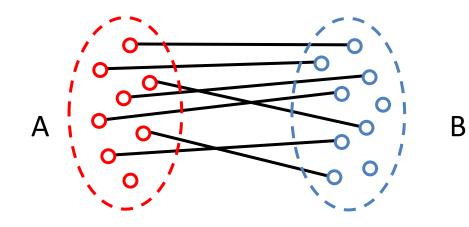
If there was a non-tree edge connecting a node with another on the same level or just one level above, then while discovering that node DFS would have not backtracked without exploring that edge (making it a tree edge)

Bipartite matching

Consider an undirected bipartite graph.



A matching is a subset of the edges $\{(\alpha, \beta)\}$ such that no two edges share a vertex.



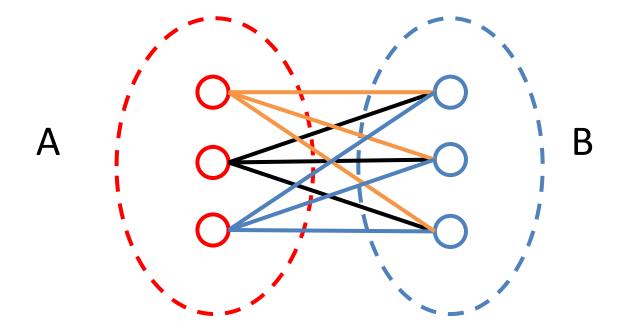
Note: some vertices may not have an edge

Perfect matching B

Suppose we have a bipartite graph with *n* vertices in each A and B. A **perfect matching** is a matching that has *n* edges.

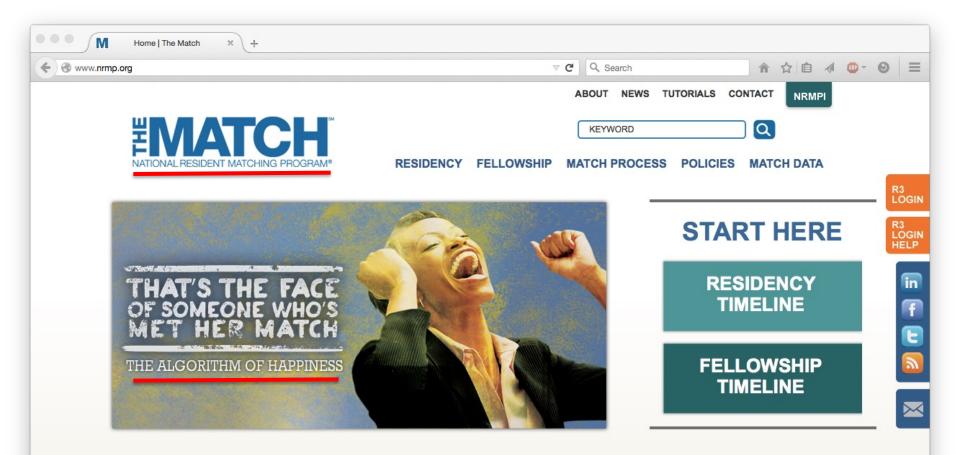
Note: It is not always possible to find a perfect matching.

Complete bipartite graph



A complete bipartite graph is a bipartite graph that has an edge for every pair of vertices (α, β) such that $\alpha \in A, \beta \in B$.

The algorithm of happiness



SHOW US YOUR MATCH FACE. UPLOAD YOUR PIC TO OUR FACEBOOK PAGE.

The Match is a trusted provider of matching services in the United States. It's 100% objective, 100% efficient, and 100% committed to helping

you ignite your passion.

Resident matching program

- **Goal:** Given a set of preferences among hospitals and medical school students, design a self-reinforcing admissions process.
- Unstable pair: applicant x and hospital y are unstable if:
 - $\circ x$ prefers y to their assigned hospital.
 - *y* prefers *x* to one of its admitted students.
- **Stable assignment:** Assignment with no unstable pairs.
 - Natural and desirable condition.
 - Individual self-interest will prevent any applicant/hospital deal from being made.

Stable matching problem

Goal: Given *n* elements of *A* and *n* elements of *B*, find a "suitable" matching. Participants rate members of opposite set:

- Each element of *A* lists elements of *B* in order of preference from best to worst.
- Each element of *B* lists elements of *A* in order of preference from best to worst.

	1 st	2 nd	3 rd
Xavier	Alphabet	Baidu	Campbell
Yulia	Baidu	Alphabet	Campbell
Zoran	Alphabet	Baidu	Campbell

A's preferences

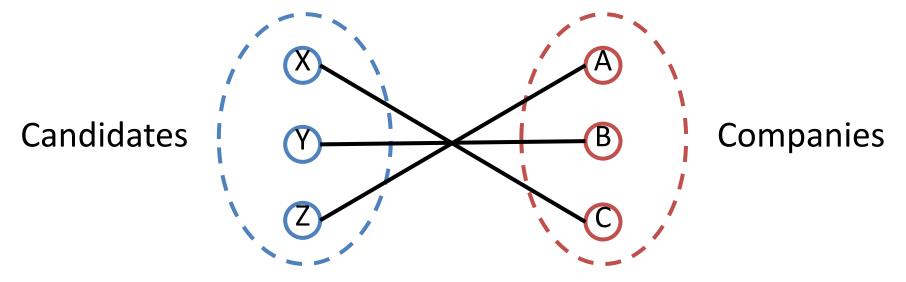
B's preferences

	1 st	2 nd	3 rd
Alphabet	Yulia	Xavier	Zoran
Baidu	Xavier	Yulia	Zoran
Campbell	Xavier	Yulia	Zoran

Stable matching problem

- **Context:** Candidates apply to companies.
- **Perfect matching:** everyone is matched with a single company.
 - Each candidate gets exactly one company.
 - Each company gets exactly one candidate.
- **Stability:** no incentive for some pair of participants to undermine assignment by joint action.
 - In matching **M**, an unmatched pair α - β is unstable if candidate α and company β prefer each other to current match.
 - Unstable pair α - β could each improve by "escaping".
- **Stable matching:** perfect matching with no unstable pairs.
- **Stable matching problem:** Given the preference lists of **n** candidates and **n** companies, find a stable matching (if one exists).

Q: Is X-C, Y-B, Z-A a good assignment?

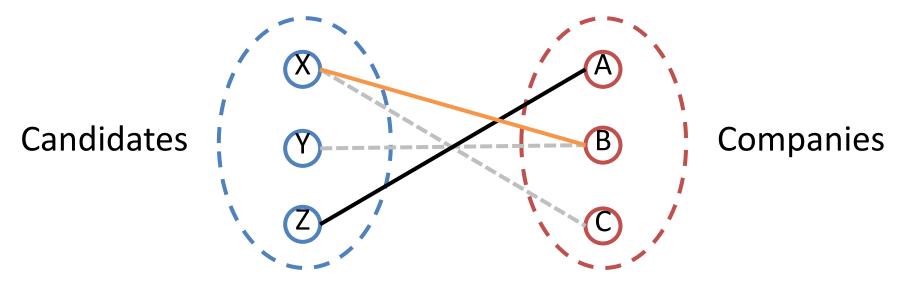


Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Alphabet	Baidu	Campbell
Yulia	Baidu	Alphabet	Campbell
Zoran	Alphabet	Baidu	Campbell

	1 st	2 nd	3 rd
Alphabet	Yulia	Xavier	Zoran
Baidu	Xavier	Yulia	Zoran
Campbell	Xavier	Yulia	Zoran

Q: Is X-C, Y-B, Z-A a good assignment? A: No! Xavier and Baidu will hook up...

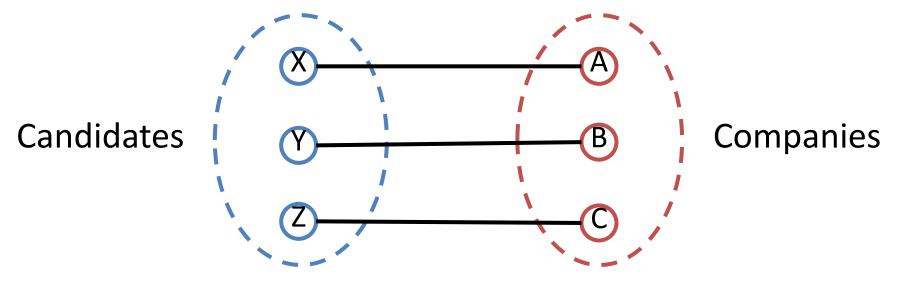


Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Alphabet	Baidu	Campbell
Yulia	Baidu	Alphabet	Campbell
Zoran	Alphabet	Baidu	Campbell

	1 st	2 nd	3 rd
Alphabet	Yulia	Xavier	Zoran
Baidu	Xavier	Yulia	Zoran
Campbell	Xavier	Yulia	Zoran

Q: Is X-A, Y-B, Z-C a good assignment? A: Yes!



Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Alphabet	Baidu	Campbell
Yulia	Baidu	Alphabet	Campbell
Zoran	Alphabet	Baidu	Campbell

	1 st	2 nd	3 rd
Alphabet	Yulia	Xavier	Zoran
Baidu	Xavier	Yulia	Zoran
Campbell	Xavier	Yulia	Zoran

Stable matching problem

Consider a complete bipartite graph such that |A| = |B| = n.

- Each member of A has a preference ordering of members of B.
- Each member of *B* has a preference ordering of members of *A*.

Algorithm for finding a matching.

Until there's an unmatched member in *A*:

- Each A member makes an offer to a B member, in order of preference.
- Each *B* member accepts the first offer from an *A*, but then rejects that offer if/when it receives an offer from an *A* that it prefers more.

In our example: Candidates applies to companies. Companies accept the first offer they receive, but companies will drop their applicant when/if a preferred candidate applies after.

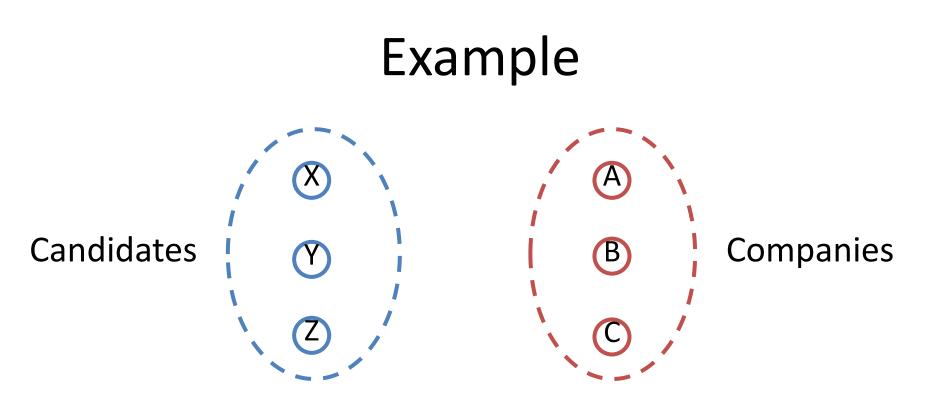
Note the asymmetry between A and B.

Gale-Shapley algorithm

For each $\alpha \in A$, let pref[α] be the ordering of its preferences in B. For each $\beta \in B$, let pref[β] be the ordering of its preferences in A.

Let matching be a set of crossing edges between A and B

matching $\leftarrow \emptyset$ while there is $\alpha \in A$ not yet matched **do** $\beta \leftarrow \text{pref}[\alpha] \cdot \text{removeFirst}()$ β is α 's first remaining choice if β not yet matched **then** matching \leftarrow matching $\cup \{(\alpha, \beta)\}$ If B has no match, accept else If B has a match, check if they would prefer $\gamma \leftarrow \beta$'s current match this new match, if yes, dump the old one if β prefers α over γ then matching \leftarrow matching $-\{(\gamma, \beta)\} \cup \{(\alpha, \beta)\}$ return matching

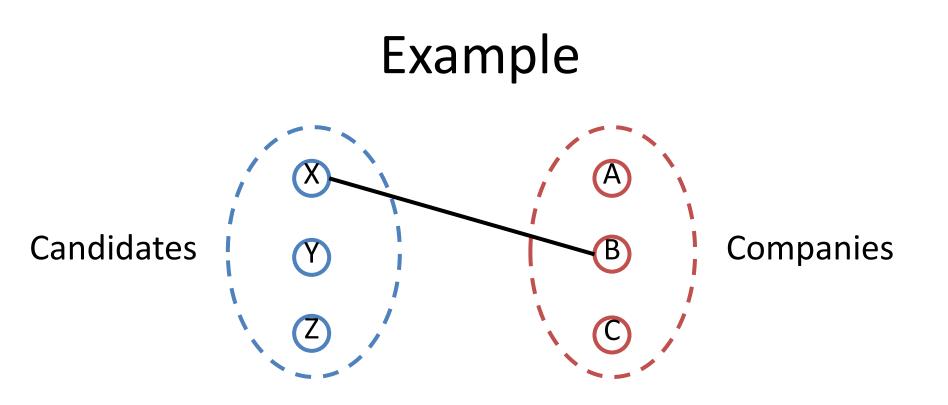


	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

Companies' preferences

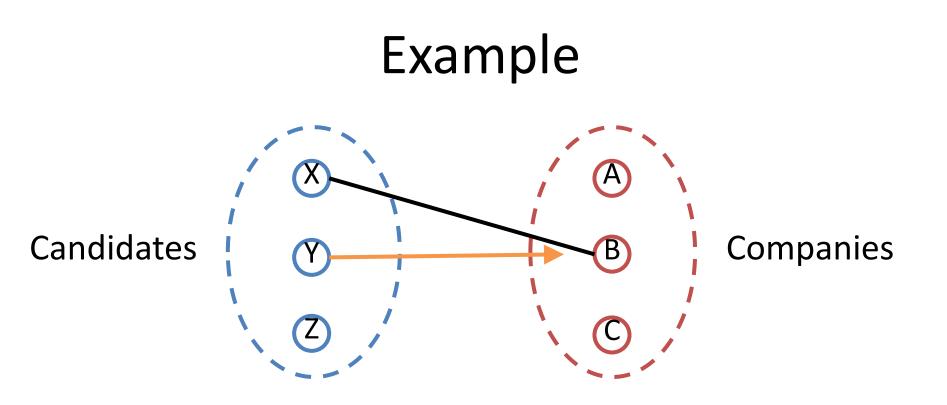
	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran

Note: In practice, we inverse the roles. Companies makes offers...



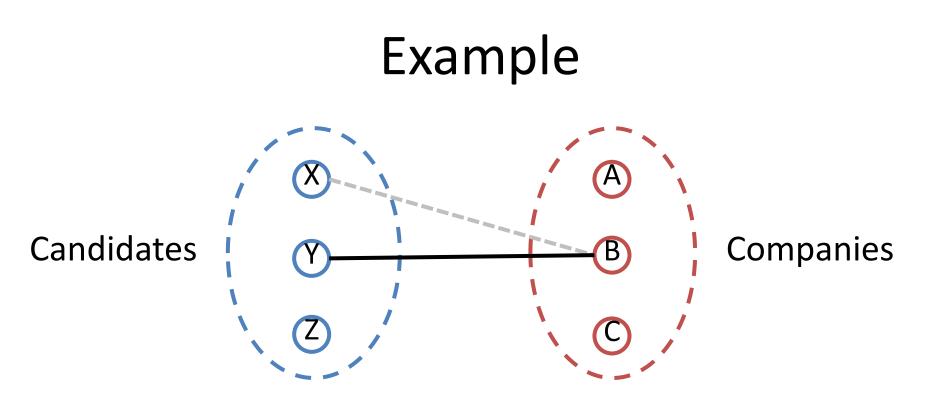
	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



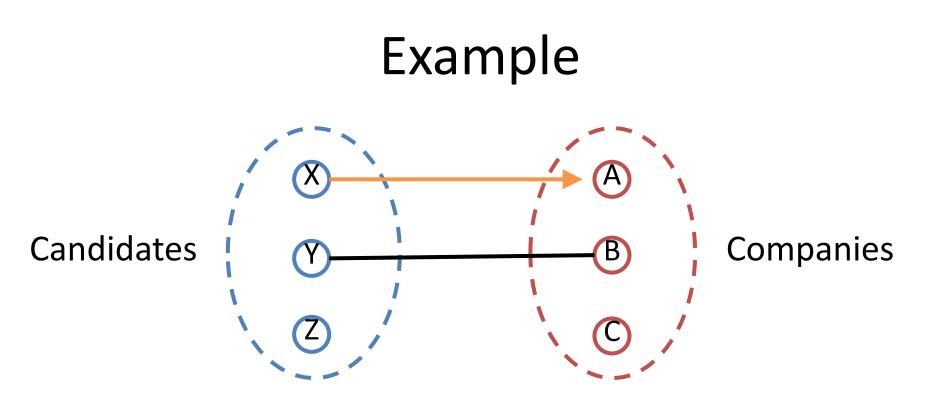
	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



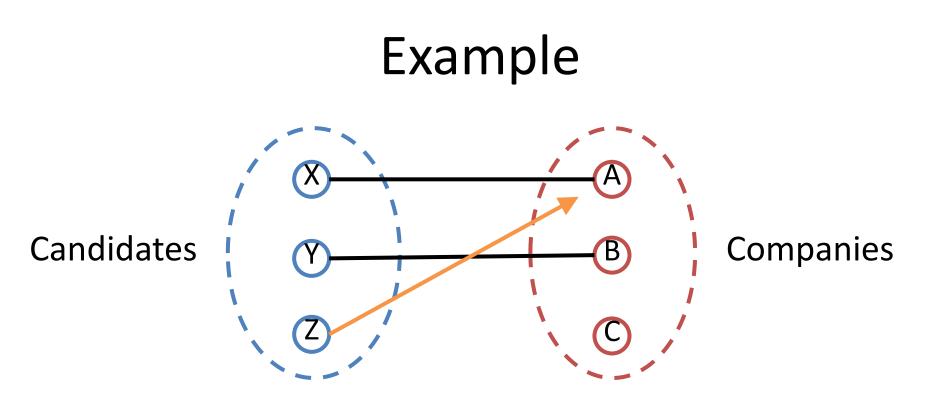
	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



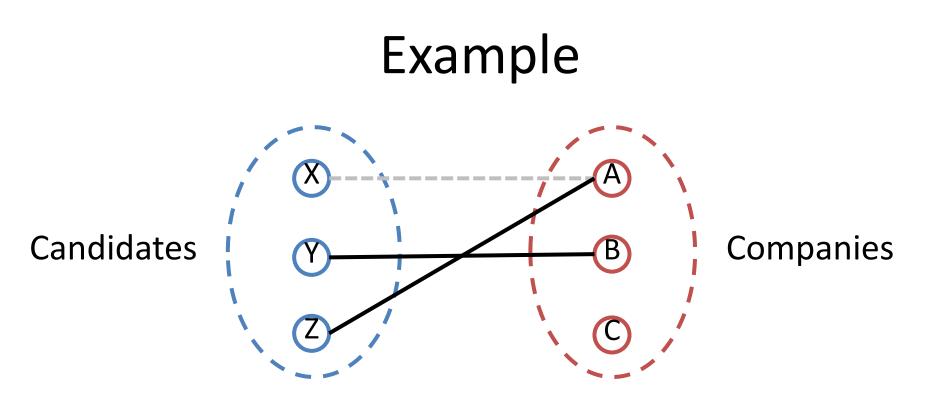
	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

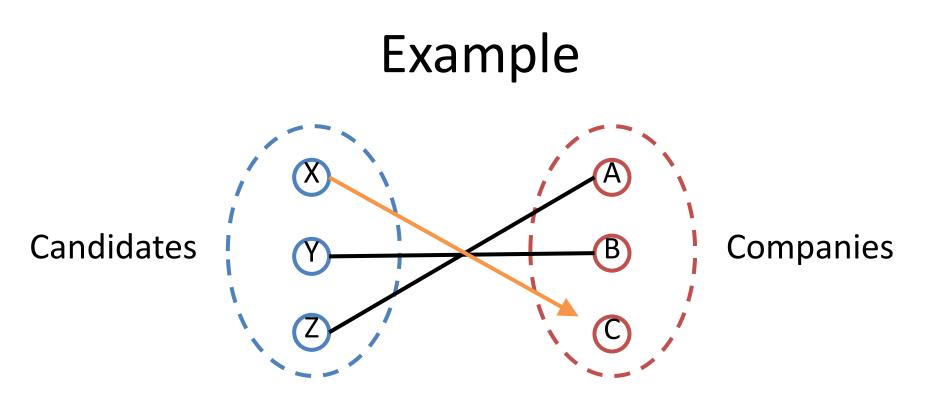
	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



Men's preferences

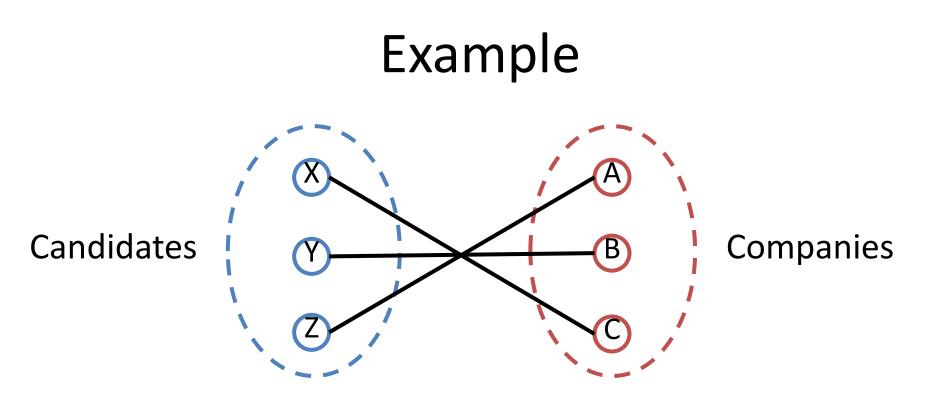
	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran

Correctness (termination)

Observations:

- 1. Candidates apply to companies in decreasing order of preference.
- Once a company is matched, it never becomes unmatched; it only "trades up."

Claim: Algorithm terminates after at most n^2 iterations of while loop (i.e. $O(n^2)$ running time).

Proof: Each time through the while loop a candidate applies to a new company. There are only n^2 possible matches.

Correctness (perfection)

Claim: All candidates and companies get matched.

Proof: (by contradiction)

- Suppose, for sake of contradiction, that Zoran is not matched upon termination of algorithm.
- Then some company, say Alphabet, is not matched upon termination.
- By Observation 2 (only trading up, never becoming unmatched), Alphabet never received any application.
- But, Zoran applies everywhere. Contradiction. ■

Correctness (stability)

Claim: No unstable pairs.

Proof: (by contradiction)

- Suppose **Z-A** is an unstable pair: they prefer each other to the association made in Gale-Shapley matching.
- Case 1: Z never applied to A.
 ⇒ Z prefers his GS match to A.
 ⇒ Z-A is stable.
- Case 2: **Z** applied to **A**.
 - \Rightarrow **A** rejected **Z** (right away or later)
 - \Rightarrow **A** prefers its GS match to **Z**.
 - \Rightarrow **Z-A** is stable.
- In either case Z-A is stable. Contradiction.

Z would have applied to A before applying to its current match if it preferred A

If A rejected Z, it means it prefers its current match

Optimality

Definition: Candidate α is a valid partner of company β if there exists some stable matching in which they are matched.

Applicant-optimal assignment: Each candidate receives **best** valid match (according to his preferences).

Claim: All executions of GS yield an **applicant-optimal** assignment, which is a stable matching!

Note: the notation "Applicant-optimal" refers to α -optimality

	1 st	2 nd	3 rd
X	В	А	С
Y	А	В	С
Z	А	В	С

	1 st	2 nd	3 rd
A	Х	Y	Z
В	Y	Х	Z
С	Х	Y	Z

Two stable matchings: S = { X-A, Y-B, Z-C } and S' = { Y-A, X-B, Z-C }

Then:

- Both X and Y are valid partners for A.
- Both X and Y are valid partners for B.
- Z is the only valid partner for C.
- In S', X Y Z match their best valid partner.

Applicant-Optimality

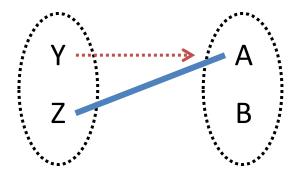
Claim: GS matching **S*** is applicant-optimal.

Proof: (by contradiction)

- Suppose some candidate is paired with a company other than his/her best option. Candidates apply in decreasing order of preference ⇒ some candidate is rejected by a valid match.
- Let **Y** be first such candidate, and let **A** be the first valid company that rejects him (i.e. **Y-A** is optimal).
- Let **S** be a stable matching (not from GS) where **Y** and **A** are matched.
- [In GS] when Y is rejected, A forms (or reaffirms) engagement with a candidate, say Z, whom it prefers to Y ⇒ A prefers Z to Y.
- Let **B** be **Z**'s match in **S**.
- [In GS] Z is not rejected by any valid match (including B) at the point when Y is rejected by A (because Y is the first valid rejection). Thus, Z has not proposed to B (a valid match) when Z proposed to A ⇒ Z prefers A to B.
- Thus A-Z would be preferred in GS (i.e. Y-A and Z-B are unstable) and S is not a stable matching. Contradiction. ■

Why does Z prefer A to B?

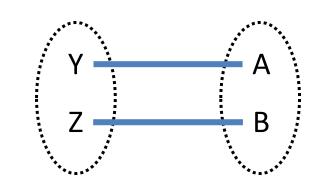
In Gale-Shapley



- Y is the first rejection of a valid pair.
- Y-A rejected because of Z

⇒ if Z had proposed to B before it would need to break the **valid pair** Z-B first

- \Rightarrow impossible (Y first reject)
- \Rightarrow Z did not propose to B



S

We started from the assumption that there's a better valid pair for Y than the one found by GS. \Rightarrow There's a stable matching S with Y-A and Z-B as pairs.

But Z prefers A to B, and A prefers Z to Y \implies Z-A is unstable \implies S is not a stable matching.

Company(β)-pessimality

Each β receive the worst valid partner

Claim: GS find the finds a company-pessimal stable matching.

Proof: Exercise... (by contradiction)